
Optimizing Inference Serving on Serverless Platforms
Ahsan Ali

aali@nevada.unr.edu
University of Nevada, Reno

Reno, NV, USA

Riccardo Pinciroli
riccardo.pinciroli@gssi.it

Gran Sasso Science Institute
L’Aquila, Italy

Feng Yan
fyan@unr.edu

University of Nevada, Reno
Reno, NV, USA

Evgenia Smirni
esmirni@cs.wm.edu
William and Mary

Williamsburg, VA, USA

ABSTRACT
Serverless computing is gaining popularity for machine learning
(ML) serving workload due to its autonomous resource scaling, easy
to use and pay-per-use cost model. Existing serverless platforms
work well for image-based ML inference, where requests are homo-
geneous in service demands. That said, recent advances in natural
language processing could not fully benefit from existing serverless
platforms as their requests are intrinsically heterogeneous.

Batching requests for processing can significantly increase ML
serving efficiency while reducing monetary cost, thanks to the
pay-per-use pricing model adopted by serverless platforms. Yet,
batching heterogeneous ML requests leads to additional computa-
tion overhead as small requests need to be “padded” to the same
size as large requests within the same batch. Reaching effective
batching decisions (i.e., which requests should be batched together
and why) is non-trivial: the padding overhead coupled with the
serverless auto-scaling forms a complex optimization problem.

To address this, we develop Multi-Buffer Serving (MBS), a frame-
work that optimizes the batching of heterogeneous ML inference
serving requests to minimize their monetary cost while meeting
their service level objectives (SLOs). The core of MBS is a perfor-
mance and cost estimator driven by analytical models supercharged
by a Bayesian optimizer. MBS is prototyped and evaluated on AWS
using bursty workloads. Experimental results show that MBS pre-
serves SLOs while outperforming the state-of-the-art by up to 8 ×
in terms of cost savings while minimizing the padding overhead by
up to 37 × with 3 × less number of serverless function invocations.

PVLDB Reference Format:
Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. Optimizing
Inference Serving on Serverless Platforms. PVLDB, 15(10): 2071 - 2084,
2022.
doi:10.14778/3547305.3547313

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Iam-ahsan/MBS.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.
doi:10.14778/3547305.3547313

1 INTRODUCTION
Serverless computing is widely adopted for data analytics [6, 33]
and machine learning (ML) [3–5, 15, 35, 43, 44, 77] tasks including
training [16, 28, 37, 77] and inference serving [3, 81], thanks to
the attractive pay-per-use pricing model and autonomic resource
provisioning. Recent work shows that the serverless paradigm can
serve bursty ML inference workloads in a cost effective manner
while meeting service level objectives (SLOs) for image recognition
tasks with deterministic request sizes and service demands [3]. In
recent years, ML is being widely adopted in natural language pro-
cessing (NLP), including language translation, speech recognition,
text to speech, and speech to text conversion. Such applications
have request sizes equal to a word, sentence, paragraph, or even an
entire document, resulting in heterogeneous service demands.

Cloud computing is the most common choice for serving ML
workloads thanks to the on-demand resource availability and flex-
ible pricing (cost) model [62]. During the inference serving stage
of the ML development life cycle, trained models are deployed
in a cloud environment for classification or prediction. ML infer-
ence serving workloads often demonstrate sudden variations in
the arrival intensities (known as bursty arrivals [17, 18]) which
requires dynamic resource provisioning to meet SLOs. Cloud ser-
vice providers such as Amazon AWS [63], Microsoft Azure [50],
and Google cloud [66] offer Virtual Machines (VMs), container as
a service (CaaS), and function as a service (FaaS, also known as
serverless) for ML inference workloads. When the above options
are used for serving ML inference workloads, drawbacks exist: bare-
bone VMs do not provide dynamic load balancing, CaaS requires a
manual selection of appropriate VMs from hundreds of different
options, and serverless can result in high monetary cost [81].

Serverless is gaining popularity for serving ML inference work-
loads due to its automated resource management (e.g., scaling,
monitoring) and simple application deployment logic [8]. Users
only need to provide a trigger event (e.g., HTTP requests, data-
base uploads), the execution function, and the memory capacity of
the serverless instance. The computing capacity and networking
performance is automatically scaled using the memory capacity
configuration. Serverless supports fast auto-scaling of the number
of instances, which helps fulfill the fast changing resource demands
when serving bursty inference workloads. During time periods
of intense arrivals, instances are transparently created to accom-
modate workload demands. During low arrival intensity periods

2071

https://doi.org/10.14778/3547305.3547313
https://github.com/Iam-ahsan/MBS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3547305.3547313
https://www.acm.org/publications/policies/artifact-review-and-badging-current

instances are scaled down and the serverless paradigm provides sig-
nificant cost savings thanks to its pay-per-use cost model. Still, one
of the main reservations for adopting serverless for ML inference
serving is its higher price, despite the pay-per-use model.

To address the above challenges, recent works [3, 38, 46] propose
serving ML inference workloads using dynamic batching, which
processes requests in bulk to increase system throughput via paral-
lelization. Dynamic batching adjusts batching parameters (batch
size, batch timeout) and memory allocation according to changes
in workload intensity. The main benefits of dynamic batching for
serving ML inference workloads in a serverless setting come from
(i) the reduction of the number of function invocations and (ii) the
reduction of the service time of requests due to execution paral-
lelism. Dynamic batching results in significantly cheaper costs as
the pricing model of serverless is based on the number of function
invocations and the length of each function call [61].

While dynamic batching approaches are effective for serving
homogeneous ML inference workloads, they fall short when serv-
ing heterogenous workloads (i.e., requests with different serving
demands) such as in NLP. Our experiments illustrate that for hetero-
geneous workloads, dynamic batching results in soaring monetary
costs and increased request latencies. To solve this problem, we
identify three key challenges.
(1) Processing a batch requires all requests within a batch to have

the same size. Thus creating a batch with requests in differ-
ent sizes requires padding, typically achieved by adding zeros
to smaller requests. This results in additional computations
that can lead to longer inference latency, resource waste, and
increased monetary cost. Therefore, it is critical for batching
decisions to be aware of padding overheads. One solution to
control the padding overhead is by separating requests by size,
i.e., by aiming to batch together requests of similar size.

(2) Conventional load balancing methods are designed for systems
that are fundamentally different to the serverless paradigm.
Typical load balancing methods [83] do not consider the perfor-
mance implications of padding. More importantly, serverless
platforms target a “queueless” design by automatically launch-
ing new instances when more requests are present.

(3) The optimization space is prohibitively large due to the many
control factors and the complex relationships among them. For
the homogeneous workload case, only the batching parameters
(batch size, batch timeout) and memory size need to be opti-
mized. In the heterogeneous workload case, we also need to
optimize how requests are to be “grouped" together (i.e., the
number of buffers where requests of “similar" size accumulate
for batching, this number may change according to workload
conditions) as well as how to route batched requests to server-
less instances.

To address the above challenges, we develop Multi-Buffer Serv-
ing1 (MBS), a framework for serving heterogeneous ML inference
workloads with SLO guarantees on serverless platforms. The core
of MBS is an analytical model for batching that is aware of the
effect of padding overhead on request latency and serverless cost.
To address the large optimization space challenge, particularly due
to the number of buffers and routing decisions, we supercharge

1https://github.com/Iam-ahsan/MBS

the analytical model with a Bayesian optimizer. To demonstrate
the effectiveness of MBS, we prototype it atop AWS Lambda and
use DeepSpeech, a popular NLP application, for its evaluation. We
validate the adaptability of MBS under varying workload intensities
and different request size distributions. MBS achieves up to 8 ×
cost savings with SLO guarantees compared to the state-of-the-art
methods by minimizing the padding overhead by up to 37 × with
3 × less number of function invocations.

2 MOTIVATION AND CHALLENGES
In this section, we discuss challenges that surface when process-
ing bursty and heterogeneous ML workloads using the serverless
paradigm. Our discussion centers on the performance (i.e., request
latency andmonetary cost) of the state-of-the-practice and the state-
of-the-art techniques and presents opportunities for improvements.
We motivate the need for a new framework that can minimize the
cost of serving modern ML workloads.

2.1 Bursty ML Workloads
Burstiness is an inherent characteristic of real-world workloads
[79], thus performance models need to account for it for accuracy
[48, 49]. Major cloud providers (e.g., Amazon AWS [63], Microsoft
Azure [50], and Google Cloud [66]) offer Machine-Learning-as-a-
Service (MLaaS) to support the scalable execution of ML inference
requests that arrive in bursts. Amazon SageMaker [60], an example
of such services, allows users to choose when and how much their
applications should scale to accommodate all incoming requests.
Users are responsible for (i) choosing the computational resources
(among hundreds of potential configurations with varying com-
putational capabilities and costs) that best adapt to the workload
characteristics, and (ii) selecting auto-scaling parameters that allow
the system to scale in or out properly. This makes it extremely
challenging for users without extensive expertise to optimize the
required parameters for efficient auto-scaling. Moreover, the slow
scaling speed of VM-based MLaaS solutions makes their adoption
impractical for serving bursty MLworkloads within a given SLO [3].

Different frameworks are proposed [3, 32, 81] to overcome the
limitations of state-of-the-practice solutions. State-of-the-art ap-
proaches leverage serverless computing (i.e., a pay-per-use cloud
paradigm that intrinsically supports auto-scaling) to serve bursty
ML workloads. While these frameworks work efficiently with re-
quests whose service demand is homogeneous (e.g., models that
require fixed-length feature vectors or fixed-length sequences), they
perform poorly with heterogeneous workloads (see Section 4) since
they are not aware of the service demand difference among requests
and the batching overhead caused by the request size difference.

2.2 Heterogeneous ML Inference Requests
Modern real-world applications are characterized by heterogeneous
workloads [7, 82], i.e., requests with different service demands. In
this paper, we consider ML inference requests with different ser-
vice demands due to their size, i.e., large inference requests take
longer to be processed by the ML model. Inference requests with
different size are observed in many ML workloads, e.g., TED-LIUM
dataset [69] and Speech Accent [75], two NLP workloads, The for-
mer consists of audio files totaling 112 hours of Ted talks from

2

2072

https://github.com/Iam-ahsan/MBS

different speakers, the latter is built from 177 individuals pronounc-
ing words and sentences with different accents. The probability
density function (PDF) of their request size is shown in Figures 1(a)
and 1(b), respectively, where the x-axis represents the request size
in KB and the y-axis shows the probability of observing such a re-
quest size in the considered dataset. Graph Neural Network (GNN)
applications such as graph classification [42], node classification
[22, 39], or link prediction [71] also exhibit similar characteristics
with varying number of nodes and edges in each graph. The vari-
ability of the request size and, as a consequence, the request service
demand pose new challenges during the serving process, especially
when requests are executed in batches as done by state-of-the-art
approaches [3, 24].

 0

 0.05

 0.1

 0.15

 0.2

12 44 79 115
144

P
D

F

Request Size[KB]

TED-LIUM

(a) TED-LIUM

 0

 0.05

 0.1

 0.15

 0.2

247
557

867
1221

1665

P
D

F

Request Size[KB]

Speech-Accent

(b) Speech Accent

 0

 0.05

 0.1

 0.15

 0.2

247
557

867
1221

1665

P
D

F

Request Size[KB]

Bi-modal

(c) Bimodal

 0

 0.05

 0.1

 0.15

 0.2

12 44 79 115
144

P
D

F

Request Size[KB]

Random

(d) Random

Figure 1: Request size probability density function.

Batching is a technique used for improving the throughput and
resource utilization of ML models during training and inference
phases [24]. It consists of grouping multiple requests to form a
batch and processing the batched requests in parallel. Batching is
easier to do during model training as it is an offline process, where
all the samples (and their attributes) to form the batch are known
and batches can be formed before starting the training phase. When
batching is used to process ML inference workloads on serverless
platforms [3], three parameters (i.e., batch size, timeout, and mem-
ory size) need to be tuned to optimize the inference phase. Specifi-
cally, the batch size is the maximum number of requests grouped in
a single batch, timeout is the maximum time that can be waited to
create a batch, and memory size is the amount of memory allocated
to a serverless function. If the workload is homogeneous (i.e., as
in [3]), inference requests are batched together according to their
arrival. Since only requests of the same size can be batched together
[52], workloads that are heterogeneous pose further challenges.

2.2.1 Padding Overhead. Padding is the process of adding dummy
information to requests such that all requests of the batch obtain
the dimension of the largest request [57]. When ML models process
batches with padded requests, padding results in overhead that
can affect the latency and monetary cost of inference serving. This

is depicted in Figure 2 where (no) batching solutions are visual-
ized for workloads with low and high request size variability. If
request size variability is low, processing all requests separately,
Figure 2(a), generates inefficiencies that lead to long latency and
high monetary cost. Instead, when requests are batched and pro-
cessed together, Figure 2(c), the padding overhead is negligible
while performance and monetary cost improvements are well visi-
ble. If request size variability is high, it might be more beneficial
to process each request individually, Figure 2(b), since the effect of
padding overhead on the request latency is no longer negligible. Im-
provements observed by batching requests together are not worth
the longer latency due to padding overhead, Figure 2(d). Batching
heterogeneous ML requests is a non-trivial task, an approach that
wisely chooses which requests should be batched (based on their
size) is crucial to get the benefits of batching without observing the
performance deterioration due to padding overhead.

Figure 3 shows the impact of batching requests for a GNN in a
community detection application [22] using the Cora dataset [76].
Figure 3(a) shows the service demand for processing a GNN with
fixed edges to 1844 and number of nodes set to 474 and 1096. In
the Mixed case, graphs with 474 and 1096 nodes are processed
concurrently. When requests are served individually (i.e., the batch
size is 1), the service demand depends on the number of nodes in the
GNN. Otherwise, if the batch size is larger than 1, batching requests
improves performance. In the Mixed case for both experiments (that
results in heterogeneous requests), we note that all requests are
padded to the largest case and service demands are as long as those
observed for GNNs with the largest nodes or edges, see Figure 3(a)
and Figure 3(b), respectively.

2.2.2 Buffers and Efficient Request Routing. Due to the stateless
nature of serverless functions, batching requests for parallel pro-
cessing is challenging. Following [3], we deploy queues (i.e., buffers)
on a front-end server to hold requests that are batched together
before forwarding the batch to one of the available serverless func-
tions. BATCH [3] uses only a single buffer to collect requests and
one serverless function to process batches. When serving heteroge-
neous workloads, a single buffer solution can incur high latency and
cost penalties and cause SLO violations as the time and monetary
cost required to process dummy information (i.e., padding over-
head) can be quite high. On the other hand, deploying a dedicated
buffer and serverless function for each request size reduces batch-
ing opportunities and diminishes the benefits of batching (e.g., high
throughput and low latency [24]). To strike the balance between
batching opportunities and padding overhead, it is important to (i)
estimate the optimal number of buffers and serverless functions
required for processing the observed workload and (ii) route similar
requests to the same buffer.

2.3 Optimization Space
Many parameters need to be tuned to optimize the processing of
bursty and heterogeneous ML workloads on serverless computing.
Specifically, one should consider: 1) the number of serverless func-
tions (𝐹) and the routing strategy (𝑅) that minimize the padding
overhead and maximize batching opportunities; 2) the amount of
memory (𝑀) to allocate to instantiated functions such that the
SLO is not violated; 3) the batching configuration, i.e., batch size

3

2073

(a) Small Variability - No batching (b) High Variability - No batching

(c) Small Variability - Batching (d) High Variability - Batching

Figure 2: Serving heterogeneous requests with and without batching.

 0

 5

 10

 15

474 1096 Mixed

S
e
rv

ic
e
 D

e
m

a
n
d

 [
m

s]

Number of Nodes

1 8 16 32 64

(a) GNN: Fixed number of edges

 0

 10

 20

 30

1844 3688 Mixed

S
e
rv

ic
e
 D

e
m

a
n
d

 [
m

s]

Number of Edges

1 8 16 32 64

(b) GNN: Fixed number of nodes

Figure 3: Impact of varying the number of nodes or edges
when requests are processed in batches of 1, 8, 16, 32, or 64.

(𝐵) and timeout (𝑇), which allows reducing the number of func-
tion invocations while meeting given performance requirements.
Profiling all possible configurations (i.e., 𝑅 × 𝐹 × 𝐵 × 𝑇 × 𝑀) to
solve an optimization problem characterized by these dimensions
is unfeasible. If every system configuration takes 𝑡 time units on
average to achieve statistical stability, the profiling cost would be
𝑅×𝐹 ×𝐵×𝑇 ×𝑀 × 𝑡 time units. Analytical approaches significantly
reduce the time needed to compute the performance and monetary
cost of each system configuration. However, the time required to
optimize a system may still be too long due to the size of all consid-
ered dimensions. Specifically, 𝐹 , 𝐵, and𝑇 may grow to infinity since
cloud providers do not limit these parameters; 𝑅 depends on how
many functions are available and how much heterogeneous is the
considered workload;𝑀 is finite (e.g., AWS Lambda allows choos-
ing among 80 different memory capacities [61]), but more memory
configurations might be available in the future for serverless com-
puting. This poses new challenges since analytical solutions cannot
be used to evaluate all possible system configurations (i.e., exhaus-
tive search). We propose to supercharge analytical solutions with
Bayesian optimization, an approach that limits the search space by
early identifying promising system configurations.

3 MBS DESIGN AND IMPLEMENTATION
To address the aforementioned challenges we develop MBS. In
the following, we provide an overview of the proposed frame-
work, introduce the optimization problem that drives MBS, describe
Bayesian optimization, and discuss the analytical model that deter-
mines the optimal system configuration.

3.1 Overview of MBS
An overview of MBS is shown in Figure 4. The main components of
MBS are Profiler, Optimizer, Router, and Buffers. Dashed lines show
the request workflow and solid ones the control flow.

ML inference requests submitted by users to the system 0 are
analyzed by the Profiler to extract their main attributes (i.e., arrival
intensity and request size distribution). Requests and their extracted
attributes are forwarded 1 to the Router and the Optimizer, respec-
tively. Simultaneously, the user-defined SLO and the batch service
time (previously profiled, see Section 3.4.1) are communicated to
the Optimizer. The Optimizer solves the optimization problem of
Eq. (1) using Bayesian optimization (see Section 3.3) to reduce the
number of system configurations that are evaluated using the ana-
lytical model (see Section 3.4). The Optimizer provides the optimal
system configuration that allows to minimize the cost of serving
ML requests. This configuration is used 2 for instantiating the
optimal number of buffers and serverless functions, for setting the
maximum batch size and timeout of all Buffers, for allocating the
desired memory to each serverless function, and for guiding the
Router to forward requests to one of the available Buffers based on
the request size. After receiving the setting configuration, 3 the
Router directs user requests to Buffers by routing similar requests
to the same buffer to minimize their padding overhead while aim-
ing for an equal load distribution across buffers. Once at a buffer,
requests are stored until the buffer reaches the maximum batch
size or until the time since the first request is stored exceeds the
timeout. As soon as one of the above conditions holds, the requests
stored in the buffer form a batch 4 that is sent to the serverless
function associated with the buffer (i.e., a buffer sends all its batches
to the function deployed with enough memory to serve the requests

4

2074

Figure 4: Design of MBS. Dashed and solid lines represent the data and control flows, respectively.

stored in that buffer). After the requests in the batch are processed
by the serverless function, inference results are sent 5 to users.

3.2 Problem Formulation: Multi-Buffer System
Here, we extend the optimization problem for homogeneous work-
loads that is first presented in [3] to support heterogeneous work-
loads and multi-buffers. MBS is driven by Equation 1, which min-
imizes the monetary cost of serving ML requests with serverless
functions while meeting additional constraints. The cost depends
on the maximum batch size and timeout of each buffer (i.e., ®𝐵 and
®𝑇 , respectively), as well as on the memory allocated to each server-
less function (i.e., ®𝑀). The length of the three vectors is equal to
the number of instantiated buffers and serverless functions, i.e.,
∥ ®𝐵∥ = ∥ ®𝑇 ∥ = ∥ ®𝑀 ∥ = 𝐾 .

minimize Costrequest (®𝐵, ®𝑇, ®𝑀)
subject to 𝐹−1

𝑅
(𝑖/100) ≤ SLO (a)

𝐾 ≥ 1 (b)
𝐵𝑘 ≥ 1 (c)

𝑇𝑘 > 0 msec (d)
128MB ≤ 𝑀𝑘 ≤ 10240 MB, (e)

(1)

The additional constraints are: (a) 𝑖% of requests are served
within a user-defined SLO, (b) at least one buffer and one serverless
function are instantiated, (c) the maximum batch size, (d) buffer
timeout, and (e) the memory allocated to each serverless func-
tion (between 128 MB and 10 GB, i.e., values accepted by AWS
Lambda [61]). Eq. (1) defines an infinite search space, thus it is not
practical to solve this problem via exhaustive search. Instead, we
propose to use an analytical model that relates the system con-
figurations (i.e., number of buffers and serverless functions 𝐾 , the
maximum batch size 𝐵𝑘 , buffer timeout𝑇𝑘 , and memory allocated to
each function𝑀𝑘) to the latency distribution and the monetary cost
of requests. To further power the analytical model, we use Bayesian
optimization by evaluating only a small share of all points [73] to
solve Eq. (1).

3.3 Bayesian Optimization
MBS adopts Bayesian optimization [73] to contain the time required
to solve that optimization problem in Eq. (1) and power the analyti-
cal model, see Section 3.4 that is the core of MBS. Differently from

exhaustive search, Bayesian optimization finds the optimal point
(i.e., ®𝑥𝑜𝑝𝑡) which minimizes the function, 𝑓 (®𝑥), by analyzing only a
finite number of system configurations (i.e., ®𝑥 ∈ 𝑋), that is:

®𝑥𝑜𝑝𝑡 = arg min®𝑥 ∈𝑋 𝑓 (®𝑥) . (2)

In this paper, ®𝑥 is a vector containing all parameters of a config-
uration (i.e., ®𝐵, ®𝑇 , and ®𝑀), 𝑋 is the set of all possible configura-
tions, and the function 𝑓 is the optimization function in Eq. (1), i.e.,
Costrequest. Bayesian optimization leverages an acquisition function,
which depends on the knowledge obtained from the prior belief, to
choose the new point ®𝑥 (i.e., number of buffers, maximum batch
size, timeout, and allocated memory) to be considered next [14].
Specifically, the MBS implementation of Bayesian optimization as-
sumes a Gaussian process prior and adopts the Upper Confidence
Bound (UCB) acquisition function2. A Gaussian process [59] is a
stochastic process for which any combination of random variables
(i.e., x = {®𝑥𝑖 : ®𝑥𝑖 ∈ 𝑋 }) follows a Gaussian distribution defined by a
mean function, 𝜇 (x), and a variance function, 𝜎2 (x). UCB [74] is an
acquisition function that minimizes the regret, i.e., the difference
between the return obtained with the optimal policy and the one
achieved with the policy suggested by the acquisition function. For
this purpose, UCB selects the next point to evaluate by moving
from exploration (i.e., take the action with more uncertainty) when
the knowledge is small, to exploitation (i.e., take the action that
looks the best) when the knowledge increases, as [11]:

®𝑥𝑛𝑒𝑥𝑡 = 𝜇 (®𝑥 |x) − 𝜅 · 𝜎 (®𝑥 |x), (3)

where 𝜅 can be tuned to prefer exploitation to exploration. We refer
the interested reader to [12, 29, 73] for further details.

3.4 Analytical Model
We describe the analytical model used by MBS to compute the re-
quest latency distribution, 𝐹𝑅 (𝑡) = 𝑃 (𝑅 ≤ 𝑡), and the monetary
cost of serving ML inference requests using a serverless platform,
Cost𝑟𝑒𝑞𝑢𝑒𝑠𝑡 . The model leverages Markovian Arrival Processes
(MAPs) that capture the performance implications of workload
burstiness to accurately predict the relationship between the re-
quest latency distribution and the system configuration, i.e., the
number of buffers and serverless functions (𝐾), buffer parameters
2This acquisition function is called Lower Confidence Bound in the context of mini-
mization as in our case, see Eq. (1). However UCB is a standard term in the literature.

5

2075

(maximum batch size, 𝐵𝑘 , and timeout, 𝑇𝑘), and the memory allo-
cated to each serverless function (𝑀𝑘). In the following, we provide
definitions to support the analytical model described in Section
3.4.2 that solves the optimization problem in Eq. (1).

3.4.1 Definitions. This section summarizes how MBS use MAPs
to model bursty workloads, the profiling of batch service times,
and the batch size. Typically, analytical models require as inputs
stochastic models that capture the arrival and service processes.
MAPs are widely used in the literature to capture burstiness in
arrivals [10, 18, 20, 53, 68], this is the approach that we follow here.
To model the service process, we extend the methodology presented
in [3] to address the challenges of heterogeneous requests. In the
following we give an overview of MAPs and the methodology used
in [3] to model homogeneous requests.
Arrival Process. MBS uses KPC-Toolbox [19] to fit the inter-arrival
time of each buffer with a MAP, a non-renewal stochastic pro-
cess that models general distribution. A MAP(𝑚) is defined by two
𝑚 ×𝑚 matrices, D0 and D1: the former (a matrix with negative di-
agonal and non-negative off-diagonal elements) represents hidden
events, i.e., events that are not related to an arrival; the latter (a
non-negative matrix) represents observable events that correspond
to an arrival. The infinitesimal generator matrix Q of a MAP(𝑚) is
defined by matrices D0 and D1 as:

Q =

D0 D1 0 0 . . .

0 D0 D1 0
. . .

0 0 D0 D1
. . .

.

.

.
. . .

. . .
. . .

. . .

. (4)

Here, the arrival process of each buffer is modeled by a MAP(2) (i.e.,
a two-state map) defined by matrices:

D0 =

[
−(𝜆1 + 𝜆12 + 𝜔1) 𝜔1

𝜔2 −(𝜆2 + 𝜆21 + 𝜔2)

]
and

D1 =

[
𝜆1 𝜆12
𝜆21 𝜆2

]
,

(5)

where 𝜔1 and 𝜔2 are rates of exponential distributions at which the
process changes its phase, 𝜆1 and 𝜆2 are the arrival rates observed
during each phase, and 𝜆12 and 𝜆21 are rates at which requests
arrive while the phase changes simultaneously. The state space of
a buffer 𝑘 whose arrival process is defined by the MAP(2) in Eq. (5)
is shown in Figure 5. Each state (𝑖, 𝑗) represents the buffer when
𝑖 requests are collected and the arrival process is in phase 𝜙 = 𝑗 ,
with 𝑗 = {1, 2} since the arrival process is defined by a MAP(2).
The number of requests concurrently stored in a buffer 𝑘 is larger
than 0 (i.e., the buffer state is monitored after the first request of a
batch arrives and the timeout, 𝑇𝑘 , starts) and smaller than 𝐵𝑘 (i.e.,
the maximum batch size of the buffer).
Batch Service Time. MBS needs the service time distribution
of batches (besides the user-defined SLO, the load intensity, and
the request size distribution) to find the system configuration that
solves Eq. (1). Such information is retrieved empirically through
profiling. Exhaustive profiling is not appropriate due to the enor-
mous search space (defined by the maximum batch size, memory,
and request size) that must be considered when profiling the service

1,1 2,1 3,1 Bk, 1

λ1 λ1 λ1

1,2 2,2 3,2 Bk, 2

λ2 λ2 λ2 λ2

λ1

ω2 ω2 ω2 ω2ω1 ω1 ω1 ω1

λ12 λ12 λ12 λ12

λ21 λ21 λ21
λ21

Figure 5: State space of a buffer 𝑘 [3] in MBS, whose arrival
process is defined by the MAP(2) in Eq. (5).

time distribution of batches. Indeed, the maximum batch size does
not have an upper-bound, the request size depends on the analyzed
scenario, and AWS allows allocating from 128 MB to 10 GB (in 1
MB increments) to a serverless function. MBS adopts a lightweight
profiling approach to profile the batch service time of only a few
configurations and estimates missing points through regression.
Since the batch service time of machine learning inference is typ-
ically deterministic [80] for fixed memory, maximum batch size,
and request size, the lightweight profiling strategy allows obtaining
accurate results in a short time.
Batch Size Distribution. MBS must compute the request latency
distribution to guarantee that the user-defined SLO is met. Since
the service time of a batch (and its requests) depends on the batch
size, MBS derives the batch size distribution (i.e., the number of
requests collected by a buffer 𝑘 within its timeout𝑇𝑘) for all buffers
in the system. Since no more than 𝐵𝑘 requests can be collected in a
buffer 𝑘 (i.e., 𝐵𝑘 is the maximum batch size of a buffer 𝑘), the arrival
process of the 𝑘-th buffer is defined by the 2𝐵𝑘 × 2𝐵𝑘 matrix:

Q̂ =

D0 D1

. . .
. . .

D0 D1
0

. (6)

The probability that there are 0 < 𝑛 ≤ 𝐵𝑘 requests in the buffer 𝑘
at time 𝑇𝑘 and its arrival process is in phase 𝜙 = {1, 2} is:

®𝜋 (𝑇𝑘) = ®𝜋 (0)𝑒Q̂𝑇𝑘 , (7)

where ®𝜋 (𝑇𝑘) = {𝜋𝑛,𝜙 (𝑇𝑘)} is the state space vector at time 𝑇𝑘 ,
®𝜋 (0) is the initial state probability vector, and 𝑒Q̂𝑇𝑘 is the matrix
exponential:

𝑒Q̂𝑇𝑘 =

∞∑︁
𝑖=0

�̂�𝑖 ·
𝑇 𝑖
𝑘

𝑖!
. (8)

Aggregating ®𝜋 (𝑇𝑘) over all phases 𝜙 , i.e.,
∑2
𝜙=1 𝜋𝑛,𝜙 (𝑇𝑘), we derive

the probability that 𝑛 requests are in buffer 𝑘 at time 𝑇𝑘 .
The initial state probability vector, ®𝜋 (0), defines the probability

that the arrival process of buffer 𝑘 is in phase 𝜙 when the first
request of a batch is stored. Although there are 2𝐵𝑘 elements in ®𝜋 (0),
only 𝜋1,1 (0) and 𝜋1,2 (0) may be non-zero and 𝜋1,1 (0) + 𝜋1,2 (0) = 1,
i.e., when the buffer timeout starts at time 𝑡 = 0, only one request
is in the buffer and the arrival process is either in phase 𝜙 = 1 or in
phase 𝜙 = 2. ®𝜋 (0) is computed by deriving the average arrival rate
of each phase of the arrival process, ®𝜆 = (𝜆1, 𝜆2), as:

®𝜆 =

(
𝜔2

𝜔1 + 𝜔2
,

𝜔1
𝜔1 + 𝜔2

)
× D1, (9)

6

2076

where 𝜔𝜙

𝜔1+𝜔2
, for 𝜙 = {1, 2}, is the probability to be in phase 2 or 1,

respectively. The average rate of phase 𝜙 is divided by the expected
batch size as:

𝛼𝜙 =
𝜆𝜙

min
(
𝐵𝑘 , 𝜆𝜙 ·𝑇𝑘 + 1

) , (10)

and the probability that the arrival process is in phase 𝜙 = {1, 2}
when the first request of a batch arrives to the buffer is:

𝜋1,𝜙 (0) =
𝛼𝜙

𝛼1 + 𝛼2
. (11)

3.4.2 Modeling Heterogeneous Requests. This section extends the
analytical model in [3] to tackle new challenges that are faced while
serving ML applications and their heterogeneous requests (i.e., we
assume 𝐶 types of requests). Specifically, we describe in detail how
MBS determines the number of buffers (and serverless functions,
𝐾) that will serve inference requests, the routing strategy used to
distribute incoming requests to available buffers, and models for
request latency and monetary cost used to solve Eq. (1).
Request Size Distribution. MBS derives the request size distribu-
tion by observing the systemworkload. The request size distribution
is critical since it is used to derive the optimal number of buffers
and their arrival process.
Number of Buffers. Determining the number of buffers to store in-
coming requests and create batches allows optimizing the monetary
cost and serving latency. MBS can serve each request individually
to reduce the latency or store all requests together (i.e., in a single
buffer, 𝐾 = 1) to facilitate the creation of large batches before the
timeout expires. Since one of the parameters determining the mon-
etary cost of a serverless function is the number of invocations [62],
serving more requests in a single batch decreases the monetary
cost. This comes at the expense of a longer latency since the batch
service time increases with its size (i.e., the number of requests
included in the batch). On the contrary, smaller batches decrease
latency but increase monetary cost. The optimal number of buffers
(as well as other system parameters, i.e., maximum batch size, time-
out, and allocated memory) is provided by Bayesian optimization
(see Section 3.3).
Routing Strategy. After solving the optimization problem in Eq. 1,
the Optimizer communicates the request routing strategy to the
Router. Routing depends on the number of instantiated buffers and
on the request sizes (types) observed by the Profiler. The routing
strategy i) equally splits incoming requests among all available
buffers and ii) routes requests of similar size to the same buffer. As
an example, assume that the Profiler classifies incoming requests
into three types (e.g., 70% small, 5% medium, and 25% large) and that
the Optimizer instantiates two buffers only. The Router redirects
half of the load to the first buffer and the other half to the second
one, while taking care of routing similar requests to the same buffer,
i.e., the first buffer serves only small requests and the second one
serves all other requests.
Request Service Time Distribution. When the number of re-
quest classes, 𝐶 , is larger than the number of buffers, 𝐾 , a batch
might be made of different request classes since requests with differ-
ent characteristics (i.e., size) may be routed to the same buffer. MBS
computes the probability that a batch created by buffer 𝑘 is made
of specific request sizes using a Monte Carlo approach [47], which

generates a large number of requests in a short time. Specifically,
MBS derives the probability, 𝑝𝑛 (𝛾), that a batch of size 𝑛 ≤ 𝐵𝑘 has
a composition 𝛾 ∈ Γ(𝐶𝑘 , 𝑛), where𝐶𝑘 is a set containing all request
classes routed to a buffer 𝑘 by the Router. Γ(𝐶𝑘 , 𝑛) is another set
which contains the ∥𝐶𝑘 ∥𝑛 permutations (i.e., compositions) of a
batch of size 𝑛, where ∥𝐶𝑘 ∥ is the cardinality of𝐶𝑘 . The probability,
𝜌𝑐𝑘 , that a request of class 𝑐 ∈ 𝐶𝑘 is included in a batch of size 𝑛 is:

𝜌𝑐𝑛 =
𝜌𝑐𝑛∑
𝑛 𝜌𝑐𝑛

. (12)

Specifically,

𝜌𝑐𝑛 =
∑︁

𝛾 ∈Γ (𝐶𝑘 ,𝑛)
count(𝑐,𝛾) · 𝑝𝑛 (𝛾), (13)

and count(𝑐,𝛾) is the number of requests of class 𝑐 in a batch with
composition 𝛾 .

Due to the request paddingmechanism described in Section 1, the
service time of a batch depends on its size (𝑛) and its largest request
(𝑐𝑚𝑎𝑥). All requests batched with 𝑐𝑚𝑎𝑥 spend the same amount of
time of 𝑐𝑚𝑎𝑥 to be processed by the serverless function. Thus, MBS
computes the service time of a batch (and all its requests) using
the batch service time distribution obtained through lightweight
profiling, the batch size distribution as in Eq. (7), and the probability
of having a request 𝑐𝑚𝑎𝑥 in a batch of size 𝑛, Eq. (12).
Latency and Cost CDF. After deriving the service time distribu-
tion of all request classes, 𝑆𝑐 , MBS computes the latency distribu-
tion of each class, i.e., 𝐹𝑅𝑐 (𝑡) = 𝑃 (𝑅𝑐 ≤ 𝑡), by adding the estimated
waiting time𝑊𝑐 to the request service time. The waiting time is
computed as:

𝑊𝑐 =

0 if 𝐵𝑘 = 1
𝑇𝑘
𝑛 if 𝑛 < 𝐵𝑘

min
(
𝑇𝑘 ,

𝑛−1
𝜆

)
if 𝑛 = 𝐵𝑘

, (14)

where 𝑛 is the size of the batch and 𝜆 is the average arrival rate
that, for a MAP(2), is derived through Eq. (9) as:

𝜆 = ®𝜆 ×
(

1
1

)
=

(
𝜔2

𝜔1 + 𝜔2
,

𝜔1
𝜔1 + 𝜔2

)
× D1 ×

(
1
1

)
. (15)

The service time of a batch with 𝑛 requests whose the largest one
has size is 𝑐𝑚𝑎𝑥 , i.e., 𝑆 (𝑛, 𝑐𝑚𝑎𝑥), is used to compute the monetary
cost for serving such a batch and its 𝑛 requests. Serving a batch
created with requests stored in a buffer 𝑘 costs [62]:

Cost𝑏𝑎𝑡𝑐ℎ = 𝑆 (𝑛, 𝑐𝑚𝑎𝑥) ·𝑀𝑘 · 𝐾1 + 𝐾2, (16)

where 𝑀𝑘 is the memory allocated to the serverless function, 𝐾1
(i.e., 1.66667 · 10−5 $/GB-s) is the memory cost, and 𝐾2 (i.e., 2 · 10−7

$) is the invocation cost. The cost of each request in a batch of 𝑛
requests is derived from Eq. (16) as: Cost𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = Cost𝑏𝑎𝑡𝑐ℎ/𝑛.

4 EVALUATION
We analyzeMBS using speech-to-text applications. After evaluating
the accuracy of the model, we study the performance of MBS under
various workload intensities and request size distributions.

7

2077

4.1 Experimental Setup
MBS prototype. We prototype MBS atop a single AWS EC2 in-
stance (i.e., t2.xlarge) due to its small computational requirements.
MBS is placed between the request source and the serverless in-
frastructure. In this paper, the serverless platform of choice is AWS
Lambda [61]. However, MBS can operate and interact with any
serverless environment (e.g., Google Cloud [65], Azure [67]) as it
does not use any cloud provider specific feature. The main differ-
ences among these platforms are the underlying hardware capabili-
ties and cost, which are the input of MBS.
Baseline Policies. We compare MBS to four different static sched-
uling policies and BATCH, the state-of-the-art approach [3]. The
three static policies use a fixed number of buffers (i.e., 8, 16, and 20)
to process heterogeneous ML inference requests. BATCH can serve
bursty inference workloads using the FaaS paradigm.
ML Applications and Request Size Distribution. The perfor-
mance of MBS and baseline policies is evaluated with four hetero-
geneous workloads (i.e., TED-LIUM dataset [69], Speech Accent
[75], Bi-modal, and Random) whose PDFs are shown in Figure 1.
All bins of those PDFs have the same width, i.e., 4 KB. TED-LIUM
corpus (TL) [69] is a real-world NLP workload that consists of
audio files totaling 112 hours of read speech from different speak-
ers. The size of its files varies from 12 KB to 144 KB, with mean
request size of 68.73 KB, and standard deviation of 20.19 KB. An-
other real-world workload is obtained from the Speech Accent (SA)
dataset [75] that consists of words and sentences pronounced by
177 individuals with different accents. Its request size distribution is
skewed toward small requests (i.e., mean request size is 475.26 KB
and standard deviation is 252 KB). We generate also two synthetic
workloads: Bi-modal (B) and Random (R). The former shows two
peaks (i.e., modes) in the PDF, one for small and the other for large
requests. The latter has different (random) probabilities for each
request size.
Bursty Workloads.We evaluate the performance of MBS using
two arrival traces: a real-world one from Twitter [64], see Figure
7(a), and a synthetic one, see Figure 9(a). The load intensity observed
in the Twitter trace over a period of 240 minutes varies between
1900 and 2500 req/min. The synthetic trace is used to evaluate
MBS in the presence of high and sudden request arrival patterns
as observed in Microsoft production traces [31], where the arrival
intensity varies by 50 ×. We generate the synthetic trace by scaling
the arrival intensity of the Twitter trace 4 × and 10 × to generate
alternating periods of sudden low/high arrival intensity.

4.2 Model Validation
We investigate the accuracy of the analytical model presented in
Section 3.4 by predicting the latency of ML inference requests
executed on AWS Lambda [61]. We compute the error as:

𝐸𝑟𝑟𝑜𝑟 =
|𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑀𝑜𝑑𝑒𝑙 − 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐴𝑊𝑆 |

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐴𝑊𝑆
· 100, (17)

where 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑀𝑜𝑑𝑒𝑙 is the request latency predicted by the analyt-
ical model and 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝐴𝑊𝑆 is the latency observed to process the
request on AWS Lambda. Figure 6 shows the error (y-axis) made
by the proposed model when the arrival intensity of requests is
driven by the real-world trace (i.e., Twitter). Independently of the
number of buffers used by MBS to store incoming requests (see

 0
 2
 4
 6
 8

 10

4 8 16 20

E
rr

o
r

[%
]

(a) TED-LIUM

 0
 2
 4
 6
 8

 10

4 8 16 20

E
rr

o
r

[%
]

(b) Speech Accent

 0
 2
 4
 6
 8

 10

4 8 16 20

E
rr

o
r

[%
]

(c) Bi-modal

 0
 2
 4
 6
 8

 10

4 8 16 20

E
rr

o
r

[%
]

(d) Random

Figure 6: Model error distribution.

the x-axis) and the adopted request size distribution, the analyti-
cal model shows a small prediction error, i.e., the maximum error
observed is always less than or equal to 10%.

4.3 A Real-World Workload: Twitter Traces
In this section, we evaluate the effect of heterogeneous workloads
with arrivals driven by the Twitter trace, see Figure 7(a). To high-
light the benefit of using MBS to serve ML inference requests in a
serverless environment, we compare the performance and cost of
the proposed framework with the baseline approaches.

4.3.1 Request Latency. The 95th percentile latency of ML infer-
ence requests obtained using MBS and other baselines is shown in
Figures 7(b) and 7(c) when the SLO (i.e., horizontal purple line) is
set to 300 and 500 msec, respectively. To evaluate how well MBS
adapts to variations in the request size distribution, we change the
size of processed requests every 60 minutes, i.e., Bi-modal up to
60 minutes, TED-LIUM from 60 to 120 minutes, Speech Accent
between 120 and 180 minutes, and Random until the end of the
experiment, see the x-axis of Figure 7(a) where vertical red lines
show the time at which the request size distribution changes. All
considered approaches always meet the SLO independently of its
value and the request size distribution as depicted in Figures 7(b)
and 7(c). MBS stays closer to the SLO than other approaches, i.e.,
it uses the available resources in a more judicious manner. The
only exception is observed with the Speech Accent request size
distribution (i.e., from 120 to 180 minutes) for both SLO values,
when BATCH performs as well as or better than MBS.

4.3.2 Number of Buffers. The number of buffers instantiated over
time by MBS to optimize the cost of serving ML inference requests
with serverless computing is shown in Figure 7(d) for both SLO
values. Based on the observed request size distribution and load
intensity, MBS changes the number of buffers used for collecting
inference requests to minimize the monetary cost of the system
whilemeeting the given SLO.With stringent SLOs,MBS instantiates
a large number of buffers to generate small batches of requests that
are processed in a short time. Loose SLOs allow MBS to prioritize
the monetary cost over the performance as a few buffers are used
to create large (and slow) batches.

8

2078

 19

 22

 25

 0 60 120 180 240

B TL SA R

re
q
(1

0
2
)/

m
in

time [min]

(a) Twitter Trace

 100

 200

 300

 0 60 120 180 240

La
te

n
cy

 [
m

s]

time [min]

(b) Latency (SLO = 300 msec)

 100

 300

 500

 0 60 120 180 240

La
te

n
cy

 [
m

s]

time [min]

(c) Latency (SLO = 500 msec)

 0

 5

 10

 15

 20

 0 60 120 180 240

#
 B

u
ff

e
rs

time [min]

SLO 300 SLO 500

(d) Buffers

Figure 7: Twitter trace (a), the request latency provided by MBS and baseline frameworks when SLO=300 msec (b) and SLO=500
msec (c), and the number of buffers used by MBS for both SLOs (d).

 50

 65

 80

#
 I
n
v
o
ca

ti
o
n
s

[1
0

3
]

 123 BATCH
Buff 8

Buff 16
Buff 20

MBS

(a) Invocations (SLO = 300 msec)

 0

 20

 40

%
 P

a
d
d
in

g

BATCH
Buff 8

Buff 16
Buff 20

MBS

 370

(b) Overhead (SLO = 300 msec)

 0

 0.5

 1

 1024 4096 6144
C

D
F BATCH

Buff 8
Buff 16
Buff 20
MBS

(c) Memory (SLO = 300 msec)

 30

 40

 50

C
o
st

 [
$

] 302 BATCH
Buff 8

Buff 16
Buff 20

MBS

(d) Cost (SLO = 300 msec)

 35

 55

#
 I
n
v
o
ca

ti
o
n
s

[1
0

3
]

 120 BATCH
Buff 8
Buff 8

Buff 20
MBS

(e) Invocations (SLO = 500 msec)

 0

 4

 8

 12

%
 P

a
d
d
in

g

BATCH
Buff 8

Buff 16
Buff 20

MBS

 75

(f) Overhead (SLO = 500 msec)

 0

 0.5

 1

 1024 4096 6144

C
D

F BATCH
Buff 8
Buff 16
Buff 20
MBS

(g) Memory (SLO = 500 msec)

 25

 35

 45

C

o
st

 [
$

]

BATCH
Buff 8

Buff 16
Buff 20

MBS

 198

(h) Cost (SLO = 500 msec)

Figure 8: Performance of MBS and baseline policies to serve ML inference requests whose arrival process is defined by the
Twitter trace and the SLO is set to 300 and 500 msec.

4.3.3 Number of Invocations. By adjusting the number of buffers,
serverless functions, and timeout to the workload changes, MBS
optimizes the number of invocations to serverless functions, i.e.,
one of the parameters which contribute to the monetary cost of
serverless computing, see Eq. (16). Figures 8(a) and 8(e) depict the
number of functions called by all approaches when the SLO is set
to 300 and 500 msec, respectively. These results show that MBS
reduces the number of invocations of serverless functions when
compared to other approaches. Since MBS instantiates more buffers
when the SLO is strict, the number of function calls is larger when
SLO = 300 msec.

4.3.4 Padding Overhead. The padding overhead of MBS and base-
lines is shown as a percentage of additional processed information
in Figures 8(b) and 8(f) for 𝑆𝐿𝑂 = 300 msec and 𝑆𝐿𝑂 = 500 msec,
respectively. BATCH is the framework which shows the largest
overhead since it is not aware of heterogeneity, requests are all

collected in a single buffer and batched together independently of
their size. Other policies that use a fixed number of buffers have
less overhead than BATCH. Using multiple buffers allows routing
incoming requests to different serverless functions and batches
are created using only similar requests that are collected in the
same buffer. This means that when the number of buffers increases
the observed overhead is small since grouping together identical
requests allows creating batches without padding requests. MBS
shows the smallest padding overhead when 𝑆𝐿𝑂 = 300 msec, over-
head is slightly higher than with 16 and 20 buffers if the SLO is
set to 500 msec. This is due to MBS preferring a smaller number of
invocations, see Figure 8(e), to a smaller padding overhead in order
to optimize the monetary cost.

4.3.5 Memory Allocation. A serverless function with high memory
allocation can process a request in a short time but the amount of

9

2079

allocated memory is proportional to the monetary cost of server-
less functions, see Eq. (16). Hence, we compare the distribution of
memory allocated to serverless functions by MBS and baselines
when the SLO is set to 300 and 500 msec, see Figures 8(c) and 8(g),
respectively. The two figures show the allocated memory (in MB)
on the x-axis and its distribution (i.e., CDF) on the y-axis. MBS al-
ways allocates less memory than all other approaches and achieves
to minimize the monetary cost while meeting the given SLO.

4.3.6 Monetary Cost. The monetary cost of serving ML inference
requests with serverless computing by using MBS and other ap-
proaches is shown in Figures 8(d) and 8(h) for 𝑆𝐿𝑂 = 300 msec and
𝑆𝐿𝑂 = 500 msec, respectively. For both SLO values, MBS shows
a 25% improvement on monetary cost comparing to others. Com-
pared to BATCH, MBS enables 8 × and 7 ×monetary cost saving for
𝑆𝐿𝑂 = 300 msec and 𝑆𝐿𝑂 = 500 msec, respectively. MBS decreases
the monetary cost of the considered system by increasing batch-
ing opportunities, optimizing the padding overhead, and efficiently
using available resources (i.e., memory).

4.4 Large and Sudden Load Variations
We evaluate the efficiency of MBS using synthetic workloads with
load intensity surges larger than those observed in the Twitter trace.
Figure 9(a) depicts the workload used for experiments shown in
this section over 360 minutes. The load intensity changes every
hour; during time frames 0–60 and 240–300 it is the same that is
observed in the Twitter trace. Time frames 120–180 and 300–360
show a 4 × larger intensity than previous than the Twitter one.
From 60 to 120 and from 180 to 240, the load intensity is 10 × larger.
Two request size distributions are considered with this workload,
i.e., TED-LIUM and Bi-modal.

4.4.1 Request Latency. Figures 9(b) and 9(c) show the 95th per-
centile latency of requests processed with MBS and other schedul-
ing techniques when the SLO is set to 300 and 500msec, respectively.
MBS keeps request latency consistently close to (and shorter than)
the SLO, independently of the load intensity and the request size
distribution. Overall, MBS outperforms all from latency perspective.
Other techniques cope only with SLO and load variations hence, al-
though they do not violate the latency constraints and in some cases
they get closer to the SLO than MBS, the latency of requests served
with these strategies is generally far from the given constraint, i.e.,
available resources are wasted while serving ML requests.

4.4.2 Number of Buffers. MBS quickly adapts the number of de-
ployed buffers to system conditions even with high and sudden
load variations. This is shown in Figure 9(d), where the number of
buffers used to collect ML requests for both SLO values is depicted
as a function of time. Similar to the Twitter trace, MBS instantiates
more buffers with a tighter SLO between 0 and 120 minutes.

4.4.3 Number of Invocations. As depicted in Figures 10(a) and 10(e)
for 𝑆𝐿𝑂 = 300 and 𝑆𝐿𝑂 = 500 msec, respectively, MBS minimizes
the number of function calls even when high and sudden surges
are observed in the workload. For 𝑆𝐿𝑂 = 300 msec, MBS performs
as well as one of the static approaches (i.e., 8 buffers). Otherwise,
MBS is largely better than competitors.

4.4.4 Padding Overhead. The padding overhead of MBS and other
approaches is depicted in Figures 10(b) and 10(f) for 𝑆𝐿𝑂 = 300 and
𝑆𝐿𝑂 = 500 msec, respectively. When the SLO is set to 300 msec,
MBS is the approach that allows minimizing the request padding.
For 𝑆𝐿𝑂 = 500 msec, MBS performs worse than the static approach
using 20 buffers. However, the padding overhead alone is not a sign
of bad performance. As observed also for the Twitter trace, MBS
prefers a high padding overhead to significantly reduce the number
of invocations, see Figure 10(e).

4.4.5 Memory Allocation. Figures 10(c) and 10(g) show the distri-
bution of memory allocated by MBS and other static approaches
to serve ML requests with 𝑆𝐿𝑂 = 300 and 𝑆𝐿𝑂 = 500 msec, respec-
tively. Also with large and sudden variations in the workload, MBS
outperforms other techniques.

4.4.6 Monetary Cost. Figures 10(d) and 10(h) show the monetary
cost of processing ML inference requests with serverless computing
and different serving frameworks when the SLO is set to 300 and 500
msec, respectively. Compared to static approaches, MBS provides
the smallest monetary cost even when the workload is subject to
sudden and high intensity variations.

4.5 Monetary Cost and SLO
Themonetary cost of MLmodels is affected by the user-defined SLO
since looser performance requirements allow for greater savings. In
Figure 11, we investigate the effect of SLO on the monetary cost of
serving heterogeneous ML requests with BATCH and MBS. For this
purpose, we use the Twitter trace to drive the workload intensity
and we assume that the request size distribution is defined by the
Bi-modal function.

Results show that MBS always outperforms BATCH indepen-
dently of the considered SLO. Specifically, MBS saves 4 ×more than
BATCH to serve workloads with tight SLOs, i.e., less than 300 msec.
MBS is aware of the request size distribution and batches similar
requests together to minimize the monetary cost while meeting the
performance constraint. Instead, BATCH cannot distinguish among
different requests and, with tight SLOs, it serves all requests indi-
vidually to meet the given SLO at the expense of a higher monetary
cost. When the SLO is relaxed (i.e., larger than 300 msec), BATCH
starts batching requests and processing them in parallel. Although
this is an inefficient batching since BATCH is unaware of request
size distribution and padding overhead, it allows a significant mon-
etary cost reduction. However, MBS is still 2 to 3 times cheaper
than BATCH since it batches requests in such a way that padding
overhead (and the associated cost) is minimized.

4.6 MBS vs. Exhaustive Search
We evaluate how effectively MBS identifies the system configura-
tion that minimizes the monetary cost and meets the given SLO.
For this purpose, we compare the performance of MBS with the one
obtained using an Exhaustive Search approach (i.e., the best system
configuration is selected among all possible ones). For this purpose,
we assume the Exhaustive Search approach has full knowledge of
workload intensity and request size distribution. This way, the Ex-
haustive Search approach always returns the system configuration
that minimizes the monetary cost of the system and meets the SLO.

10

2080

 0

 8

 16

 24

 0 60 120 180 240 300 360

TL B B TL B TL

re
q
(1

0
3
)/

m
in

time [min]

(a) Synthetic Workload

 100

 200

 300

 0 60 120 180 240 300 360

La
te

n
cy

 [
m

s]

time [min]

(b) Latency (SLO = 300 msec)

 100

 300

 500

 0 60 120 180 240 300 360

La
te

n
cy

 [
m

s]

time [min]

(c) Latency (SLO = 500 msec)

 0

 5

 10

 15

 20

 0 60 120 180 240 300 360

#
 B

u
ff

e
rs

time [min]

SLO 300 SLO 500

(d) Buffers

Figure 9: Synthetic trace (a), the request latency provided byMBS and baseline frameworks when SLO=300msec (b) and SLO=500
msec (c), and the number of buffers used by MBS for both SLOs (d).

 50

 70

 90

#
 I
n
v
o
ca

ti
o
n
s

[1
0

3
] BATCH

Buff 8
Buff 16
Buff 20

MBS

(a) Invocations (SLO = 300 msec)

 0

 3

 6

 9

%
 P

a
d
d
in

g

Buff 8
Buff 16
Buff 20

MBS

 26
 28

(b) Overhead (SLO = 300 msec)

 0

 0.5

 1

 1024 4096 6144
C

D
F

BATCH
Buff 8
Buff 16
Buff 20
MBS

(c) Memory (SLO = 300 msec)

 290

 340

 390

 440

C
o
st

 [
$

]

 1080 BATCH
Buff 8

Buff 16
Buff 20

MBS

(d) Cost (SLO = 300 msec)

 30

 50

 70

#
 I
n
v
o
ca

ti
o
n
s[

1
0

3
] BATCH

Buff 8
Buff 16
Buff 20

MBS

(e) Invocations (SLO = 500 msec)

 2

 6

 10

 14

%
 P

a
d
d
in

g

BATCH
Buff 8

Buff 16
Buff 20

MBS

 108

(f) Overhead (SLO = 500 msec)

 0

 0.5

 1

 1024 4096 6144

C
D

F BATCH
Buff 8
Buff 16
Buff 20
MBS

(g) Memory (SLO = 500 msec)

 280

 380

 480

C

o
st

 [
$

]

 1120
 1128 BATCH

Buff 8
Buff 16
Buff 20
MBS

(h) Cost (SLO = 500 msec)

Figure 10: Performance of MBS and baseline policies to serve ML inference requests whose arrival process is subject to large
and sudden variations. The SLO is set to 300 and 500 msec.

Figure 12 depicts the request latency distribution and the average
monetary cost of MBS and the Exhaustive Search approach when
they are used to control the workload in Figure 9(a) with different
SLOs. MBS generally serves ML inference requests with the same
(or very similar) latency of the Exhaustive Search approach, see
Figures 12(a) and 12(b) for 𝑆𝐿𝑂 = 300 msec and 𝑆𝐿𝑂 = 500 msec,
respectively. In some cases (less than 5%),MBS serves requests faster
than Exhaustive Search due to MBS having no prior knowledge
of the workload intensity and the request size distribution. The
monetary cost of MBS and Exhaustive Search is comparable (i.e.,
the difference is less than 2% for both SLOs), see Figure 12(c).

Overall, MBS selects (close to) optimal system configurations
and provides results (i.e., request latency and monetary cost) that
are similar to the one of the Exhaustive Search approach. Thanks to
Bayesian Optimization, MBS detects the best system configuration
in a hundredth of the time taken by the Exhaustive Search approach.

5 RELATEDWORK
Despite some limitations of the FaaS paradigm [2, 9, 40] (e.g., the
slow exchange of data between functions which leverage remote
storage [37, 45]), serverless computing has been recently adopted
for running applications such as live streaming [58], video process-
ing [6], data processing [51, 55, 78], and IoT services [23]. Among
others, also machine learning applications have been deployed and
evaluated on serverless platforms [35] and recent work [41] aims
to facilitate the deployment of ML models on FaaS for users with
different expertise (e.g., statisticians and data scientists).

Training ML models (no inference) on serverless computing plat-
forms presents many challenges and opportunities [28]. Carreira et
al. [15] analyze the feasibility of ML model training on serverless
platforms and propose a general framework architecture to tackle
the most immediate challenges. They also develop CIRRUS [16], a

11

2081

 0
 20
 40
 60
 80

150
300

400
500

800

C
o
st

 [
$

]

SLO [ms]

MBS BATCH

Figure 11: Monetary cost against different SLO values. The
arrival process is driven by the Twitter trace and the request
size distribution follows the Bi-modal function.

 0

 0.5

 1

 100 200 300

C
D

F

Time [ms]

Exhaustive
MBS

(a) Latency
(SLO = 300 msec)

 0

 0.5

 1

 0 300 500

C
D

F

Time [ms]

Exhaustive
MBS

(b) Latency
(SLO = 500 msec)

 250

 300

300
500

C
o
st

 [
$

]

SLO [ms]

Exhaustive
MBS

(c) Average Cost

Figure 12: Request latency CDF of the Exhaustive Search
approach and MBS, when SLO=300 msec (a) and SLO=500
msec (b). Average monetary cost of the two strategies (c).

framework that efficiently supports ML training and hyperparam-
eter optimization. Wang et al. [77] propose SIREN, a framework
that reduces ML model training up to 44% when compared to tradi-
tional benchmarks executed on AWS EC2. Jiang et al. [37] proposes
LambdaML, a framework of ML training on serverless computing
along with an analytical model to evaluate the performance trade-
off of FaaS- and IaaS-based ML training. Differently from these
approaches, MBS aims to optimize the processing of heterogeneous
ML inference workloads on serverless platforms.

Elordi et al. [26] use MLPerf to benchmark deep neural network
inference on AWS Lambda. BARISTA [13] enables horizontal and
vertical scaling of serverless resources when they are employed to
process ML inference requests with a bursty arrival process. The
performance of BARISTA is not analyzed on public serverless sys-
tems. Zhang et. al [81] develop MArk, a framework that decreases
the cost of ML model inference by flanking IaaS instances with
serverless computing. MArk uses serverless resources to comply
with SLOs when workload variations are detected. However, it does
not promptly react to sudden workload changes that result in longer
latency tails. Ali et al. [3] propose BATCH to process bursty ML
inference requests. Their framework leverage serverless computing
and dynamic batching, but does not support multiclass workloads.
Jarachanthan et al. [36] implement AMPS-Inf, a framework that
enables model partitioning to increase the cost efficiency of model
inference in serverless computing. However, AMPS-Inf does not
provide any guarantee on tail latency and is not evaluated against
bursty workloads. Gao et al. [30] propose a white box approach
called cellular batching for serving heterogeneous requests. To min-
imize the padding overhead cellular batching makes the batching
decisions at the granularity of an RNN cell. Compared to MBS, this
approach does not take into consideration the dynamic variations
in the workload arrival intensity and request size distribution and

is SLO oblivious. In addition, cellular batching requires modifica-
tions within existing ML frameworks. Similarly, other approaches
have been proposed in [27, 34, 72] to improve the energy efficiency
or system utilization. However, these approaches either require
modification of the ML serving framework or do not take into
consideration the variation in workload intensity.

Different applications batch and process requests together to
improve the system performance, e.g., OLTP systems [25] and in-
memory machine learning [70]. Stout [46] uses dynamic batching
to improve the throughput of cloud storage applications, but it only
works with performance average values (no distribution) and does
not allow users to define SLOs. Crankshaw et al. [24] adopt dynamic
batching for improving the performance of ML inference requests
and implement it in Clipper, a prediction service system that re-
duces ML inference latency. The exhaustive profiling strategy used
by Clipper to find optimal parameters (i.e., the batch size) makes
the framework unsuitable for serverless platforms whose workload
experiences sudden variations. Moreover, Clipper does not allow
controlling the memory size of serverless functions, and its reac-
tive nature makes it unable to meet user-defined SLOs. Dynamic
batching is also implemented in GrandSLAm [38], a framework to
process microservice requests. This tool copes only with Poisson
distributed inter-arrival times and does not serve bursty workloads.

All main deep learning frameworks (e.g., TensorFlow [1], MXNet
[21], PyTorch [54]) support padding of requests with different size
that are batched together [30]. Pinheiro et al. [56] propose a dy-
namic padding strategy that adapts to the usage of smart home
networks. When low traffic is detected, padding is increased to max-
imize the request privacy. Padding is decreased when high traffic
is observed to reduce the overhead. MBS implements a padding
strategy that accounts for the largest request in each batch and
increases the size of smaller requests accordingly. This reduces the
padding overhead since smaller requests are padded based on the
largest request in the batch, not the largest one in the whole system.

6 CONCLUDING REMARKS
We introduce MBS, a framework that leverages analytical models
and Bayesian optimization to unburden the thorny tasks of manual
tuning serverless functions to process heterogeneous ML inference
workloads. MBS observes the systemworkload to detect the optimal
batching and system configurations that minimize the monetary
cost while preserving SLO. The performance of MBS is evaluated
against state-of-the-art approaches using real (bursty) traces. Re-
sults show that MBS predicts the request latency distribution with
high accuracy (maximum error smaller than 10%) regardless of load
intensity and request heterogeneity (i.e., request size distribution).
Compared to existing approaches, MBS preserves SLO while reduc-
ing the monetary cost by up to 8 × in public serverless platforms.

ACKNOWLEDGMENTS
This work is supported by the following grants: National Science
Foundation CAREER-2048044, IIS-1838024 (using resources pro-
vided by Amazon Web Services as part of the NSF BIGDATA pro-
gram), IIS-1838022, CCF-1717532, CNS-1950485, and MIUR PRIN
project SEDUCE 2017TWRCNB. We thank the anonymous review-
ers for their insightful comments that improved the paper.

12

2082

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,
Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. Tensorflow: A system for large-scale
machine learning. In Proceedings of the Symposium on Operating Systems Design
and Implementation (OSDI). USENIX, 265–283.

[2] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. Stateful func-
tions as a service in action. Proceedings of the VLDB Endowment 12, 12 (2019),
1890–1893.

[3] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. Batch: ma-
chine learning inference serving on serverless platforms with adaptive batching.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). IEEE, 1–15.

[4] Ahsan Ali, Hemant Sharma, Rajkumar Kettimuthu, Peter Kenesei, Dennis Trujillo,
Antonino Miceli, Ian Foster, Ryan Coffee, Jana Thayer, and Zhengchun Liu.
2022. fairDMS: Rapid Model Training by Data and Model Reuse. arXiv preprint
arXiv:2204.09805 (2022).

[5] Ahsan Ali, Syed Zawad, Paarijaat Aditya, Istemi Ekin Akkus, Ruichuan Chen,
and Feng Yan. 2022. SMLT: A Serverless Framework for Scalable and Adaptive
Machine Learning Design and Training. arXiv preprint arXiv:2205.01853 (2022).

[6] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. 2018.
Sprocket: A serverless video processing framework. In Proceedings of the Sympo-
sium on Cloud Computing (SoCC). ACM, 263–274.

[7] Tayebeh Bahreini, Hossein Badri, and Daniel Grosu. 2021. Mechanisms for
resource allocation and pricing in mobile edge computing systems. IEEE Trans-
actions on Parallel and Distributed Systems 33, 3 (2021), 667–682.

[8] Ioana Baldini, Paul C. Castro, Kerry Shih-Ping Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander
Slominski, and Philippe Suter. 2017. Serverless computing: Current trends and
open problems. In Research Advances in Cloud Computing. Springer, 1–20.

[9] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre Sutra, and
Pedro García-López. 2019. On the faas track: Building stateful distributed applica-
tions with serverless architectures. In Proceedings of the International Middleware
Conference (Middleware). ACM, 41–54.

[10] Falko Bause, Peter Buchholz, and Jan Kriege. 2009. A comparison of Markovian
arrival and ARMA/ARTA processes for the modeling of correlated input pro-
cesses. In Proceedings of the Winter Simulation Conference (WSC). IEEE, 634–645.

[11] Syrine Belakaria, Aryan Deshwal, Nitthilan Kannappan Jayakodi, and Janard-
han Rao Doppa. 2020. Uncertainty-aware search framework for multi-objective
Bayesian optimization. In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), Vol. 34. AAAI Press, 10044–10052.

[12] Julian Berk, Sunil Gupta, Santu Rana, and Svetha Venkatesh. 2020. Randomised
Gaussian Process Upper Confidence Bound for Bayesian Optimisation. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
IJCAI, 2284–2290.

[13] Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei Kang, Hongyang Sun,
Aniruddha Gokhale, and Gabor Karsai. 2019. BARISTA: Efficient and Scalable
Serverless Serving System for Deep Learning Prediction Services. In Proceedings
of the International Conference on Cloud Engineering (IC2E). IEEE, 23–33.

[14] Eric Brochu, Vlad M. Cora, and Nando De Freitas. 2010. A tutorial on Bayesian
optimization of expensive cost functions, with application to active usermodeling
and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010).

[15] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz.
2018. A Case for Serverless Machine Learning. InWorkshop on Systems for ML
and Open Source Software at NeurIPS.

[16] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. 2019. Cirrus: a Serverless Framework for End-to-end ML Workflows. In
Proceedings of the Symposium on Cloud Computing (SoCC). ACM, 13–24.

[17] Giuliano Casale, Ningfang Mi, Ludmila Cherkasova, and Evgenia Smirni. 2008.
How to parameterize models with bursty workloads. SIGMETRICS Performance
Evaluation Review 36, 2 (2008), 38–44.

[18] Giuliano Casale, Ningfang Mi, and Evgenia Smirni. 2010. Model-Driven System
Capacity Planning under Workload Burstiness. IEEE Transactions on Computers
59, 1 (2010), 66–80.

[19] Giuliano Casale, Eddy Z. Zhang, and Evgenia Smirni. 2010. KPC-Toolbox: Best
recipes for automatic trace fitting using Markovian Arrival Processes. Perfor-
mance Evaluation 67, 9 (2010), 873–896.

[20] Giuliano Casale, Eddy Z. Zhang, and Evgenia Smirni. 2010. Trace data character-
ization and fitting for Markov modeling. Performance Evaluation 67, 2 (2010),
61–79.

[21] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

[22] Zhengdao Chen, Xiang Li, and Joan Bruna. 2017. Supervised community detec-
tion with line graph neural networks. arXiv preprint arXiv:1705.08415 (2017).

[23] Bin Cheng, Jonathan Fuerst, Gurkan Solmaz, and Takuya Sanada. 2019. Fog Func-
tion: Serverless Fog Computing for Data Intensive IoT Services. In Proceedings of
the International Conference on Services Computing (SCC). IEEE, 28–35.

[24] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonza-
lez, and Ion Stoica. 2017. Clipper: A low-latency online prediction serving system.
In Proceedings of the Symposium on Networked Systems Design and Implementation
(NSDI). USENIX, 613–627.

[25] Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving optimistic concur-
rency control through transaction batching and operation reordering. Proceedings
of the VLDB Endowment 12, 2 (2018), 169–182.

[26] Unai Elordi, Luis Unzueta, Jon Goenetxea, Sergio Sanchez-Carballido, Ignacio
Arganda-Carreras, and Oihana Otaegui. 2020. Benchmarking deep neural net-
work inference performance on serverless environments with MLPerf. IEEE
Software 38, 1 (2020), 81–87.

[27] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. 2021. TurboTransformers: an
efficient GPU serving system for transformer models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
389–402.

[28] Lang Feng, Prabhakar Kudva, Dilma Da Silva, and Jiang Hu. 2018. Exploring
serverless computing for neural network training. In Proceedings of the Interna-
tional Conference on Cloud Computing (CLOUD). IEEE, 334–341.

[29] Peter I. Frazier. 2018. Bayesian optimization. In Recent Advances in Optimization
and Modeling of Contemporary Problems. INFORMS, 255–278.

[30] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. 2018. Low latency RNN infer-
ence with cellular batching. In Proceedings of the EuroSys Conference (EuroSys).
ACM, 31:1–31:15.

[31] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S. McKinley, and Björn B.
Brandenburg. 2017. Swayam: distributed autoscaling to meet SLAs of machine
learning inference services with resource efficiency. In Proceedings of the Inter-
national Middleware Conference (Middleware). ACM, 109–120.

[32] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Taylan Kandemir,
Bhuvan Urgaonkar, George Kesidis, and Chita Das. 2019. Spock: Exploiting
serverless functions for slo and cost aware resource procurement in public cloud.
In Proceedings of the International Conference on Cloud Computing (CLOUD). IEEE,
199–208.

[33] Luis Felipe Herrera-Quintero, Julian Camilo Vega-Alfonso, Klaus Bodo Albert
Banse, and Eduardo Carrillo Zambrano. 2018. Smart ITS sensor for the trans-
portation planning based on IoT approaches using serverless and microservices
architecture. IEEE Intelligent Transportation SystemsMagazine 10, 2 (2018), 17–27.

[34] Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng Yan, and Bo Wu. 2019.
Grnn: Low-latency and scalable rnn inference on gpus. In Proceedings of the
Fourteenth EuroSys Conference 2019. 1–16.

[35] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2018. Serving
deep learning models in a serverless platform. In Proceedings of the International
Conference on Cloud Engineering (IC2E). IEEE, 257–262.

[36] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li. 2021. AMPS-Inf: Automatic
Model Partitioning for Serverless Inference with Cost Efficiency. In Proceedings
of the International Conference on Parallel Processing (ICPP). ACM, 1–12.

[37] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic,
Ankit Singla, WentaoWu, and Ce Zhang. 2021. Towards Demystifying Serverless
Machine Learning Training. In Proceedings of the International Conference on
Management of Data (SIGMOD). ACM, 857–871.

[38] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn,
Jason Mars, and Lingjia Tang. 2019. GrandSLAm: Guaranteeing SLAs for Jobs in
Microservices Execution Frameworks. In Proceedings of the EuroSys Conference
(EuroSys). ACM, 34:1–34:16.

[39] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[40] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless
Analytics. In Proceedings of the Symposium on Operating Systems Design and
Implementation (OSDI). USENIX, 427–444.

[41] Malte S. Kurz. 2021. Distributed Double Machine Learning with a Serverless
Architecture. In Proceedings of the International Conference on Performance Engi-
neering (ICPE-C). ACM/SPEC, 27–33.

[42] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018.
Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324
(2018).

[43] Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma,
Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, Ryan Coffee, Naoufal Layad,
et al. 2021. Bridge data center AI systems with edge computing for actionable
information retrieval. arXiv preprint arXiv:2105.13967 (2021).

[44] Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma,
Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, Ryan Coffee, Naoufal Layad,
et al. 2021. Bridging data center AI systems with edge computing for actionable
information retrieval. In 2021 3rd Annual Workshop on Extreme-scale Experiment-
in-the-Loop Computing (XLOOP). IEEE, 15–23.

13

2083

[45] AshrafMahgoub, Karthick Shankar, SubrataMitra, Ana Klimovic, Somali Chaterji,
and Saurabh Bagchi. 2021. SONIC: Application-aware Data Passing for Chained
Serverless Applications. In Proceedings of the Annual Technical Conference (ATC).
USENIX, 285–301.

[46] John C. McCullough, John Dunagan, Alec Wolman, and Alex C. Snoeren. 2010.
Stout: An adaptive interface to scalable cloud storage. In Proceedings of the Annual
Technical Conference (ATC). USENIX, 47–60.

[47] Nicholas Metropolis and Stanislaw Ulam. 1949. TheMonte CarloMethod. Journal
of the American Statistical Association 44, 247 (1949), 335–341.

[48] Ningfang Mi, Giuliano Casale, Ludmila Cherkasova, and Evgenia Smirni. 2008.
Burstiness in Multi-tier Applications: Symptoms, Causes, and New Models. In
Proceedings of the International Middleware Conference (Middleware). ACM, 265–
286.

[49] Ningfang Mi, Qi Zhang, Alma Riska, Evgenia Smirni, and Erik Riedel. 2007. Per-
formance impacts of autocorrelated flows in multi-tiered systems. Performance
Evaluation 64, 9-12 (2007), 1082–1101.

[50] Microsoft. 2022. Azure. Create the games that you would play. https://azure.
microsoft.com/en-us/. [Online; accessed 04-December-2019].

[51] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In Proceedings
of the International Conference onManagement of Data (SIGMOD). ACM, 115–130.

[52] Mahyar Najibi, Bharat Singh, and Larry Davis. 2019. AutoFocus: Efficient Multi-
Scale Inference. In Proceedings of the International Conference on Computer Vision
(ICCV). IEEE, 9744–9754.

[53] Marcel F. Neuts. 1989. Structured Stochastic Matrices of M/G/1 Type and Their
Applications. Vol. 5. Marcel Dekker New York.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS). 8024–8035.

[55] Alfonso Pérez, Sebastián Risco, Diana María Naranjo, Miguel Caballer, and
Germán Moltó. 2019. On-premises Serverless Computing for Event-Driven Data
Processing Applications. In Proceedings of the International Conference on Cloud
Computing (CLOUD). IEEE, 414–421.

[56] Antônio J. Pinheiro, Paulo Freitas de Araujo-Filho, Jeandro de M. Bezerra, and
Divanilson R. Campelo. 2021. Adaptive Packet Padding Approach for Smart
Home Networks: A Trade-off between Privacy and Performance. IEEE Internet
of Things Journal 8, 5 (2021), 3930–3938.

[57] Jonathan Ponader, Kyle Thomas, Sandip Kundu, and Yan Solihin. 2021. MILR:
Mathematically induced layer recovery for plaintext space error correction of
CNNs. In Proceedings of the International Conference on Dependable Systems and
Networks (DSN). IEEE, 75–87.

[58] Jeff Rajewski. 2018. System andmethod for live streaming content to subscription
audiences using a serverless computing system. US Patent Application No.
15/369,473.

[59] Carl Edward Rasmussen and Christopher K. I. Williams. 2006. Gaussian processes
for machine learning. MIT Press.

[60] Amazon Web Services. 2022. Amazon SageMaker. https://aws.amazon.com/
sagemaker/. [Online; accessed 04-April-2022].

[61] Amazon Web Services. 2022. AWS Lambda. https://aws.amazon.com/lambda/.
[Online; accessed 04-April-2022].

[62] Amazon Web Services. 2022. AWS Lambda Pricing. https://aws.amazon.com/
lambda/pricing/. [Online; accessed 04-April-2022].

[63] Amazon Web Services. 2022. Start Building on AWS Today. https://aws.amazon.
com. [Online; accessed 04-April-2022].

[64] Archive Team. 2017. The Twitter Stream Grab. https://archive.org/details/
twitterstream?and[]=year%3A%222017%22. [Online; accessed 04-April-2022].

[65] Google Cloud Platform. 2022. Cloud Functions. https://cloud.google.com/
functions/. [Online; accessed 04-April-2022].

[66] Google Cloud Platform. 2022. Dream, build, and transform with Google Cloud.
https://cloud.google.com/ [Online; accessed 04-April-2022].

[67] Microsoft. 2022. Azure Functions. https://azure.microsoft.com/en-us/services/
functions/. [Online; accessed 04-April-2022].

[68] Alma Riska and Evgenia Smirni. 2002. MAMSolver: A Matrix Analytic Methods
Tool. In Proceedings of the International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation (TOOLS). Springer, 205–211.

[69] Anthony Rousseau, Paul Deléglise, Yannick Esteve, et al. 2014. Enhancing the
TED-LIUM corpus with selected data for language modeling and more TED
talks.. In LREC. 3935–3939.

[70] Maximilian Schleich and Dan Olteanu. 2020. LMFAO: An Engine for Batches
of Group-By Aggregates. Proceedings of the VLDB Endowment 13, 12 (2020),
2945–2948.

[71] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[72] Franyell Silfa, Jose Maria Arnau, and Antonio Gonzalez. 2020. E-BATCH: Energy-
Efficient and High-Throughput RNN Batching. arXiv preprint arXiv:2009.10656
(2020).

[73] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian
Optimization of Machine Learning Algorithms. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS). 2960–2968.

[74] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger.
2010. Gaussian Process Optimization in the Bandit Setting: No Regret and
Experimental Design. In Proceedings of the International Conference on Machine
Learning (ICML). Omnipress, 1015–1022.

[75] Rachael Tatman. 2017. SpeechAccent Archive. https://www.kaggle.com/rtatman/
speech-accent-archive. [Online; accessed 04-April-2022].

[76] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[77] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed Machine Learning with a
Serverless Architecture. In Proceedings of the Conference on Computer Communi-
cations (INFOCOM). IEEE, 1288–1296.

[78] ChenggangWu, Vikram Sreekanti, and JosephM.Hellerstein. 2020. Transactional
Causal Consistency for Serverless Computing. In Proceedings of the International
Conference on Management of Data (SIGMOD). ACM, 83–97.

[79] Ji Xue, Robert Birke, Lydia Y. Chen, and Evgenia Smirni. 2016. Managing Data
Center Tickets: Prediction and Active Sizing. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN). IEEE, 335–346.

[80] Feng Yan, Olatunji Ruwase, Yuxiong He, and Evgenia Smirni. 2016. SERF: efficient
scheduling for fast deep neural network serving via judicious parallelism. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). IEEE, 300–311.

[81] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. MArk: Exploit-
ing Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving. In Proceedings of the Annual Technical Conference (ATC). USENIX.

[82] Hong Zhang, Lan Zhang, Lan Xu, Xiaoyang Ma, Zhengtao Wu, Cong Tang,
Wei Xu, and Yiguo Yang. 2020. A Request-level Guaranteed Delivery Advertis-
ing Planning: Forecasting and Allocation. In Proceedings of the Conference on
Knowledge Discovery and Data Mining (SIGKDD). ACM, 2980–2988.

[83] Qi Zhang, Alma Riska, Wei Sun, Evgenia Smirni, and Gianfranco Ciardo. 2005.
Workload-Aware Load Balancing for Clustered Web Servers. IEEE Transactions
on Parallel and Distributed Systems 16, 3 (2005), 219–233.

14

2084

https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com
https://aws.amazon.com
https://archive.org/details/twitterstream?and[]=year%3A%222017%22
https://archive.org/details/twitterstream?and[]=year%3A%222017%22
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://www.kaggle.com/rtatman/speech-accent-archive
https://www.kaggle.com/rtatman/speech-accent-archive

