
Learned Index Benefits: Machine Learning Based Index
Performance Estimation

Jiachen Shi
Nanyang Technological University,
Institute for Infocomm Research,

Singapore
jiachen001@e.ntu.edu.sg

Gao Cong
Nanyang Technological University,

Singapore
gaocong@ntu.edu.sg

Xiao-Li Li
Institute for Infocomm Research,
A*STAR Centre for Frontier AI

Research, Nanyang Technological
University, Singapore
xlli@i2r.a-star.edu.sg

ABSTRACT
Index selection remains one of the most challenging problems in
relational database management systems. To find an optimum index
configuration for a workload, accurately and efficiently quantifying
the benefits of each candidate index configuration is indispensable. As
materializing each index configuration candidate and physically ex-
ecuting queries are infeasible, most of index tuners rely on the cost
estimations from optimizer with "what-if" API. However, "what-if"
based index benefit estimations have the following two limitations.
Firstly, they generate significant errors, which compromise index
recommendation quality. Secondly, generating query plans and
benefit estimations for each candidate index configuration takes
a considerable amount of time. To address the two challenges in
index selection, we propose an effective end-to-end machine learning
based index benefit estimator. In particular, we propose novel feature
extraction and encoding techniques that do not rely on "what-if"
call to generate query plan for each index configuration candidate.
In addition, we design an attention mechanism to address index
interaction issue and aggregate the impacts of different query oper-
ations. Finally, we leverage transfer learning technique to improve
the estimator’s learning ability for adaption to new database. Com-
prehensive experiments are conducted on different workloads, and
extensive experimental results show that our proposed method
outperforms "what-if" based index benefit estimations in terms of
accuracy and efficiency. In addition, integrating our method into
existing index selection algorithms can significantly improve index
recommendation quality.

PVLDB Reference Format:
Jiachen Shi, Gao Cong, and Xiao-Li Li. Learned Index Benefits: Machine
Learning Based Index Performance Estimation. PVLDB, 15(13): 3950 - 3962,
2022.
doi:10.14778/3565838.3565848

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/JC-Shi/Learned-Index-Benefits.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 13 ISSN 2150-8097.
doi:10.14778/3565838.3565848

1 INTRODUCTION
For relational database management systems (RDBMS), creating
an appropriate set of indices for a workload can boost the query
performance by orders of magnitude. Nevertheless, the index se-
lection problem (ISP), i.e., to find the optimal index configuration
(i.e., a set of indices) for a workload, is an NP-Complete problem
[31]. Solving ISP is challenging because of three reasons: (1) the
number of potential index configurations is large when there are
a large number of indexable attributes, and each index in a con-
figuration can have multiple attributes with different orders, (2)
the presence of an index mutually affects other indices’ benefits
on the workload; such interplay is called index interaction (IIA)
[37], and (3) without materializing the indices and executing the
queries, it is hard to quantify the impact of an index configuration.
In real world applications, index selection is typically conducted by
Database Administrators (DBAs). The expenses for DBAs become a
significant factor in Total Cost of Ownership (TCO) [9]. To reduce
TCO, automating index recommendation and implementation are
needed. During the past decades, auto-indexing has been an active
research area where many index selection algorithms [7, 11, 36]
and commercial tools [1, 49] have been proposed to recommend
the optimal index configuration.

For index selection problem, apart from the selection algorithm,
accurately and efficiently quantifying the benefits of each index
candidate on a query workload has a significant impact on the rec-
ommendation quality. To estimate the benefit of an index configura-
tion on a query workload, most existing index selection algorithms
rely on "what-if" calls which are based on database optimizer’s
cost model since actual query execution under all index candidate
configurations is prohibitively expensive. A "what-if" call [8] is
an index analysis utility which is supported by most DBMS. It
creates hypothetical indices for index benefit estimations through
providing the statistical information of index configurations to the
database optimizer, and thus benefit estimation can be conducted
without the actual creating or dropping of indices.

Although "what-if" based benefit estimation is widely adopted
by many index tuning methods, there are two main drawbacks.
First, "what-if" calls based on existing database optimizer may suf-
fer from low accuracy in benefit estimation [20, 46]. During index
selection, the benefit prediction errors may result in loss of poten-
tial improvement or even cause query regression (i.e., performance
degradation) [3]. Although many solutions including the recent
proposals [25, 26, 41] that use machine learning techniques have
been proposed to improve the optimizer’s cost model, they either
does not consider or does not well capture the impact of indices.

3950

https://doi.org/10.14778/3565838.3565848
https://github.com/JC-Shi/Learned-Index-Benefits
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565838.3565848
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Moreover, as the "what-if" based benefit estimation will be fur-
ther used for index candidate comparison, training these machine
learning (ML)-based cost models cannot directly minimize the error
metric that corresponds to comparison errors [12].

Second, "what-if" calls take a considerable amount of time during
index tuning. When index selection is invoked for a large workload
with many index candidates, a large number of "what-if" calls are
required to estimate benefits for different candidates. Using "what-
if" calls will become a bottleneck of index selection [17]. According
to [30], average 90% of the run-time of index tuning is spent on the
"what-if" calls instead of selection logic.

To address the two drawbacks, this paper proposes a new ma-
chine learning basedmethod to replace "what-if" calls for secondary
index benefit estimation. To the best of our knowledge, this is the
first machine learning based method to quantify index benefit. In
particular, there are four key objectives to design an effective and
efficient learning-based index benefit estimator:
• Accuracy. The index benefit estimation should be accurate so

that the index tuner can differentiate different candidate index
configurations correctly.

• Generalization. The learning-based method should be general-
ized to unseen queries as workload characteristics keep changing.

• Efficiency. Index benefit estimation using learning-basedmethod
should be efficient so that more candidates can be evaluated
within the time window for index selection.
• Adaptability. The machine learning model should adapt to new

dataset efficiently as recollecting training data for a new dataset
is time-consuming.
To achieve these objectives, we propose an end-to-end machine

learning based estimator Learned Index Benefits (LIB). In par-
ticular, the index benefit estimation problem is formulated as a
regression task, where the target of the task is defined as the nor-
malized cost difference after an index configuration being mate-
rialized. To extract and represent features from a query plan and
an index configuration, we define a new concept called index opti-
mizable operations and propose a novel featurization method that
represents features as a set of index optimizable operations without
using "what-if" call to generate query plan for each index configura-
tion. Furthermore, for more accurate prediction, we propose to use
attention based neural networks to learn the correlations between
index optimizable operations and to deal with index interactions. In
addition, when LIB is applied for a different databases, we leverage
transfer learning [29] to reduce the demand of model re-training.
Specifically, instead of training LIB from scratch, we use LIB that is
trained on other datasets as a pre-trained model and fine tune the
whole model with new data. Our experimental results show that the
pre-trained model can outperform PostgreSQL and transfer learn-
ing will increase the convergence rate and reduce the needs for new
data. Lastly, as LIB allows multiple candidates being evaluated in
parallel, the efficiency of index selection is improved. We show that
LIB can enhance the end-to-end index selection recommendation
quality and greatly reduce the running time.

In summary, our major contributions can be summarized as:
• We propose an innovative machine learning based estimator LIB

to replace "what-if" calls for index benefit estimation problem.
This is the first machine learning (ML)-based model that predicts

index benefits without the need to generate query plans for each
candidate index configuration (Section 3).

• We define a new concept called index optimizable operations and
present a novel featurization technique to represent a query under
an index configuration as a set of index optimizable operations
which does not rely on "what-if" calls (Section 4).
• We design an attention mechanism to deal with index interaction

and improve LIB’s estimation accuracy. In addition, LIB is able
to adapt to different data schema with limited amount of new
training data. (Section 5).

• We conduct comprehensive experiments to evaluate LIB’s per-
formance using different workloads. Experimental results show
that LIB outperforms existing "what-if" based cost estimation,
reducing up to 91% of prediction errors. Moreover, we demon-
strate that integrating LIB into index tuner will improve index
recommendations quality and reduce the end-to-end running
time (Section 7).

2 PROBLEM STATEMENT
We first define the key concepts and notations used throughout
this paper. Then we present our research problem statement.
Workload. A workloadW = {𝑞1, 𝑞2, ..., 𝑞𝑛} is a set of 𝑛 queries
on one or multiple tables in a relational database. A query 𝑞 𝑗 (𝑞 𝑗 ∈
W, 1 ≤ 𝑗 ≤ 𝑛) is characterized by a set of columns in tables and a
set of conditions for joining or filtering.
Secondary Index. Secondary index is a data structure that contains
a subset of attributes from a table, with pointers that point to all
the records which contain the specific key values of the attributes.
Index Configuration. An index configuration 𝑐𝑖 is a set of indices.
Each index may contain one or multiple columns from a table.
Index (configuration) Candidates. Index (configuration) candi-
date C = {𝑐1, 𝑐2, ..., 𝑐𝑘 } is a set of k potential index configurations
that are evaluated by index selection algorithms. Usually they are
generated based on heuristic rules or the relevance to the queries.
Index Selection. Index selection (or index tuning) is about finding
the best index configuration in C that enhances the query perfor-
mance of database under some constraints, e.g., a limited storage
budget or the runtime of the index selection [17].

During index selection process, the benefits of each index con-
figuration quantify its impact on the workload for index candidate
comparisons. In this paper, we define the benefits of an index con-
figuration as follows:

Definition 1. Index Benefits. The index benefits of an index
configuration 𝑐𝑖 on a query 𝑞 𝑗 is defined as the query execution cost
reductions, by comparing the execution cost when configuration
𝑐𝑖 is materialized with the cost when no index is utilized. It is
formulated as:

𝑐𝑟𝑖, 𝑗 = 𝐶𝑜𝑠𝑡 (𝑞 𝑗 | ∅) −𝐶𝑜𝑠𝑡 (𝑞 𝑗 | 𝑐𝑖) (1)

where 𝐶𝑜𝑠𝑡 () is the execution cost of a query and ∅ represents the
scenario that no index is utilized for execution.

Different from "what-if" based benefit estimation, we formulate
the index benefit estimation problem as a regression task, to predict
the cost reduction (or benefit) directly for a query under a specific
index configuration. Intuitively, we propose to develop a learned
cost model to estimate execution cost for each query under an index

3951

configuration and compute the index benefits using the differences
between two costs. However, it is challenging to build an accurate
cost model since the query execution time may range from few mil-
liseconds to thousands of seconds, depending on many factors[38],
such as hardware, database size, conditions, etc. Moreover, based
on [12], the error in a single cost estimation may translate to a poor
index recommendation when the predicted cost value is used as
performance metric for comparing candidate index configurations.
Hence, estimating the execution cost for each query is not desirable
for index benefit estimation. To provide a better metric to measure
the benefit, we propose to estimate the reduction ratio. It is the
fraction of running time being reduced by materializing an index
configuration (i.e., the normalized cost reduction). In particular, the
reduction ratio 𝑟𝑟𝑖, 𝑗 is defined as:

𝑟𝑟𝑖, 𝑗 =
𝐶𝑜𝑠𝑡 (𝑞 𝑗 | ∅) −𝐶𝑜𝑠𝑡 (𝑞 𝑗 | 𝑐𝑖)

𝐶𝑜𝑠𝑡 (𝑞 𝑗 | ∅)
=

𝑐𝑟𝑖, 𝑗

𝐶𝑜𝑠𝑡 (𝑞 𝑗 | ∅)
(2)

With the reduction ratio as the target output, the constant query
cost that no index is utilized (𝐶𝑜𝑠𝑡 (𝑞 𝑗 | ∅)) can act as a reference
for candidate comparisons. Hence, we are able to train an accurate
index benefit estimation model LIB that is able to directly minimize
the errors for comparing index configurations. This is a key design
of our proposed solution.

Now, we define our research problem in this paper.
Problem Statement. Index Performance (or Benefit) Estimation
(IPE): Given a workloadW = {𝑞1, 𝑞2, ..., 𝑞𝑛} with 𝑛 queries and
a set of index configuration candidates C = {𝑐1, 𝑐2, ..., 𝑐𝑘 } with 𝑘

index configurations, we aim to estimate the cost reduction ratio
(normalized index benefits) 𝑟𝑟𝑖, 𝑗 of each configuration 𝑐𝑖 in C on
each query 𝑞 𝑗 in the workloadW, where 𝑖 = 1, ..., 𝑘 and 𝑗 = 1, ..., 𝑛.

Taking the extracted features which represent a query 𝑞 𝑗 and
the index configuration 𝑐𝑖 as input, our proposed Learned Index
Benefits (LIB) model estimates the cost reduction ratio which can
be used for index selection. Particularly, we formalize the objective
of our model as a regret minimization problem, where the regret
for a query 𝑞 𝑗 with a specific index configuration 𝑐𝑖 is defined as
the squared residual (error) between the actual cost reduction ratio
with the index configuration and the estimated one:

minimize
𝑞 𝑗 ∈W, 𝑐𝑖 ∈C

R𝑞 𝑗 |𝑐𝑖 = (𝑟𝑟𝑖, 𝑗 (𝑎𝑐𝑡𝑢𝑎𝑙) − 𝑟𝑟 𝑖, 𝑗 (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑))
2

Byminimizing the sum of the squares of the residual between the
actual and estimated reduction ratio, we aim to accurately estimate
the index benefits.

3 LEARNING FRAMEWORK OVERVIEW
The end-to-end index benefit estimator LIB proposed in this paper
contains three main components which are shown in Figure 1.
(1) Feature Extractor extracts useful features from a query and
an index configuration, and represents them into a set of vectors
(see Section 4), serving as input for Encoder component. Different
from existing methods [12, 36] for index selection, we do not rely
on "what-if" calls to generate query plan for each index candidate.
(2) Encoder aggregates the vector sets from extractor into a single
vector for Prediction model component. We propose to leverage at-
tention mechanism to learn the index interactions and the complex
correlations between the feature vectors (see Section 5.1).

(3) Prediction model takes the representation vector from Encoder
as input and outputs a reduction ratio to show the index benefits.
Workflow. As depicted in Figure 1, LIB operates in two phases:
offline model training which is indicated by orange elements, as
well as online estimation which is coloured as blue.

For offline model training, training data is collected through
executing queries in workloads under different index configurations
and encode into sets of vectors using feature extractor. The training
data is stored as a tuple <vector representation, cost reduction
ratio>. Then we train both the encoder and prediction model in
an end-to-end supervised fashion. The offline model training can
be conducted without any interruption to DBMS. The detail of
model training is discussed in Section 5.3. To enhance the model’s
adaption to new databases, we carefully design feature attributes
to be schema agnostic as much as possible and we propose to adopt
a light-weight transfer learning strategy (see Section 5.4).

For online estimation, when an index tuner is invoked to rec-
ommend an index configuration for a workload, it will first generate
a set of candidates. Then LIB is adopted to estimate the reduction
ratios (i.e., quantified benefits) for each index candidate, instead
of invoking "what-if" calls in existing index tuners to estimate ex-
ecution cost. The outputs of LIB are used by the index selection
algorithm to find the most beneficial index configuration directly
(see Section 6). Note that LIB is independent of index selection
algorithms, i.e., it can be integrated into different index tuners.

Figure 1: Overview of Learning-based Index Evaluation

4 FEATURE REPRESENTATION
Learning representation is one of the most important problems
for machine learning algorithms to succeed [19]. The input for
learned index performance estimation (IPE) task consists of a query
and an index configuration. In this section, we introduce a novel
featurization method to represent the input to learned IPE as a set
of vectors without any "what-if" call. We explain the rationale of
our proposed featurization in Section 4.1, and present details of the
proposed feature representation methods for LIB in Section 4.2.

4.1 Rationale and Idea
IPE aims to estimate the cost reduction ratio of each index configu-
ration on a query, where the cost of the query under the condition

3952

that no index is utilized is used as a reference. To provide a repre-
sentation of the input (i.e., a query and an index configuration) for
LIB to learn the IPE task, we should featurize factors that contribute
to the indices’ cost reductions on the original query. There are two
challenges in featurizing the input: First, off-the-shelf featurization
methods in machine learning for database query-resource (e.g. ex-
ecution cost) prediction [12, 25, 26, 41] rely on "what-if" calls to
generate query plans for different index configurations. However,
[17, 30] show that generating query plans using "what-if" calls is
the bottleneck in index selection. Hence, we aim to extract features
without relying on any "what-if" call. Second, existing featuriza-
tion methods cannot well capture the IPE related information. We
next discuss several existing methods. (a) The methods [25, 26] for
estimating cost of query plans do not incorporate any index configu-
ration information in featurization. They only encode the operation
types (e.g. index scan or sequential scan) in the query plan without
featurizing any detail of the index used, nor the indexed columns
that are important for IPE. (b) The end2end method [41] featurizes
the index in the query plan representations in the form of metadata.
However, it focuses on learning the inherent tree structure of the
plan and encodes extra features that are not directly related to IPE
such as operations that will not be affected by index. We will show
in Section 7.2 that such featurization method is difficult for models
to learn well for IPE. (c) The featurization method used in [12] is
designed to characterize the differences between two query plans.
It does not contain any index information.

The above two challenges call for designing a new featurization
method for IPE. To address the first challenge, we propose a novel
idea to focus on the original query plan (i.e., without any index
configuration) which will be changed by the index configurations,
rather than invoking "what-if" call to generate plan for each index
configuration as does previous work. We propose to featurize the
original query plan together with the index configuration, which
allows LIB, the value network as discussed later, to learn the reduc-
tion ratio on the plan in a supervised fashion. Below, we illustrate
this idea through an example.
Example: Figure 2 shows an query in TPC-DS with an index con-
figuration. Instead of generating a new query plan and studying the
differences between the new query plan and the original plan, we
focus on the original plan which is shown beside the query. To learn
the reduction ratio on the original plan by the index configuration,
we can featurize the information of how the query access (i.e., the
sequential scan operations) and join (i.e., the hash join and nested
loop operations) the data as well as the index configuration which
can provide insights for models to learn its impacts.

To address the second challenge, we propose a novel featuriza-
tion method to translate the original query plan with an index
configuration into a set of vectors. According to the studies of the
index functionality [28, 32], index optimizes an operation through
changing the data retrieval method within that operation. The im-
pacts of an index are at operation level. Moreover, the cost saving
brought by an index solely depends on the scan range reduction,
the impacts of an index are independent of the operation’s position
in the query plan. Based on these observations, we propose to fea-
turize the query plan as a set of independent operations without
incorporating any plan structural information, which are different
from existing methods [25, 26, 41]. As not all the operations in

Figure 2: Example of Feature Extraction

a query plan will be affected by the index configuration, we can
featurize only the portion of relevant operations. For this purpose,
we define a new concept called Index Optimizable Operations 𝑂𝐼𝑂 :

Definition 2. Index optimizable operations 𝑂𝐼𝑂 . 𝑂𝐼𝑂 are op-
erations in a query execution plan whose data source contains
columns that are indexed by the index configuration. The 𝑂𝐼𝑂 is
defined by three key information:

𝑂𝐼𝑂 = [𝑂𝐼, 𝐷𝑆, 𝐼𝐶]
where 𝑂𝐼𝑂 is an index optimizable operation, 𝑂𝐼, 𝐷𝑆 and 𝐼𝐶 are
operation information, indexed column data statistics and index
configuration information, respectively.

For the example in Figure 2, as the data sources of operations
Nested Loop and Hash Join involve the indexed columns "date_dim.d
_date_sk" and "store_sales.ss_item_sk", they are identified as 𝑂𝐼𝑂 .
We proceed to explain the three key information: OI, DS, IC.
• Operation Information (OI): The type of operation will deter-

mine how the operation being changed by the index. For instance,
a join operation such as Hash Join may use index to retrieve join
rows based on the selected rows from another table which re-
places the usage of hash function. While for a scan operation, it
may use index directly to access data based on predicates which
replace the full table scan. To learn from the optimizer, we also
leverage information generated by industrial-strength query op-
timizer such as estimated cardinality, which provide information
regarding how many tuples being retrieved. Such information is
critical for IPE as the smaller the portion of data being accessed,
the higher the chance that the index is effective.

• Database Statistics (DS). The distribution and statistical infor-
mation of the indexed column play a significant role in IPE. For
example, the benefit of an index on a column is closely related to
number of distinct values in the column. For columns with small
distinct values, using index to retrieve data may not be effective
as it still requires a significant amount of scanning.

• Index Information(IC). Different types of indices (single or
multi-attribute) have diverse performance. For a multi-attribute
index, beside encoding the type of the index, we may also encode
the orders of the columns in the index because the effectiveness
of the index is the highest at the leading (leftmost) column and
decreases as the order increases.

3953

In summary, we propose to featurize the original query plan
with an index configuration as a set of Index Optimizable Operations,
{𝑂𝐼𝑂 }, for LIB to learn IPE. For the query and index configuration
in Figure 2, we will featurize them as a set of two vectors where
each vector of {𝑂𝐼𝑂 } captures the operation information (e.g., Hash
Join), column statistics (e.g., "store_sales.ss_item_sk") and index
information (e.g., I(store_sales.ss_item_sk)).

4.2 Feature Extraction
We proceed to discuss the details of the three types of feature at-
tributes for each𝑂𝐼𝑂 and illustrate the proposed feature extraction
process with an example.

(1) For operation information, we firstly classify the index
optimizable operations into five types (join, sort, group, scan_range,
scan_equal). Here, we further divide the scan operations into range
scan and equal scan. This is because the scan operations with range
predicate and with equal predicate will have different index scan
ranges, and thus the respective effectiveness of an index is different.
Each type of operations is encoded as a one-hot vector. In addition,
we also use the estimated cardinality of each index optimizable
operation as a feature dimension because it is relevant to index per-
formance estimation. Logarithm transformation is used to reduce
the skewness and variability of the estimated cardinality.

(2) For database statistics, we encode the number of rows,
the NULL fraction and the ratio of distinct values of the indexed
column which will affect the performance of an index. For NULL
fraction and distinct ratio, their values are between 0 and 1, where 1
indicates all values are NULL/distinct and 0 represents the opposite.
For number of rows, logarithm transformation is also applied.

(3) For index information, we use the type of index and the
order of the indexed column in the multi-attribute index as feature
attributes. We apply one-hot encoding to represent the type of
index (single or multi-attribute). For a multi-attribute index, we
use a feature with an integer value to indicate the order of an
indexed column in that index. For example, for a multi-attribute
index 𝐼 (𝐴, 𝐵,𝐶), the order of the indexed column 𝐵 is 2.

In summary, the feature vector of each 𝑂𝐼𝑂 is in the form of
𝑂𝑖
𝐼𝑂

= [𝑂𝑡 , log (𝑐𝑎𝑟𝑑), log (𝑟𝑜𝑤𝑠), 𝑑𝑖𝑠𝑡_𝑓 𝑟𝑎𝑐, 𝑁𝑈𝐿𝐿_𝑓 𝑟𝑎𝑐, 𝐼𝑡 , 𝐼𝑜] ∈
R12, where𝑂𝑖

𝐼𝑂
is the i-th vector of {𝑂𝐼𝑂 },𝑂𝑡 ∈ R5 and log (𝑐𝑎𝑟𝑑)

represents operation type and estimated cardinality in operation in-
formation; log (𝑟𝑜𝑤𝑠), 𝑑𝑖𝑠𝑡_𝑓 𝑟𝑎𝑐 and 𝑁𝑈𝐿𝐿_𝑓 𝑟𝑎𝑐 are the database
statistics (number of rows, distinct fraction and NULL fraction),
and 𝐼𝑡 ∈ R2 and 𝐼𝑜 featurize the index type and index order.
Example: Next, we illustrate the proposed feature extraction pro-
cess using the example in Section 4.1. Figure 3 shows a graphical
representation of this process. To represent a query with an index
configuration as a set of vectors, we first generate the execution
plan for the query under the condition that no index is utilized.
For different candidate configurations on the same query, we can
reuse the query plan generated previously. Then, based on the index
configuration, we identify the indexed columns. Next, using these
columns, we find out the index optimizable operations in the query
plan. As defined above, we identify an operation as 𝑂𝐼𝑂 when its
data source or condition contains the indexed columns. Based on
Section 4.1, operations Nested Loop and Hash Join are𝑂𝐼𝑂 . For each
index configuration, we can find out all𝑂𝐼𝑂 by one time scan of the

query plan. After that we extract the database statistics from the
database catalog (e.g. pg_stats in PostgreSQL [34]) for each indexed
column. Lastly, we represent each feature dimension as discussed
above and concatenate them to be a feature vector for each 𝑂𝐼𝑂 .
For an index optimizable operation, there can be multiple indexes
to optimize it. In this case, we represent them as separate feature
vectors where each vector represents the impact of an index on the
operation. The query and index configuration are then represented
as a set of feature vectors, {𝑂𝐼𝑂 }.

Figure 3: Example of Proposed Featurization Method

5 LEARNING INDEX BENEFIT ESTIMATION
MODEL

In this section, we introduce the LIB, a deep neural network based
value network for IPE. In particular, we present an aggregation
encoder in Section 5.1 and the cost reduction ratio prediction model
in Section 5.2. Finally, model training and adaption of LIB to unseen
data are discussed in Section 5.3 and Section 5.4, respectively.

5.1 Encoder
To encode a set of vectors into a single vector for a typical regression
algorithm, the encoder of LIB consists of three parts: embedding,
learned representation and pooling as shown in Figure 4.
Embedding. The embedding layer converts the sparse vectors
𝑂𝐼𝑂 ∈ R12 from feature extractor to dense vectors 𝑣𝑖 ∈ R𝑑 where
𝑑 is the embedding size. For each vector in the set of 𝑚 vector
representations {𝑂𝐼𝑂 } ∈ R𝑚×12, the variability of the vector values
is large. Hence, we use a one-layer fully connected neural network
with ReLU activator to embed vectors from {𝑂𝐼𝑂 } into a set of
compact latent vectors S = {𝑣1, ..., 𝑣𝑚} ∈ R𝑚×𝑑 .
Learned representation and pooling. Accurately estimating the
reduction ratio of an index configuration on a query is challenging
in two aspects: (1) Index interactions (IIA) increases the complex-
ity of IPE significantly as the interactions between indices heavily
affect the overall benefits of the configuration. In fact, the signifi-
cance of index interactions has been emphasized in several works
on workload-driven index selection [4, 6, 36, 37]. Here, we use a
simple example to illustrate the importance of IIA. Given an index
configuration containing three indices 𝐼1, 𝐼2 and 𝐼3, when 𝐼1 and 𝐼2
are used individually, their benefits may be trivial. However, when
both 𝐼1 and 𝐼2 are employed together, they may provide a significant
cost saving on the query due to index intersection. This is a positive
interaction between 𝐼1 and 𝐼2. An example of negative interaction
is as follows: Suppose 𝐼3 has greater benefits when being used as

3954

a substitution of 𝐼1 and 𝐼2; the existence of 𝐼1 and 𝐼2 may preclude
the usage of 𝐼3 during query execution. Thus, capturing these index
interactions is crucial for models to better learn how the indices in a
configuration affect the query performance. Nevertheless, existing
method that characterizes and computes the degree of interactions
between every pair of indices [37] requires significant number of
"what-if" calls and it is not straightforward to encode all the inter-
acting pairs with their degrees of interactions. (2) As the original
query plan and the index configuration are featurized as a set of
index optimizable operations {𝑂𝐼𝑂 } and the contribution of each
𝑂𝐼𝑂 to the overall cost reduction is not necessarily equal. Hence, it
is difficult to aggregate the impacts of all𝑂𝐼𝑂 to accurately estimate
the reduction ratio.

To incorporate the complicate index interactions into LIB, we
propose a representation layerwhich utilizes self-attention mech-
anism to model the IIA directly. Self-attention [45], also known as
intra-attention, is a mechanism which explicitly models high-order
interactions among the elements in a set. Several recent works have
highlighted the competency of self-attention for set-input problems
[14, 23]. To capture the complicate IIA information between each
𝑂𝐼𝑂 , we adopt the encoder block of the Transformer [45] without
positional encoding to learn a representation for the {𝑂𝐼𝑂 }. Given
a set of latent vectors S = {𝑣1, ..., 𝑣𝑚} ∈ R𝑚×𝑑 from the embedding
layer, we perform stacked self-attention encoding (SAE) to learn
the representations. Each SAE can be formalized as follows:

𝑆𝐴𝐸 (S) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻 + 𝐹𝐹 (𝐻))
𝐻 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(S +𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 (S,S,S))

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 (S,S,S) = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑂1, ...,𝑂ℎ)𝑊𝑂 ∈ R𝑚×𝑑

𝑂 𝑗 = 𝐴𝑡𝑡 (S𝑊𝑄

𝑗
,S𝑊𝐾

𝑗 ,S𝑊
𝑉
𝑗)

(3)

where 𝐹𝐹 is the feed forward neural network and 𝐴𝑡𝑡 is the atten-
tion encoding, which is proposed in [45]. Here, multi-head atten-
tion is adopted to expand LIB’s ability to learn multiple relation-
ships between the vectors. The encoder contains ℎ sets of learnable
parameters {𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 }ℎ

𝑗=1, where ℎ is the number of heads,

𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑𝑀 and 𝑑𝑀 = 𝑑/ℎ. The output from each
head is later concatenated together to form the final representa-
tion. Residual connection [13] and layer normalization [2] are also
applied in each SAE module.

To address the second challenge, we perform pooling by mul-
tihead attention (PMA) [19] to aggregate the set of leaned repre-
sentations from SAE based on the inter-operation relations. It is
shown to be beneficial for aggregation of set-input problem that
has complicated interactions among elements. We first introduce a
learnable vector 𝑍 ∈ R1×𝑑 , and then use one SAE to perform atten-
tion based aggregation with 𝑍 being the "query" and 𝑆𝐴𝐸 (S) being
the "key" and "values". Lastly, a fixed dimension vectors 𝑅 ∈ R𝑑
will be outputted as final representation. The PMA is formalized as:

𝑅 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻 ′ + 𝐹𝐹 (𝐻 ′))

𝐻 ′ = 𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 (𝑍, 𝑆𝐴𝐸 (S), 𝑆𝐴𝐸 (S)) ∈ R1×𝑑
(4)

where𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 is the same as that in Equation 3.
Average pooling vs Attention. Alternatively, we can use fully-
connected networks with average pooling similar to [16] without

Figure 4: Overview of Encoder

attention mechanism to encode the set of operations. However, we
will show in Section 7, such a model may suffer from under-fitting.

5.2 Cost Reduction Prediction Model
Next we discuss the cost reduction ratio prediction layer. The pre-
diction layer is a two-layer fully connected neural network with
ReLU being the activator and Sigmoid function being the output
layer. In LIB, the output cost reduction ratio is bounded between
0 and 1. For index configurations that cause query performance
to degrade, we treat them the same as those that do not have any
benefit so that the index tuner will be unlikely to select them. The
output layer takes the vector representation 𝑅 from the encoder as
input and predicts the cost reduction ration 𝑟𝑟 .

5.3 Training Model
Training Data Generation. In LIB, we obtain training data by
executing queries with real materialized index configurations and
using the actual cost information as labels. First, given a work-
load, we adopt one of the index tuner algorithms (e.g., DTA[7],
Extend[36]) to generate a set of index candidates for the workload.
Then we create the index configurations using 𝑘-combinations 1

of the candidates set. For each index configuration, we materialize
all indices and execute the workloads with the configuration. To
minimize the impact from hardware, all queries are executed under
warm-cache scenario (i.e., each query is executed 4 times and the
average cost of the last three runs is reported as the execution cost).
Next, we calculate the cost reduction ratio and adopt the feature
extractor in LIB to encode the query and index configuration into a
set of vector representations. Each training data is stored as a tuple
<vector representation, cost reduction ratio>.
Training Overhead. Since LIB adopts the encoder block of trans-
former for feature encoding, the training time complexity of LIB
grows quadratically with the number of index optimizable oper-
ations in each data (i.e., sequence length of the input) and grows
linearly with the number of training data. Specifically, given a work-
load with 𝑛 queries and𝑚 index configurations, there will be total
𝑛 ×𝑚 training data. For each data, let the number of index opti-
mizable operations be 𝑘 (all data is padded to the same number)
and the feature size of each operation be 𝑑 . The time complexity
for LIB to evaluate the whole workload under all index configura-
tions is O(𝑛𝑚𝑑𝑘2). Since 𝑘 (maximum 40 in this paper) is relatively

1𝑘-combination of a set is defined as a subset of 𝑘 distinct elements.

3955

smaller compared to number of all operations in a full query plan
and 𝑛,𝑚 ≫ 𝑑, 𝑘 , we will show in Section 7.5 that the training time
of LIB is manageable.
Generality. To improve the generality of LIB to unseen queries
and prevent model overfitting, we adopt dropout [39] and early
stopping regularization methods. Dropout with a probability (e.g.,
0.2) is applied after each attention encoding layer and feed forward
layer of SAE (Equation 3) and PMA (Equation 4). During model
training, we monitor the model’s performance on validation dataset
at the end of every 20 training epochs. After training is finished,
we callback to checkpoint with the highest validation accuracy.

5.4 Adaption
For machine learning models to perform well, sufficient amount of
valid labelled training data is required. However, for index benefit
estimation, collecting a large amount of data for model training is
expensive and time-consuming. When the annotated training data
is not enough, adaption of LIB to new data schema is challenging.

To enhance LIB adaption to new data schema, we firstly carefully
design all feature attributes used in LIB to be database schema
agnostic as much as possible which avoid LIB learning schema
specific information. Besides that, we also propose to leverage
transfer learning, which leverages knowledge learnt from a source
domain with a large amount of training data to improve the learning
performance in a target domain with limited data [29, 48]. It can
reduce the demand of training data, increase the training speed and
even improve the model performance.

When LIB is implemented for a new dataset with different data
schema, instead of training the model from scratch using newly
collected training data, we use the model trained by dataset with
large amount of samples as a pre-trained model. Then we fine tune
all pre-trained parameters in LIB for new data schema. Algorithm 1
shows the idea of transfer learning on LIB. Here, a lightweight
transfer learning technique will meet our need because all feature
attributes are schema agnostic, which allow LIB to learn the general
and database schema independent mapping functions between the
set of index optimizable operations {𝑂𝐼𝑂 } and the cost reduction
ratio. For example, when an index is used to optimize a scan opera-
tion, the impact of the index solely depends on the change in scan
range regardless of the content in the table.

6 INTEGRATIONWITH INDEX TUNER
To recommend an index configuration to minimize the total execu-
tion cost of a given workloadW, an index tuner needs to perform
index benefit estimation to assess the benefit of each index configu-
ration on the workload to search for an ideal recommendation.

As the index benefit on each query outputted by LIB is normal-
ized by the initial execution cost of the query and the execution
costs of different queries are different, index tuner cannot directly
use the cost reduction ratio for index tuning over all queries in the
workload. To solve this issue, we multiply the estimated normalized
ratios outputted from LIB with the initial cost 2 to covert the ratios
into absolute cost reductions. The conversion is as follows:

𝑐𝑟𝑖, 𝑗 = 𝑟𝑟 𝑖, 𝑗 ×𝐶𝑜𝑠𝑡 (𝑞 𝑗 | ∅) (5)
2Here, we can use database optimizer or apply any existing cost estimator to get the
cost prediction of each query under the condition that no index is involved.

Algorithm 1: Transfer Learning Algorithm

input :Training Dataset: ({𝑂𝐼𝑂 }𝑘 , 𝑟𝑟𝑘)𝐾𝑘=1,
Pre-trained Parameter Set: Θ0

output :Parameter Set for New Data Schema: Θ1
1 Θ1 ← Θ0;
2 while 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑖𝑠 𝑡𝑟𝑢𝑒 do
3 B ← A Random minibatch of data;
4 𝑟𝑟𝑞 ← LIB({𝑂𝐼𝑂 }𝑞 |Θ1) ∀{𝑂𝐼𝑂 }𝑞 ∈ B, 𝑞 = 1, ..., |B|;
5 L ← ∑(𝑟𝑟𝑞 − 𝑟𝑟𝑞)2/|B| ∀𝑟𝑟𝑞 ∈ B, 𝑞 = 1, ..., |B|;
6 for 𝜃 ∈ Θ1 do
7 𝑔𝜃 ← ∇𝜃L(Θ1);
8 𝜃 ← 𝜃 + Γ(𝑔𝜃);
9 end

10 end
11 return Θ1;

where 𝑐𝑟𝑖, 𝑗 is the estimated cost reduction of index configuration 𝑐𝑖
on query 𝑞 𝑗 , 𝑟𝑟 𝑖, 𝑗 is the reduction ratios from LIB, and𝐶𝑜𝑠𝑡 (𝑞 𝑗 | ∅)
is the initial cost of query when no index is utilized.

Based on the estimated cost reduction 𝑐𝑟𝑖, 𝑗 of each candidate on
the workload, the tuner is able to perform the index selection.
Parallelizable Property. Another desirable feature of LIB is that
it is readily parallelizable. As index performance estimation using
LIB involves only matrix multiplications and operations which can
be parallelized, it can be significantly speeded up using devices such
as graphics processing unit (GPU). Therefore, LIB allows the index
tuner to evaluate multiple index candidates accurately in parallel.

7 EXPERIMENTS
Weevaluate LIB’s performance usingwidely used industry-standard
benchmarks and real-world datasets on the following major facets:
• Prediction accuracy: we evaluate the accuracy of LIB for the

tasks of estimating cost reduction ratios across queries and index
configurations. We observe up to 91.2% reduction in the fraction
of errors compared to PostgreSQL-13 optimizer’s cost estimation.
In addition, we also observe that LIB can reduce errors not only
on average, but also across all error quantiles.

• Improvement in index recommendations: we integrate LIB
into an index tuner and quantify the end-to-end improvement
in workload execution cost. We show that augmenting the index
tuner with LIB can enhance the index recommendation.

• Ablation study: We investigate the impacts of the proposed
featurization method, the attention mechanism and the designed
target output. We observe that these components are effective in
accuracy improvement.

• Efficiency: We evaluate the running time of the online index
benefit predictions and the end-to-end index tuning time for two
index selection algorithms integrated with LIB on workloads
with different sizes. We observe that LIB is more efficient than
"what-if" based methods. Utilizing LIB can reduce up to 89% of
the end-to-end running time for index tuning.

• Adaption to different data schema: We evaluate LIB’s adapt-
ability to different data schema. We find that LIB is effective in
improving the model’s learning performance.

3956

Table 1: Statistics about the workloads

Benchmark DB size (GB) # Tables # Queries # Cases

TPC-H 10 8 700 3771
TPC-DS-10 10 24 390 27584
TPC-DS-50 50 24 198 4518
IMDB-JOB 9.3 20 113 2879

7.1 Experimental Setup
Evaluation metrics: To evaluate the prediction accuracy of LIB,
following [24, 26, 41], we employ Q-Error as defined below:

𝑄_𝐸𝑟𝑟𝑜𝑟 =𝑚𝑎𝑥 (𝑟𝑟𝑎𝑐𝑡𝑢𝑎𝑙

𝑟𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
,
𝑟𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑟𝑟𝑎𝑐𝑡𝑢𝑎𝑙
)

Workloads: To investigate LIB’s performance on different work-
loads, we use four benchmarks: TPC-H-10GB [33], TPC-DS-10GB,
TPC-DS-50GB [27] and IMDB-JOB. They have different character-
istics in terms of number of potential indices, number of queries,
and size of databases. For TPC-H we use a scale factors of 10 while
for TPC-DS we use scale factors of 10 and 50. The queries on TPC
benchmarks are generated based on the pre-defined templates using
query generation tools [42, 43]. More specifically, for TPC-H, we
use 14 templates to generate 700 queries. Following [17, 26], we
exclude some templates whose execution costs are orders of mag-
nitude higher than others. This is because they dominate the costs
of the workloads and render the index selection problem less com-
plex. An index speed up query from the excluded template would
always outperform indices for other queries. For TPC-DS-10GB,
due to the same reason, we use 78 out of 99 templates to generate
390 queries while we use 66 templates to generate 198 queries for
TPC-DS-50GB. Internet Movie Data Base (IMDB) is real-world data.
We use JOB Benchmark3 which contains 113 queries.
Data generation: Using the method discussed in Section 5.3, we
adopt the Anytime algorithm of the Database Engine Tuning Advi-
sor (DTA) for Microsoft SQL Server [7] which is reproduced in [17]
to generate index configuration candidates for workloads above.
The details of the generated data are shown in Table 1, where #
Case is the amount of instances generated. Each instance repre-
sents a query with an index configuration which is in the form of
a tuple <vector representation, cost reduction ratio>. The number
of tables in TPC-H benchmark is relatively small and the number
of potential indices for each query is also limited. Therefore, the
number of instances for TPC-H is small. For TPC-DS-50, as the
actual execution time of each query is much larger compared to
that of TPC-DS-10, smaller number of queries is adopted.

Following [12], we split the dataset into training and testing sets
as follows. (1) Index configuration: we randomly split the union
of all data points into five disjoint sets. Then we conduct 5-fold
cross validation by taking 4 of them being the training sets and the
remaining one being the test set. In this train-test splitting, index
configurations in test set are different from those in training sets,
so that the inference is performed on new index configuration that
did not appear during training. (2) Query: the dataset is split into
5 disjoint sets based on the query information. We first split the
3https://github.com/gregrahn/join-order-benchmark

queries into 5 disjoint sets, and then for each set of queries, we put
the corresponding instances into one set. This simulates the setup
where LIB is used for index benefit estimation on unseen queries.
Through using these splittings methods, we simulate two types of
variations in distributions between training and test sets.
Settings of Neural networks: As mentioned in Section 4, the data
vector size is 12. The embedding size used in LIB is 𝑑 = 32. For the
encoder, 6 layers of 8 head self-attention modules are adopted with
dropout rate equal to 0.2. The hidden dimension of the feed forward
linear layer in encoder is designed as 128. The hidden dimension
and output dimension for output layers are 64 and 1, respectively.
The model is trained with Adam [15] optimizer using an initial
learning rate of 0.001 for 150 epochs.
Methods:We compare LIB against the cost estimator from Post-
greSQL 13.3 database as existing ISP algorithms [11, 17, 36] and
index tuners are based on optimizers’ cost estimations. We also
compare with a state-of-the-art classifier-based solution "AI-Meet-
AI" proposed in [12]. "AI-Meet-AI" utilizes classification algorithms
to find the better plan between a pair of plans, but it does not
support cost reduction ratio prediction. To extend "AI-Meet-AI" to
estimate the cost reduction ratio, we replace the classifier compo-
nent [12] with a two-layer fully connected neural network with
hidden dimension 128 (the hyper-parameters are tuned by stan-
dard cross-validation) and Sigmoid output layer, and refer it as
"AIMAI-R". Moreover, we also investigate a machine learning based
cost estimator "end2end" [41] on IPE task. We follow the hyper-
parameters suggested in [41] and remove the string embedding part
as string predicates are rarely related to secondary index. We train
the model using both losses in cost and cardinality until the model
converge. We also compare LIBwith two operator level cost models
(i.e., Plan-Structured Model (referred as Plan-Strut) [26] andMART
[21]). We follow the hyperparameters as suggested in the papers to
train their models. For MART, we adopt the default model without
scaling function as there is less than 1% of test data with non-zero
𝑜𝑢𝑡_𝑟𝑎𝑡𝑖𝑜 (the model selection metric defined in [21]).
Environment: All evaluations are conducted on a machine with
Intel i9-10900X CPU, 64GB RAM and GeForce RTX 3080.

7.2 Prediction Accuracy
The Accuracy of each method at estimating the cost reduction ratios
of index configurations on queries is shown in Table 2. We repeat
the experiments five times for testing on each set and the average
results are reported.

The mean absolute error of the end2end model on TPC-DS-10
workload cost reduction ratio prediction is 32.637 which is several
times larger than those of other methods. The reason for the poor
performance could be: (1) based on [12], errors in single query cost
prediction may result in significant errors when we compare two
plans to calculate the cost reduction ratio. (2) The featurization
method used in end2end method cannot well capture the difference
of a query under diverse index configurations. For 61 (out of 78)
queries in the test data set, end2end predicts the same execution
cost for all different index configurations, leading to high errors
in candidate comparisons. Hence, we do not include the end2end
model as a baseline. Plan-Strut also performs worse than other
baselinemethods in prediction accuracy. It is challenging for models

3957

Table 2: Prediction accuracy (Q-Error) with different splitting methods

Splitting by Configuration Splitting by Query
Dataset PostgreSQL AIMAI-R Plan-Strut MART LIB PostgreSQL AIMAI-R Plan-Strut MART LIB

TPC-DS-10 Mean 4.380 4.966 17.268 4.833 1.984 4.383 4.669 16.935 4.955 2.205
90th 10.488 4.788 53.661 13.696 3.260 10.485 4.907 44.762 14.039 3.935
95th 15.428 7.252 87.181 19.257 5.170 15.587 7.590 87.460 19.222 6.340

TPC-H Mean 13.171 3.275 35.545 1.933 1.159 13.788 3.494 38.972 1.929 1.148
90th 52.581 5.797 99.020 2.505 1.324 55.543 6.865 99.020 2.560 1.310
95th 77.445 14.521 99.020 5.057 1.575 77.750 15.970 99.020 4.969 1.562

TPC-DS-50 Mean 6.603 7.499 33.195 15.263 2.575 6.439 4.476 33.479 15.219 2.719
90th 16.623 8.524 93.195 52.150 4.388 15.374 8.309 89.063 49.917 5.101
95th 38.507 12.841 99.020 61.235 8.283 33.775 14.512 97.827 59.853 9.343

IMDB-JOB Mean 5.654 7.478 9.939 7.716 3.655 5.518 8.279 11.226 9.874 4.363
90th 12.690 9.226 28.371 17.085 6.904 14.823 8.974 34.421 30.719 8.031
95th 20.699 12.596 40.206 36.995 9.513 24.281 10.396 49.345 46.546 11.120

like end2end and Plan-Strut to differentiate query plans with only
index configuration difference.

The results in Table 2 reveal that the proposed LIB model has
the best performance among all methods. For inference on unseen
configurations, LIB outperforms PostgreSQL, AIMAI-R, Plan-Strut
and MART by up to 91.2%, 65.7%, 96.7% and 83.1% in term of mean
Q-Error, respectively. This demonstrates that ML-based model us-
ing our proposed set-based featurization method and attention-
based model structure is able to learn an accurate mapping function
between index related information and cost reduction ratios. Al-
though AIMAI-R outperforms PostgreSQL for TPC-H, it slightly
underperforms PostgreSQL for other workloads. One reason for
this observation is the featurization method proposed in [12] is
designed mainly to identify the better plan in a pair, and it is dif-
ficult for AIMAI-R to learn the magnitude of the cost reduction
between two plans. MART outperforms PostgreSQL and AIMAI-R
on TPC-H but under-performs both methods for other workloads.
We also investigate the performance of all methods at the tail (90th
and 95th). As shown, LIB outperforms other methods across all
error quantiles for TPC benchmarks and slightly (i.e., 0.724) under-
performs AIMAI-R for 95 percentile on IMDB-JOB. On IMDB-JOB,
although LIB under-performs AIMAI-R for 95 percentile, it outper-
forms AIMAI-R by 10.5% and 47.3% on 90 percentile and mean error
respectively. Compared to PostgreSQL, LIB can reduce up to 98.0%
errors in 95 percentile. This is a further evidence that LIB is able to
estimate the reduction ratio accurately. On TPC-DS-50, the mean
error of PostgreSQL is 6.60 which is 50% larger than that (4.38) on
TPC-DS-10. This shows that the performance of PostgreSQL cost
estimator is affected by the size of database. However, the mean
error of LIB only increases from 1.98 to 2.57 and the 95th errors
of LIB on TPC-DS-50 is better. This suggests that LIB is robust
to changes in database size. One explanation for this observation
is that LIB utilizes the database statistics as one of the feature at-
tributes, allowing the model to capture the changes in database size
and thus the performance is more stable.

For inference on unseen queries (the last 5 columns in Table 2),
LIB’s performance is similar to the results of inference on unseen
configurations. The largest increase in mean error is only 0.708 on
IMDB-JOB. This shows that LIB can generalize to unseen queries
and it is robust to changes in query workload.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Magnitude of Absolute Error

0

5

10

15

20

25

30

35

De
ns

ity

PostgreSQL13

(a) PostgreSQL 13

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Magnitude of Absolute Error

0

5

10

15

20

25

30

35

De
ns

ity

LIB

(b) LIB

Figure 5: Prediction error distributions for TPC-DS

To further investigate the performance of LIB in cost reduc-
tion ratio estimation, we evaluate the absolute errors of LIB and
PostgreSQL13. Figure 5 shows the absolute error distributions for
PostgreSQL13 and LIB on the TPC-DS-10 workloads split by query.
Each plot is converted into probability density where the area under
the histogram integrates to 1. We omit plots for other cases as they
follow the similar trends. As shown, LIB has the lower variance
in error distribution and compared to PostgreSQL (Figure 5a), the
error distributions for LIB shifts toward lower magnitude region.
This shows that LIB can reduce prediction error across all error
quantiles and it can estimate reduction ratio accurately for ISP.

7.3 Index Recommendation Quality
We now evaluate the impact of LIB on the end-to-end recommen-
dation quality in terms of execution cost of queries when LIB is
integrated into the index tuner. As discussed in Section 6, we in-
tegrate LIB into the index tuners that use the Anytime algorithm
[7]. We conduct index tuning on 75 queries from TPC-DS-10GB, 66
queries from TPC-DS-50GB, 70 queries from TPC-H and 22 queries
from IMDB-JOB which are excluded from the training data of LIB
(i.e., LIB is implemented for index tuning on unseen queries). We
then evaluate the performance of the tuner that use the same algo-
rithm but with "what-if" based index benefit quantification methods
which differentiate different candidates by PostgreSQL13’s cost esti-
mation andMART’s prediction, respectively. Moreover, we compare
LIB with "what-if" based classifier "AI-Meet-AI" proposed in [12].
We execute all candidates to find the optimal recommendation.

3958

Table 3: TPCDS-10GB & TPCDS-50GB Workload level tuning (∗ denote methods based on "what-if" calls)

Total Average Workload Distribution of Improvement (# workloads)
Methods Cost Saving (ms) Improvement (%) Regression 0%-5% 5%-20% 20%-50% >50% Total

10GB 50GB 10GB 50GB 10GB 50GB 10GB 50GB 10GB 50GB 10GB 50GB 10GB 50GB
PostgreSQL* 161,066 302,391 4.9 3.9 1 8 25 23 12 7 2 2 0 0 40

MART* 125,331 1,115,036 5.2 12.4 0 0 23 16 16 14 1 9 0 1 40
AI Meets AI* 1,488,759 425,664 8.1 5.0 0 0 27 31 11 6 0 3 2 0 40

LIB 3,071,577 1,175,872 15.5 12.5 0 0 24 14 8 16 2 9 6 1 40
Optimal 4,445,404 1,675,181 21.4 17.6 0 0 10 11 19 12 4 15 7 2 40

Table 4: TPCH-10GB & IMDB-JOB Workload level tuning (∗ denote methods based on "what-if" calls)

Total Average Workload Distribution of Improvement (# workloads)
Methods Cost Saving (ms) Improvement (%) Regression 0%-5% 5%-20% 20%-50% >50% Total

TPCH IMDB TPCH IMDB TPCH IMDB TPCH IMDB TPCH IMDB TPCH IMDB TPCH IMDB
PostgreSQL* 108,825 39,267 4.2 3.4 16 9 9 16 14 15 1 0 0 0 40

MART* 270,167 35,727 9.8 3.1 0 8 13 19 21 13 6 0 0 0 40
AI Meets AI* 176,930 19,578 6.5 1.6 0 12 26 23 10 5 4 0 0 0 40

LIB 277,209 42,321 10.0 3.6 0 8 12 15 22 17 6 0 0 0 40
Optimal 675,890 65,315 21.7 5.7 0 0 2 17 15 23 23 0 0 0 40

We aim to recommend the best index for a set of queries in
a workload. We construct 40 query workloads (each contains 10
queries for TPC benchmarks and 8 queries for IMDB-JOB) by ran-
domly sampling queries that are excluded from training data for
each benchmark. Then we invoke index tuner using different index
performance estimation methods to find the best index for each
workload. The results of index recommendations are shown in Ta-
ble 3 (TPC-DS) and Table 4 (TPC-H & IMDB-JOB). We report the
total workload execution cost saving, average workload improve-
ment and the distributions of improvements (i.e., the number of
workloads in each improvement range).

For TPC-DS-10GB, the total cost saving of the LIB based index
recommendations on the 40 workloads is 3, 072𝑠 which is more
than two times of that from "AI-Meet-AI". The LIB based index
recommendation averagely improves a workload by 15% which
is better than indices recommended by PostgreSQL13 andMART
based tuners and "AI-Meet-AI". One reason that LIB based index
recommendation has greater cost saving than "AI-Meet-AI" is LIB
can quantify the benefits of each index configuration on the work-
load more accurately while "AI-Meet-AI" can only classify the better
index configuration for each individual query, and "AI-Meet-AI" is
mainly designed for query regression prevention. From the distri-
bution of improvement, we observe that an optimal solution could
achieve more than 50% improvement for 7 workloads. In contrast,
"AI-Meet-AI" can only improve 2 of them by more than 50% while
LIB can improve 6 of them. On TPC-DS-50GB, similar trends are
observed, the total cost saving and average workload improvement
of LIB (1, 176𝑠 and 12.5%) are more than two times of those from
"AI-Meet-AI" (426𝑠 and 5.0%) and PostgreSQL13 (302𝑠 and 3.9%).
When database size increases, PostgreSQL generates more query
regression cases. However, both "AI-Meet-AI" and LIB are shown
to be effective in preventing query regression. ForMART, the in-
dex recommendation quality on TPC-DS-50GB is better than that
on TPC-DS-10GB. One explanation for this is when database size

increases, the execution cost differences between index configura-
tions are larger. Although the prediction accuracy of MART is lower
for TPC-DS-50GB, it is able to differentiate the query performance
under various index configurations.

For TPC-H, as shown in Table 4, PostgreSQL generates more
query regression cases (16). Nevertheless, "AI-Meet-AI" and LIB are
effective in preventing them. For IMDB-JOB, because of complex
attribute correlations and skew data distributions, it is more chal-
lenging to estimate cardinalities accurately. As shown in Table 4, all
methods results in more query regression cases. However, LIB can
still outperform other methods and achieve the largest cost saving.

7.4 Ablation Study
Featurization Method. To investigate the effectiveness of our
proposed featurization method, we compare it against the featur-
ization method proposed in [12]. In [12], they featurize a pair of
plans into a vector by using a finite number of keys to represent the
query operations and assigning values to each key to capture the
differences of the operation between the two plans. To extend the
featurization method for LIB, we first use "what-if" call to generate
query plan for each index configuration, and then we form pairs of
plan by comparing the plan for each index configuration with the
original plan. Since the output vectors of [12] contain the values for
all keys, we transform it into a set-structure data where each key is
taken as an independent element in a set and its respective values
(i.e., node cost and weighted bytes) are the feature attributes of
that element. Table 5 shows that using our proposed featurization
method can enhance the performance of LIB as LIB outperforms
the model with featurization method in [12] ("AIMAI+LIB").
Attention Mechanism. To investigate the impact of the atten-
tion mechanism, we compare LIB against LIB without Attention
(LIB-w/o attn) where the encoder in LIB is replaced with a fully
connected deep neural network consisting of 1 embedding layer, 2
encoding linear layers with hidden dimension (32,256), an average

3959

Table 5: Ablation Study - Prediction accuracy (Q-Error)

Dataset LIB-Abs AIMAI+LIB LIB-w/o attn LIB

TPC-DS-10 Mean 24.714 2.860 3.879 2.205
90% 16.481 5.547 6.970 3.935
95% 55.818 8.737 11.833 6.340

TPC-H Mean 3.728 1.523 9.325 1.148
90% 6.731 2.075 27.801 1.310
95% 17.692 2.899 38.197 1.562

TPC-DS-50 Mean 39.315 3.418 4.312 2.719
90% 37.108 5.354 9.522 5.101
95% 135.621 9.951 16.871 9.343

IMDB Mean 45.296 4.653 5.280 4.363
90% 134.400 9.532 12.424 8.031
95% 192.373 10.177 14.597 11.120

pooling mechanism and 3 linear output layers (hidden dimensions
= (256,32,1)). In Table 5, the advantage of LIB over the LIB-w/o
attn model on all datasets shows the usefulness of attention-based
encoder and pooling mechanism. Intuitively, feature aggregation
using attention is beneficial as it takes the influence of each instance
on the target into consideration.
Prediction Output. To evaluate the effectiveness of using reduc-
tion ratio instead of absolute cost reduction as prediction output,
we compare LIB against LIB with absolute cost reduction output
(LIB-Abs) where we replace the Sigmoid output layer with an addi-
tional hidden layer and we apply logarithm transformation on the
actual cost reduction label. As shown in Table 5, using reduction
ratio significantly improves the performance of LIB.

7.5 Efficiency
Online Inference Time.We report the running time for online
inference of LIB, AIMAI-R, MART and PostgreSQL for different
numbers of IPEs during index tuning. Here, each IPE represents
the cost reduction ratio estimation for an index configuration on a
query in the workload. For LIB, MART and AIMAI-R, the inference
time consists of the times taken for both data encoding and model
evaluation. For PostgreSQL, we measure the time taken for "what-
if" call to generate the execution plan. To ensure fair comparisons,
all methods use the same hardware (i.e., without GPU) for inference.
We vary the number of IPEs from 1 to 25, 000, i.e., the number of
estimations processed during index selection, and the results are
shown in Figure 6. As LIB is readily parallelizable where it can
process a batch of predictions simultaneously, LIB is more effective.
As AIMAI-R and MART reliy on "what-if" call to generate query
plan as input for each index configuration, their efficiency is limited
by "what-if" call which provides further evidence that "what-if"
call is the bottleneck for ISP algorithms. For 25,000 IPEs, LIB can
reduce up to 97.8% of running time as compared to other methods.

Table 6: Training Time on Varying Training Sizes

Training Size (K) 5 7.5 10 12.5 15 17.5 20 22.5

Time (Minutes) 26 39 52 65 78 91 104 117

1 500 1000 5000 10000 15000 20000 25000
Numbers of Index Performance Estimations (IPEs)

10−2 10−2

10−1 10−1

100 100

101 101

102 102

103 103

Ru
nn

in
g

Ti
m

e
(s

ec
)

what-if
AIMAI-R
MART
LIB

Figure 6: Online Inference Running Time

Offline Training Time.We show the training time on the TPC-
DS-10 workload (maximum 36 index optimizable operations) with
varying training sizes in Table 6. We observe that LIB takes 117 min-
utes to train with 22,500 data and the training time scales linearly
with the size of the training data. Moreover, the training of LIB is
done only once before integrating into index tuner. All training can
be conducted offline externally such that it will not interrupt any
online estimation process.

7.6 End-to-End Index Tuning Performance.
To evaluate the impacts of LIB on end-to-end index selection, we
integrated LIB into two recent index selection algorithms (i.e., DTA
[7] and EXTEND [36]) in lieu of original "what-if" based cost esti-
mation methods and use them to conduct index selection to find
the best index configurations for workloads from TPC-DS-10GB
with sizes range from 10 to 3K. Meanwhile, we compare the per-
formance with that of the same algorithms using "What-if" based
cost estimations. All experiments are conducted under the same
hardware environment (i.e., CPU) and use the same cache mech-
anism. The results are shown in Table 7. As shown, LIB is able to
enhance the end-to-end index tuning quality. The recommended
index configuration from tuner with LIB can greatly reduce the
workload execution time. Furthermore, the algorithm running time
is also reduced especially for workload with large size. For EX-
TEND, the LIB based algorithm’s running time on workloads with
sizes 10–300 is slightly larger. This is because the numbers of cost
evaluations processed are much higher (698 and 30, 466 vs 242 and
7, 418). Overall, LIB is shown to be effective in enhancing index
recommendation quality and index tuning efficiency.

Table 7: Results for Tuner Integrated with LIB

Algorithm EXTEND DTA
Method Workload Running Workload Running Workload

Size Time (s) Execution Time (ms) Time (s) Execution Time (ms)

What-if 10 1.63 67,437 18.71 65,619
LIB 10 3.24 65,985 6.24 65,481

What-if 50 17.58 356,865 297.81 475,882
LIB 50 9.10 354,903 33.26 354,003

What-if 100 17.36 712,345 469.94 957,351
LIB 100 11.85 711,799 75.17 712,793

What-if 300 49.70 1,996,852 1,804.65 2,074,067
LIB 300 62.09 1,984,609 326.90 1,989,314

What-if 1K 169.89 7,071,291 5,112.69 9,882,302
LIB 1K 76.11 7,037,936 748.45 7,051,863

What-if 3K 461.97 21,206,376 18,034.33 29,788,098
LIB 3K 216.35 21,080,417 2,096.53 21,239,479

3960

0 20 40 60 80 100

Epoch

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
Sq

ua
re

 E
rro

r

From scratch
Pre-trained(TPCDS-10GB)
Pre-trained(50% Data)

(a) TPCDS-50 Training

0 20 40 60 80 100

Epoch

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

M
ea

n
Q-

Er
ro

r

From scratch
Pre-trained(TPCDS-10GB)
Pre-trained(50% Data)

(b) TPCDS-50 Testing

Figure 7: Learning curves of LIB

Table 8: Index Quality (Total Cost Saving (ms))

Model TPC-DS-50 TPC-H IMDB-JOB

Pre-trained LIB 310,773 104,639 41,652
PostgreSQL 302,391 108,825 39,268

Fine-tuned LIB 1,175,872 277,209 42,321

7.7 Adaption to Different Data Schema
We evaluate the effectiveness of the transfer learning technique. We
train LIB under three different conditions: (1) training the model
from scratch using only data from the new database, (2) pretraining
the models with TPC-DS-10GB data and fine tune the whole model
using data from the new database, and (3) same as condition 2 but
fine tune the whole model using only half of the training data from
the new database. The third condition is designed to evaluate the
model’s performance when number of training data is limited. For
all LIB pretrainings, we train the model with 120 epoches.

For TPC-DS-50GB, the learning curves of LIB under the three
conditions are shown in Figure 7. LIB, with transfer learning, con-
verges faster than the model trained from scratch. Furthermore,
the model with 50% of training data exhibits similar learning be-
haviours as the model with full training data. This suggests that
utilizing transfer learning technique can largely reduce the need for
training data and reduce the training time. Due to space constraints,
we omit plots on other datasets, which show the similar trends.

Furthermore, we also evaluate the generalization ability of LIB
to different workloads. We integrate the pre-trained model into the
index tuner using the same settings in Section 7.3 and measure the
index recommendation quality. Table 8 shows that without fine
tuning, the pre-trained LIB models can outperforms PostgreSQL
on TPC-DS-50GB and IMDB-JOB. This is largely because of our
designed features. After fine tuning with thousands of data, LIB is
able to outperform PostgreSQL on all datasets.

8 RELATEDWORK
Index Selection. For the last several decades, automatic index
tuning has been actively researched [10, 22, 40]. Many algorithms
[7, 11, 36, 44] were proposed for efficient index selection. Recently,
Kossmann et al. [17] compared and evaluated eight index selection
algorithms. They created an open-source evaluation platform to
facilitate performance analysis of different algorithms. In addition,
there are ML-based approaches being proposed to learn an index
advisor. Sadri et al. [35] and Lan et al. [18] proposed to used Deep
Q-Learning to select the best index configuration.

Most of these index selection algorithms leverage the utility [8]
"what-if" to create hypothetical index together with query opti-
mizer’s cost estimation for index tuning. However, "what-if" based
index benefit estimation suffers from problems in terms of both
efficiency and accuracy, as discussed in Introduction Section.

Several research works [5, 26, 41, 47] have been carried out to
improve the database cost estimation accuracy. However, there
are still significant errors when it is applied for index selection
[12]. Recently, Ding et al. proposed to formulate index tuning as
a classification task [12]. The main goal of the learned classifier is
to enforce no query regression constraint and it works external to
the optimizer. Different from our method that replaces the "what-
if" call to improve the accuracy of index benefit estimation, it is
invoked after the "what-if" based cost estimation to ensure no query
regression. The learned classifier is orthogonal to our method and
as shown in Section 7.3, modelling IPE as a regression task (i.e.,
using LIB) can achieve better index recommendations.
Featurization Methods. A great deal of featurization methods
have recently been proposed in ML models on query performance
prediction. In particular, operator-Table-Predicate representation
has been adopted by many studies [24, 25, 41], where it first repre-
sents each operation node as a node vector, and then transforms the
node vectors into a tree-structured vector. Although these represen-
tations have been proven to be useful, they either do not capture
index information or cannot perform well for IPE as shown in Sec-
tion 4.1. In [16], a set-based representation is used to represent a
SQL query. However, it does not encode the physical operations
nor index information. Hence, it is not suitable for IPE task.
Index Interaction (IIA). Several previous studies have proposed
methodologies for modeling IIA. For instance, [4] used a heuris-
tic approach to identify negative IIA. [37] proposed an efficient
algorithm to compute the degree of interactions between indices.
[36] modeled the IIA through constructing index selection in an
iterative way. However, it is not straightforward to incorporate
any of these methods into machine learning based value networks
for IPE. Hence, we propose to design an attention mechanism to
address IIA issue which achieves significantly better results.

9 CONCLUSION
In this paper, we proposed LIB, an end-to-end learning-based index
benefit estimator, which is, to the best of our knowledge, the first
machine learning based method to quantify index benefit for index
selection. Particularly, we proposed a novel featurization method
to encode the query with an index configuration as a set of index
optimizable operations. In addition, a ML model with attention
mechanism is proposed to address IIA and predict index reduction
ratios accurately. Transfer learning technique is adopted to improve
the model’s adaptation capability to new data schema. Extensive
experimental results on different benchmarks demonstrate that LIB
can reduce up to 91.2% of errors in index benefit estimation. Lastly,
integrating LIB into an index tuner can significantly improve the
index quality and reduce the running time.

ACKNOWLEDGMENTS
This research is supported in part by MOE Tier-2 grants MOE2019-
T2-2-181 and MOE-T2EP20221-0015.

3961

REFERENCES
[1] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P. Marathe,

Vivek R. Narasayya, and Manoj Syamala. 2005. Database tuning advisor for
microsoft SQL server 2005: demo. In Proceedings International Conference on
Management of Data, SIGMOD. 930–932.

[2] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-
tion. CoRR abs/1607.06450 (2016).

[3] Renata Borovica, Ioannis Alagiannis, and Anastasia Ailamaki. 2012. Automated
physical designers: what you see is (not) what you get. In Proceedings of the Fifth
International Workshop on Testing Database Systems, DBTest. 9.

[4] Nicolas Bruno and Surajit Chaudhuri. 2007. An Online Approach to Physi-
cal Design Tuning. In Proceedings of the 23rd International Conference on Data
Engineering, ICDE. IEEE Computer Society, 826–835.

[5] Surajit Chaudhuri. 2009. Query optimizers: time to rethink the contract?. In
Proceedings International Conference on Management of Data, SIGMOD. 961–968.

[6] Surajit Chaudhuri, Mayur Datar, and Vivek R. Narasayya. 2004. Index Selection
for Databases: A Hardness Study and a Principled Heuristic Solution. IEEE Trans.
Knowl. Data Eng. 16, 11 (2004), 1313–1323.

[7] Surajit Chaudhuri and Vivek Narasayya. 2020. Anytime Algorithm of Database
Tuning Advisor for Microsoft SQL Server. (June 2020).

[8] Surajit Chaudhuri and Vivek R. Narasayya. 1998. AutoAdmin ’What-if’ Index
Analysis Utility. In Proceedings International Conference on Management of Data,
SIGMOD. 367–378.

[9] Surajit Chaudhuri and Gerhard Weikum. 2018. Self-Management Technology in
Databases. In Encyclopedia of Database Systems, Second Edition. Springer.

[10] Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic,
Vivek R. Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit
Chaudhuri. 2019. Automatically Indexing Millions of Databases in Microsoft
Azure SQL Database. In Proceedings International Conference on Management of
Data, SIGMOD. 666–679.

[11] Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. 2011. CoPhy: A
Scalable, Portable, and Interactive Index Advisor for Large Workloads. Proc.
VLDB Endow. 4, 6 (2011), 362–372.

[12] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. In Proceedings International Conference on Management
of Data, SIGMOD. 1241–1258.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR. 770–778.

[14] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami,
Dan Rosenbaum, Oriol Vinyals, and Yee Whye Teh. 2019. Attentive Neural
Processes. In 7th International Conference on Learning Representations, ICLR.

[15] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR.

[16] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In 9th Biennial Conference on Innovative Data Systems Research,
CIDR.

[17] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. 2020. Magic
mirror in my hand, which is the best in the land? An Experimental Evaluation
of Index Selection Algorithms. Proc. VLDB Endow. 13, 11 (2020), 2382–2395.

[18] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep
Reinforcement Learning. In The 29th ACM International Conference on Information
and Knowledge Management, CIKM. 2105–2108.

[19] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and
Yee Whye Teh. 2019. Set Transformer: A Framework for Attention-based
Permutation-Invariant Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning, ICML (Proceedings of Machine Learning Re-
search), Vol. 97. 3744–3753.

[20] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215.

[21] Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaudhuri.
2012. Robust Estimation of Resource Consumption for SQL Queries using Statis-
tical Techniques. Proc. VLDB Endow. 5, 11 (2012), 1555–1566.

[22] Sam Lightstone. 2018. Physical Database Design for Relational Databases. In
Encyclopedia of Database Systems, Second Edition. Springer.

[23] Chih-YaoMa, Asim Kadav, IainMelvin, Zsolt Kira, Ghassan AlRegib, and Hans Pe-
ter Graf. 2018. Attend and Interact: Higher-Order Object Interactions for Video
Understanding. In 2018 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR. Computer Vision Foundation / IEEE Computer Society, 6790–6800.

[24] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Prac-
tical. In Proceedings International Conference on Management of Data, SIGMOD.
1275–1288.

[25] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[26] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(2019), 1733–1746.

[27] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS.
In Proceedings of the 32nd International Conference on Very Large Data Bases.
1049–1058.

[28] Benjamin Nevarez. 2016. High Performance SQL Server: The Go Faster Book (1st
ed.). Apress, USA.

[29] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Trans. Knowl. Data Eng. 22, 10 (2010), 1345–1359.

[30] Stratos Papadomanolakis, Debabrata Dash, and Anastasia Ailamaki. 2007. Effi-
cient Use of the Query Optimizer for Automated Physical Design. In Proceed-
ings of the 33rd International Conference on Very Large Data Bases (VLDB ’07).
1093–1104.

[31] Gregory Piatetsky-Shapiro. 1983. The Optimal Selection of Secondary Indices is
NP-Complete. SIGMOD Rec. 13, 2 (1983), 72–75.

[32] E. Pirozzi, I. Ahmed, and G. Smith. 2018. PostgreSQL 10 High Performance: Expert
Techniques for Query Optimization, High Availability, and Efficient Database
Maintenance. Packt Publishing.

[33] Meikel Pöss and Chris Floyd. 2000. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Rec. 29, 4 (2000), 64–71.

[34] PostgreSQL 2021. PostgreSQL 13.4 Documentation, chapter 51.88. Retrieved Aug
26, 2021 from https://www.postgresql.org/docs/13/view-pg-stats.html

[35] Zahra Sadri, Le Gruenwald, and Eleazar Leal. 2020. Online Index Selection Using
Deep Reinforcement Learning for a Cluster Database. In 36th IEEE International
Conference on Data Engineering Workshops, ICDE. 158–161.

[36] Rainer Schlosser, Jan Kossmann, and Martin Boissier. 2019. Efficient Scalable
Multi-attribute Index Selection Using Recursive Strategies. In 35th IEEE Interna-
tional Conference on Data Engineering, ICDE. 1238–1249.

[37] Karl Schnaitter, Neoklis Polyzotis, and Lise Getoor. 2009. Index Interactions
in Physical Design Tuning: Modeling, Analysis, and Applications. Proc. VLDB
Endow. 2, 1 (2009), 1234–1245.

[38] Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko. 2012. High Performance
MySQL: Optimization, Backups, and Replication (3rd ed.). O’Reilly Media, Inc.

[39] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929–1958.

[40] Michael Stonebraker. 1974. The choice of partial inversions and combined indices.
Int. J. Parallel Program. 3, 2 (1974), 167–188.

[41] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
Proc. VLDB Endow. 13, 3 (2019), 307–319.

[42] TPC-DS Query Generation 2020. TPCDS-kit. Retrieved Dec 1, 2021 from
https://github.com/gregrahn/tpcds-kit

[43] TPC-H Query Generation 2018. TPCH-kit. Retrieved Dec 1, 2021 from https:
//github.com/gregrahn/tpch-kit

[44] Gary Valentin, Michael Zuliani, Daniel C. Zilio, GuyM. Lohman, and Alan Skelley.
2000. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes.
In Proceedings of the 16th International Conference on Data Engineering. 101–110.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Annual Conference on Neural Information Processing Systems. 5998–
6008.

[46] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs,
and Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer
cost models really unusable?. In 29th IEEE International Conference on Data
Engineering, ICDE. 1081–1092.

[47] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-Based
Query Re-Optimization. In Proceedings International Conference on Management
of Data, SIGMOD. 1721–1736.

[48] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2021. A Comprehensive Survey on Transfer
Learning. Proc. IEEE 109, 1 (2021), 43–76.

[49] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy M. Lohman, Adam J. Storm, Chris-
tian Garcia-Arellano, and Scott Fadden. 2004. DB2 Design Advisor: Integrated
Automatic Physical Database Design. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases. 1087–1097.

3962

https://www.postgresql.org/docs/13/view-pg-stats.html
https://github.com/gregrahn/tpcds-kit
https://github.com/gregrahn/tpch-kit
https://github.com/gregrahn/tpch-kit

