
Opportunities forQuantum Acceleration of Databases:
Optimization ofQueries and Transaction Schedules

Umut Çalıkyılmaz
University of Lübeck

calikyilmaz@ifis.uni-luebeck.de

Sven Groppe
University of Lübeck

groppe@ifis.uni-luebeck.de

Jinghua Groppe
University of Lübeck

groppej@ifis.uni-luebeck.de

Tobias Winker
University of Lübeck

winker@ifis.uni-luebeck.de

Stefan Prestel
Quantum Brilliance GmbH
stefan.prestel@quantum-

brilliance.com

Farida Shagieva
Quantum Brilliance GmbH

farida.s@quantum-brilliance.com

Daanish Arya
Quantum Brilliance GmbH

daanish.a@quantum-brilliance.com

Florian Preis
Quantum Brilliance GmbH

florian.p@quantum-brilliance.com

Le Gruenwald
The University of Oklahoma

ggruenwald@ou.edu

ABSTRACT
The capabilities of quantum computers, such as the number of
supported qubits and maximum circuit depth, have grown expo-
nentially in recent years. Commercially relevant applications that
take advantage of quantum computing are expected to be available
soon. In this paper, we shed light on the possibilities of accelerating
database tasks using quantum computing with examples of opti-
mizing queries and transaction schedules and present some open
challenges for future studies in the field.
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1 INTRODUCTION
A decade after Richard Feynman came up with the idea of quan-
tum computing [44], the first quantum algorithms that provide a
speedup for problems with practical use were developed [53, 126].
This speedup is obtained by exploiting the quantum nature of par-
ticles [102]. In this study, we analyze the current state of the art in
quantum computing that can be used to accelerate database tasks.

The performance of a database management system (DBMS) is
crucial, especially for large-scale data-driven applications. In the
last decade, the importance of fast data storage and retrieval has
increased with the emergence of the notion of big data [89]. At the
same time, the first quantum computers were developed and more
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studies have been focused on quantum computing [103]. Some of
these are on improving database performance by applying quantum
annealing for query optimization [101, 124], multi-query optimiza-
tion [133] and transaction scheduling [15]. The studies in [124, 133]
have presented improvements in runtime up to 103 times. The third
study [15] has shown that the runtime of quantum annealing stays
constant for increasing problem size while that of classical simu-
lated annealing rises quickly. Additionally, it is expected that the
capacity of quantum computers will increase rapidly in the future
years and that on-site quantum computers, which would provide
lower latency than cloud-based ones, will be available in a few
years (see Section 2). With all these promising results, there is an
obvious need to examine possible quantum speed-ups for solving
database problems. In this paper, we aim to provide guidance for
such studies by showing how various quantum approaches scale
by parameters of query optimization and transaction scheduling
problems, and by presenting the open challenges for developing
these approaches and integrating them into database systems.

The rest of the paper is organized as follows. Section 2 focuses
on the current state of quantum computing technology and its
estimated future timeline. Section 3 introduces the two DBMS prob-
lems of interest in detail. In Section 4 we present various quantum
approaches that can be used to accelerate the database problems
and their qubit and circuit depth requirements. Section 5 proposes
new directions for future research by discussing open challenges.
Finally, Section 6 concludes the paper by summarizing our findings.

2 EMERGENT GOLDEN AGE OF QUANTUM
COMPUTING

2.1 Types of Quantum Computers
More than 20 years ago, DiVincenzo established five criteria to re-
alize a scalable quantum computer [38]. Nowadays, one can single
out a lot of different platforms on which it can be implemented: su-
perconducting qubits [36, 57], trapped ions [27], photons [105, 106],
color centers in solids [2, 20, 25, 37, 111, 143], semiconductor quan-
tum dots [33, 83, 110, 138, 152], Rydberg atoms [28], topologically
protected systems [72, 76, 122], neutral atoms [7, 8, 50] and others
[30, 31, 47]. These implementations range from recently published
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proposals and articles about qubit fabrication to commercially avail-
able devices. Quantum computing models can be categorized into
two classes, universal and non-universal, depending on whether
the model can efficiently simulate a quantum Turing machine [34].

The most prominent type of computation is the gate-based or
circuit model, where the algorithm is performed through the se-
quential application of quantum logic gates assembled in a quantum
circuit. If a quantum device allows the implementation of a universal
basis of unitary operators as quantum gates, it realizes a universal
quantum computer. The gate-based model is closest to classical
computation in terms of the logic of calculations. The high levels of
noise in present-day quantum devices have led to a focus on operat-
ing in the noisy intermediate-scale quantum (NISQ) computing era
[115]. Actively pursuing protection from noise [68, 72, 112] opens
the path to error-free universal quantum computing.

Non-universal computing models aim at finding solutions only
for certain problem classes. Quantum annealing (QA), for example,
specializes in solving optimization problems formulated as qua-
dratic unconstrained binary optimization (QUBO) problems. QA
machines are supporting today 5000+ qubit counts [70, 116].

2.2 Quantum Computer Timeline and Roadmap
Quantum algorithms can exponentially speed up computation time
for a number of tasks [53, 58, 126]. However, to compete with su-
percomputers to solve commercially interesting problems [18, 130]
in the fields of cryptography [48, 54], database optimization or
quantum chemistry [74, 128], thousands of error-corrected qubits
are required. Current devices accept that logical operations are per-
formed with errors, and have moderate qubit counts of tens to a few
hundred, motivating their classification as NISQ computers [115].
50 qubits are believed to be a break-even point when quantum com-
puters surpass the efficiency of brute force evaluations on classical
supercomputers [115]. In fact, current NISQ-era devices can outper-
form supercomputers for some very specific calculations [10, 85],
prompting the majority of hardware companies to gradually scale
up qubit counts until error-correction is achieved.

These advances are due to hybrid quantum-classical algorithms.
The main insight is to divide the problem into the classical and
quantum parts and offload classically hard tasks onto quantum
computers. Current workflows for executing hybrid computations
are based on the CPU-based client interacting with a quantum
processing unit (QPU) based mainframe over a network [93]. The
large footprint and special operating conditions, such as cryogenic
temperatures, usually mandate cloud-based approaches. The dia-
mond quantum computer developed by Quantum Brilliance is able
to operate at room temperature [39]. This enables the designing of
compact quantum accelerators, which can be easily integrated with
a classical computer. With on-site quantum computing, hybrid al-
gorithms can be implemented for data-intensive applications, such
as databases, without the overhead of data transfer.

2.3 Quantum Computing Libraries
There are several publicly available quantum libraries that allow
for exploring the power of quantum computing, either through
simulation or interfaces to real quantum hardware [46]. Many of
these libraries can be used to define quantum algorithms, all the

way from abstract circuits as functions, to sending pulse-level in-
structions that interface with the control electronics. This usually
means they are shipped with pre-defined features such as a circuit
library, circuit transpilation for native gate sets of different QCs, and
further methods to obtain and make use of quantum measurements.
Many of these libraries support simulating noise models to let users
develop realistic applications for NISQ devices. The performance
of a library typically depends on its specialization [97, 121].

There are several quantum computing libraries integrating cir-
cuit building, simulation, noise profiling, and access to quantum
hardware. Qiskit by IBM [9] is the most widely-used one. It allows
access to hardware from IBM, AQT, and IonQ. Cirq by Google
[35] allows access to Google’s Sycamore [10] besides AQT, IonQ,
Pasqal and Rigetti. Its "qubit picking" service allows for algorithm-
aware hardware selection. Pennylane by Xanadu [12] focuses on
differentiable quantum programming [149]. It supports external
backends or hardware via plugins with several common full-stack
libraries. Qristal by Quantum Brilliance focuses on NISQ com-
puting. Noisy simulations reflecting the hardware limitations of
the diamond quantum computer and distributed calculations over
multiple quantum accelerators are embedded.

3 TWO EXAMPLES OF OPTIMIZATION
PROBLEMS IN DATABASES

3.1 Query Optimization
The join order in a query execution plan is crucial for the query
execution time. Hence, one of the most important tasks of query
optimization is to determine the join order with the best-estimated
costs. The number of possible join orders for a query with 𝑛 tables
is given by the formula (2(𝑛−1))!

(𝑛−1)! [117], and is reduced to (2(𝑛−1))!
2𝑛−1 (𝑛−1)! ,

if we ignore the order of the tables in a single join.
Hence checking all possibilities using e.g. dynamic programming

[125] is suitable only for a low number of tables. For a higher
number of tables, we have to use heuristic approaches like ant
colony optimization [132], machine learning [88, 150] or genetic
algorithms [63], which can find a good solution without checking
every possibility. Section 4 deals with quantum approaches for join
order optimization including estimating the query costs [55].

3.2 Transaction Scheduling
When multiple transactions are processed concurrently in a data-
base, ACID properties must be fulfilled to ensure the validity of data
[118]. There are various policies to guarantee the isolation property
by dealing with conflicts between transactions, each having some
type of overhead costs [22, 56, 131]. Reordering the transactions
in the queue to avoid conflicting ones running at the same time
decreases these costs and raises throughput [84].

When the transactions are assumed to be atomic blocks, the
transaction scheduling problem becomes scheduling 𝑡 one-stage
jobs (transactions) on 𝑐 identical machines (cores) with additional
conflict constraints. The goal is to find a schedule that minimizes
the makespan (i.e., the maximum execution time of the cores). Be-
cause of the conflicts, the problem is sequencing the transactions
besides assigning them to the cores. With this property, transaction
scheduling resembles the famous job-shop scheduling problem [87].
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In [51], job-shop schedules are encoded as permutations. Trans-
action schedules can be represented similarly. In this enumeration,
any schedule of 𝑡 transactions can be represented by a permutation
of the elements of {1, 2, ..., 𝑡}. A schedule can be formed from a per-
mutation by inserting the transactions one by one into the schedule,
and by selecting the core with the minimum processing time and
minimum order resulting in 𝑡 ! possible schedules of 𝑡 transactions.

4 OPPORTUNITIES FOR QUANTUM
ACCELERATION OF DATABASES

In this section, we present quantum approaches that can be used
to solve database optimization problems. The main limitations of
NISQ devices are their low qubit counts and their vulnerability to
noise [115], which affects the applicability of the quantum methods.

The required qubits for a quantum algorithm can be divided into
two groups: the representation qubits used to represent possible
solutions to a problem and the ancilla qubits used for additional
calculations. An ancilla qubit is set to its initial state after it is
utilized. These qubits do not store any information about the input
or the output, but are used to keep intermediate results and are
mostly needed when a function is evaluated on a quantum circuit.
The circuit depth of an algorithm is the number of quantum gates
needed to be applied serially. A large circuit depth causes more
noise, which would result in inconsistent results on NISQ devices.

We provide a summary of the requirements of the discussed
quantum methods in Table 1. The first four approaches given in
the table use ancilla qubits but the number of these is not given.
The reason is that the implementation of these methods requires
quantum black boxes (called Oracle) that evaluate the objective
function of a problem coherently. The design of such a black box
is problem and encoding-specific. For the same reason, the circuit
depths of these Oracles are not given explicitly, but they are known
to have polynomial depths since both problems are in NP [77, 136].

4.1 Exact Algorithms
The exact algorithms given below can find the exact optimal solu-
tion but require a big amount of resources to do so.

Enumeration of all Possibilities: If no information is given
about a function 𝑓 with an enumerable domain 𝐷 , then in order to
find 𝑥 ∈ 𝐷 with 𝑓 (𝑥) = 𝑦 for a given𝑦 (also called the search problem
[53]), all 𝑥 ∈ 𝐷 must be tried one by one until a solution is found on
classical hardware. For an optimization problem, all 𝑥 ∈ 𝐷 must be
tried out to find𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝑓 (𝑥). For join order optimization of𝑛 tables
and scheduling 𝑡 transactions, this method needs𝑂

(︂
(2(𝑛−1))!
(𝑛−1)!

)︂
and

𝑂 (𝑡 !) steps respectively.
Grover’s algorithm finds a solution to a search problem with 𝑁

items and 𝑀 solutions in 𝑂 (
√︁
𝑁 /𝑀) steps, achieving a quadratic

speed-up compared to classical search [53]. The original algorithm
requires the number of solutions as an input, but a variant of it (ex-
ponential searching) can solve a search problem with an unknown
number of solutions in 𝑂 (

√︁
𝑁 /𝑀) steps [19].

Another variant of Grover’s algorithm (calledDürr-Høyer) adapts
quantum search to find the exact solution to optimization problems
in 𝑂 (

√
𝑁 ) steps [41]. It has been applied to transaction scheduling

in [52]. The number of qubits required to represent the items is the
logarithm of the cardinality of the search space. In this approach,
the objective function is evaluated for a coherent quantum state, so
ancilla qubits are required, and the circuit depth is the number of
Oracle calls times the circuit depth of the quantum black box.

Linear Programming: Linear programming (LP) is the name of
the efforts of optimizing a linear objective function over a continu-
ous solution space limited by linear constraints. The best-known
and most-studied algorithm for this task is the simplex algorithm
[100]. There are variants of LP used for different types of problems.
Mixed integer linear programming (MILP) is such a variant for
linear problems with discrete variables amongst continuous ones
[140]. Problems that are formulated as MILP models can be solved
by branch and bound methods, where the bounds are set by solving
the LP relaxation of the model by the simplex algorithm [65].

The simplex algorithm can be sped up using quantum subrou-
tines without the need for a QRAM [98] using the algorithm given
in [26] to solve linear systems of equations in each iteration. In this
way, the complexity of an iteration is reduced to �̃� ( 1𝜖𝜅𝑑

√
𝛼 (𝑑𝑐𝛼 +

𝑑𝛽)) where 𝜖 is the targeted precision, 𝑑𝑐 and 𝑑𝑟 are the maximum
numbers of elements in the columns and rows, 𝑑 = max{𝑑𝑐 , 𝑑𝑟 }, 𝛼
and 𝛽 are the numbers of variables and constraints, and �̃� means
that the polylogarithmic terms are hidden. The number of qubits re-
quired to represent the matrices is𝑂 (log𝛼 + log𝜅). Also, additional
qubits are required. The values of 𝑑 , 𝑑𝑐 , 𝛼 and 𝛽 depend on the
MILP formulation, but 𝜅 depends on the specific problem instance.

In the MILP formulation for the join order problem [135] with
𝑂 (𝑛2) variables and 𝑂 (𝑛2) constraints, 𝑑𝑐 ∈ 𝑂 (1) and 𝑑 ∈ 𝑂 (𝑛),
such that the number of qubits is 𝑂 (log𝑛 + log𝜅) and the circuit
depth required for the quantum simplex method is �̃� ( 1𝜖𝜅𝑛

5).
We use the MILP formulation for job-shop scheduling [73] to

analyze the requirements for transaction scheduling. The main dif-
ference between the two problems is the conflict constraints, which
do not change the dominating terms. In the given formulation,
the number of variables and constraints are both 𝑂 (𝑡2𝑐), and the
sparsity values 𝑑 and 𝑑𝑐 are both 𝑂 (1). Then the number of qubits
becomes 𝑂 (log(𝑡2𝑐) + log𝜅) and the circuit depth �̃� ( 1𝜖𝜅𝑡

3𝑐
√
𝑐).

Dynamic Programming: Dynamic programming (DP) uses
the partial optimality condition of a problem to avoid enumerating
all possibilities [42]. It divides a problem into sub-problems and
solves them recursively. It has been shown that DP can reduce
the complexity of sequencing problems from 𝑂 (𝑁 !) to 𝑂 (2𝑁 ) by
searching over the combinations instead of permutations [11, 60].

An optimality condition is well-known for query optimization
since DP is used to solve it for decades [125]. There is no DP ap-
proach developed specifically for the transaction scheduling prob-
lem yet, but DP is applied for other job scheduling problems [51],
which could be adapted for the transaction scheduling problem.

There are studies showing that quantum subroutines might be
used to improve DP [120]. One such study shows that the com-
plexity of a DP approach for the traveling salesperson problem
with 𝑁 cities could be decreased to 𝑂∗ (1.728𝑁 ) from 𝑂∗ (2𝑁 ) [6].
For that, the costs of sub-paths of a specified length are classically
calculated. Then, the optimal merge of those sub-paths is found
using the Dürr-Høyer algorithm given in [41]. A similar approach
can be developed for the problems that are examined in this paper.
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Table 1: Quantum Approaches for Database Optimizations

Approach Solution Representation Qubits Ancilla Circuit Depth Simulation
Type Join Order

Optimization
Trans.

Scheduling
Qubits Join Order

Optimization
Trans.

Scheduling
Advantage

Enumeration of
all Possibilities Exact 𝑂

(︂
log

(︂
(2(𝑛−1))!
(𝑛−1)!

)︂)︂
𝑂 (log(𝑡 !)) Yes 𝑂

(︃
𝑃 (𝑛)

√︂
(2(𝑛−1))!
(𝑛−1)!

)︃
𝑂

(︂
𝑃 (𝑡)

√
𝑡 !
)︂

No

Linear
Programming Exact 𝑂 (log𝑛 + log𝜅) 𝑂 (log(𝑡2𝑐)+

log𝜅) Yes �̃� ( 1𝜖𝜅𝑛
5) �̃� ( 1𝜖𝜅𝑡

3𝑐
√
𝑐) No

Dynamic
Programming Exact 𝑂 (𝑛) 𝑂 (𝑡) Yes 𝑂

(︂
𝑃 (𝑛)2𝑛/2

)︂
𝑂

(︂
𝑃 (𝑡)2𝑡/2

)︂
No

Nature Inspired
Heuristics Approx. 𝑂

(︂
log

(︂
(2(𝑛−1))!
(𝑛−1)!

)︂)︂
𝑂 (log(𝑡 !)) Yes 𝑂 (𝑃 (𝑛)) 𝑂 (𝑃 (𝑡)) Yes

Quantum
Annealing Approx. 𝑂 (𝑛2) 𝑂 (𝑅𝑐𝑡) No Not Applicable No

Variational
Algorithms Approx. 𝑂 (𝑛2) 𝑂 (𝑅𝑐𝑡) No 𝑂 (1) 𝑂 (1) No

Quantum
Machine Learning Approx. log

(︂
(2(𝑛−1))!
(𝑛−1)!

)︂
log(𝑡 !) No 𝑂

(︂
log

(︂
(2(𝑛−1))!
(𝑛−1)!

)︂)︂
𝑂 (log(𝑡 !)) Yes

𝑛: Number of Tables 𝑡 : Number of Transactions 𝑐: Number of Cores 𝑅: Heuristic Timespan Value 𝜅: Condition Number
𝑃 (𝑥): Polynomial of 𝑥 �̃� : Big 𝑂 with Hidden Polylogarithmic Terms

The number of representation qubits for such an approach is
linear with the problem parameters 𝑛 and 𝑡 because the sizes of
the search spaces would be 𝑂 (2𝑛) and 𝑂 (2𝑡 ). To accelerate DP
by quantum computing, the Dürr-Høyer algorithm is used, which
requires a polynomially scalable Oracle and ancilla qubits. Also,
depending on the method to be implemented, it might be necessary
to load classically computed values on a QRAM or some equivalent
system. Fortunately, there are circuit-based equivalents of a QRAM
that can be implemented on a NISQ device [108].

4.2 Heuristics
Some heuristic algorithms, which are used to find near-optimal
solutions using a small number of resources, are introduced below.

Nature Inspired Heuristics: Over the years, various heuristic
algorithms that are inspired by some aspects of nature are devel-
oped. Genetic algorithm (GA) [61] mimics genetic evolution to
increase the quality of the individuals in a population of solutions.
Ant colony optimization (ACO) [29] simulates the foraging behav-
ior of ants to find the shortest path on a graph through pheromone
trails. Whale optimization algorithm (WOA) [96] models the spiral-
ing and convergence of humpback whale hunting routines. Particle
swarm optimization (PSO) [113] imitates the flight of a flock of
birds to evolve the positions of randomly positioned particles.

Discrete variations of WOA [80] and PSO [69], which are appli-
cable to sequencing problems, are proposed. There are implemen-
tations of GA for join order optimization [63] and job scheduling
problems [32]. Also, ACO [64, 132] and PSO [81, 95] approaches
are developed to solve these problems. Thus, all these algorithms
can be utilized to solve database problems.

It is shown that genetic algorithms can be accelerated using quan-
tum computing [86]. The proposed method applies the Dürr-Høyer
algorithm [41] to select the most fitting elements in each genera-
tion. In this case, the exact optimality requirement is relaxed and
𝑂 (1) iterations are applied to find a subpopulation of individuals of

maximal fitness, one of which is selected by measurement. This re-
quires the use of QRAM. Dürr-Høyer algorithm can also be utilized
to select an initial population without a need for QRAM, making
the strategy much more viable on NISQ devices. Such a method
would provide a better initial population, which would result in
faster convergence. This approach can be applied to any heuristic
that utilizes a random initial population. Thus, it is applicable for
every algorithm given above, except for ACO.

In the last few decades, many studies have focused on implement-
ing ideas of quantum computing into classical heuristics. Quantum-
inspired versions of the algorithms we presented above have been
developed over the years. Some of these are QGA [99, 141], QACO
[82, 142], QWOA [3] and QPSO [129]. In these algorithms, some
properties of the individuals of the population (or pheromone levels)
acquire quantum behavior by being simulated as qubit strings or
continuous quantum systems on classical computers. Even though
they are just simulating quantum systems, experience suggests that
they provide improvements over their conventional counterparts,
showing the potential of genuine quantum algorithms.

Simulated and Quantum Annealing: Simulated annealing
is a heuristic approach that is inspired by a metallurgical method
of slowly cooling a solid to obtain a desirable material [71]. It
is a probabilistic search algorithm, where the next point on the
search space is selected by a stochastic process. First, the fitness
of a randomly selected point is evaluated. If the fitness of this new
point is better than the current one, the new point is selected. If it
is worse, the new point is selected with some probability, which
depends on the current temperature value. A higher temperature
value means a higher probability to move to less fitting points. The
temperature value is decreased at each step, finally reaching zero. If
the temperature is decreased at a sufficiently slow rate, this process
definitely converges to the global optimal and finds competitive
near-optimal solutions in the time used by other heuristics for
solving problems in practice [13].
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Quantum annealing (QA) follows a similar logic, but it uses quan-
tum tunneling caused by a negative potential instead of thermal
fluctuations caused by temperature [45]. In this method, the in-
tensity of the negative potential is decreased slowly to reduce the
amount of fluctuation and obtain a stable quantum state at the end
of the process. For the application of quantum annealing, the trans-
verse Ising model is proposed [66]. Problems that are formulated
as QUBO problems [49] can be solved using this model.

QUBO approaches for both join order optimization [101, 123,
124, 134, 137] and transaction scheduling [15, 16] were developed,
which allow the usage of quantum annealing to solve them. In
QUBO formulations of join order optimization and transaction
scheduling, the numbers of binary variables are 𝑂 (𝑛2) and 𝑂 (𝑅𝑐𝑡)
respectively, which give us the numbers of representation qubits.

VariationalQuantumAlgorithms: For large problem instances,
implementing quantum algorithms that require high circuit depths
or many qubits is not possible on NISQ computers [115]. This sit-
uation led much research to focus on hybrid algorithms, where
some part of the computation is done by classical computers. Varia-
tional quantum algorithms (VQA) [23] are hybrid algorithms where
parameterized quantum circuits, known as variational quantum
circuits (VQC), are run and measured repeatedly by changing the
values of the parameters. The aim is to find the optimum values
of the parameters and record the result obtained by using those
values. Optimization is done using classical computers.

QAOA [43], VQE [109], VarQITE [92], and FVQE[4] all try to
find the ground state of a given Hamiltonian. The main differences
between them are the type of quantum circuits they employ and
the method they use to evolve the parameters. These make each
approach to be efficient for a different set of problems. It is shown
that these can be used to find approximate solutions to sequencing
problems [5], by formulating them as QUBO problems and the
objective functions as Hamiltonians. The contributions in [101, 124]
evaluate join ordering using QAOA and [101] additionally VQE,
but there is no study to solve transaction scheduling using VQA.
However, because transaction scheduling can be formulated as
QUBO problem [15, 16], such approaches can be developed.

The numbers of representation qubits are the same as the ones
for QA. The objective function is computed by a classical computer
avoiding ancilla qubits. In these methods, the circuit depth is a
constant, which might be tuned to obtain a better result.

There are other uses of variational algorithms. The variational
quantum linear solver [21] is a hybrid algorithm using a VQC to
approximately solve a linear equation for accelerating the linear
programming method. VQCs can also be used for machine learning.

(Quantum) Machine Learning: Machine learning enables the
prediction of the solution based on past problems by using a model.
The model contains parameters to be adjusted based on the given
data to improve the predictions during a learning phase. Differ-
ent types of models include linear regression [91], support vector
machines [104], decision trees [67], and neural networks [14].

Common approaches to quantum machine learning (QML) are
hybrid algorithms with a VQC consisting of controlled gates and
rotation gates. The angles of the rotation gates are adjusted by
a classical optimizer like Adam optimizer [127] or by a genetic
algorithm [24]. The structure of the circuit itself can be optimized
[119, 151]. These algorithms are inspired by neural networks and

# c r e a t e a quantum c i r c u i t w i th n q u b i t s
qc = qiskit . QuantumCircuit ( n )
# Pa r ame t e r s f o r i n p u t
x = qiskit . circuit . ParameterVector ( 'x ' , n )
# ang l e e n c o d i n g
for i in range ( n ) :

qc . rx ( x [ i ] , i )
# add a l t e r n a t i n g r o t a t i o n and en t ang l emen t
qc . compose ( TwoLocal ( n , [ ' ry ' , ' rz ' ] , ' cx ' , ' l inear ' ) , 3 )
# c o n n e c t t o p y t o r c h
model = TorchConnector ( CircuitQNN ( qc , . . . ) )
# o p t im i z e r f o r t r a i n i n g t h e model
optimizer = Adam ( model . parameters ( ) )
# t r a i n t h e model
for episode in range ( 2000 ) :

prediction = model ( Tensor ( features ) )
loss = . . . # c a l c u l a t e some l o s s f u n c t i o n
loss . backward ( )
optimizer . step ( )

# u s e model t o make a p r e d i c t i o n ba s ed on f e a t u r e s
prediction = model ( Tensor ( features ) )

Figure 1: Code excerpt for creating, training and using a
VQC with angle encoding as a machine learning model using
Qiskit and PyTorch.

replace a classical neural network with a quantum circuit. The
advantage of VQCs is the ability to achieve the same results using
fewer parameters [40] with benefits even for only simulated VQCs.

An important step of a quantum algorithm is the encoding of
classical data into a quantum state as it affects what data can be
encoded, which operations can be executed, and how many qubits
are required. Three common encodings used in QML are basis en-
coding (storing each bit of classical data in a qubit), angle encoding
(storing one real value in the amplitudes of a qubit), and amplitude
encoding (storing real values in the amplitudes of the combined
quantum states of multiple qubits) [144]. Quantum associative mem-
ory (QuAM) is a form of basis encoding that encodes a set of bit
strings instead of a single bit string as the superposition of the basis
encodings of all strings in the set. Basis and angle encodings have a
linear qubit complexity of𝑂 (𝑛), while it is𝑂 (𝑙𝑜𝑔(𝑛)) for amplitude
encoding, which allows the encoding of exponentially more values
in the same number of qubits. But to achieve this dense encoding,
the circuit depth of amplitude encoding scales linearly with the
number of values or exponentially with the number of qubits, while
basis and angle encodings require a single gate per qubit.

By finding an appropriate encoding and decoding, QML can be
used to solve join ordering and transaction scheduling problems
and predict cardinalities. Such an approach for join ordering has
already been developed [147, 148].

We developed an approach [148] for join order optimization
using a VQC which encodes each table into a qubit with angle
encoding and interprets the probability of each quantum state as
the predicted reward for a join order. We choose the join order with
the highest predicted reward. Figure 1 presents a code excerpt for
realizing our approach1 in Python (v. 3.8.12) with Qiskit (v. 0.19.1)
and PyTorch (v. 1.11.0). In our experimental evaluation, we use
queries joining 4 relations from the ErgastF1 benchmark [1], the
SGD optimizer and the reward function 𝑏

𝑐 with 𝑐 the execution time

1https://github.com/TobiasWinker/QC4DB_VQC_Tutorial
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Figure 2: Comparison of the reward evolution during training
for optimizing join orders with VQCs, DP and GEQO

of the chosen and 𝑏 of the best join order. We additionally propose
a variant that chooses only join orders without cross joins. In our
experimental results depicted in Figure 2, a simulated 20-layer VQC
achieved better join orders than PostgreSQL GEQO but worse than
PostgreSQL DP. With the additional prevention of cross joins, the
VQC reaches an average reward 10.5% higher than PostgreSQL DP.

5 FUTURE RESEARCH DIRECTIONS
Open challenges in quantum database applications are e.g.:

Developing Hybrid Algorithms: Some of the approaches men-
tioned in Section 4 are designed considering the limitations of the
NISQ devices and are intrinsically hybrid. Other approaches are
inherently suitable for combining with paradigms like branch and
bound, divide and conquer or DP [120]. In such approaches, classical
algorithms call quantum algorithms (working on smaller problem
instances) to solve larger problems. Developing hybrid algorithms
for database problems is an important focus for future research.

Designing Quantum Circuits: For implementation, circuit
designs must be created from high-level designs of quantum al-
gorithms. Some algorithms, such as Grover’s search, assume the
existence of a quantum “black box" evaluating a function using a
quantum circuit. To run such algorithms on hardware, quantum
circuits implementing the black box must be designed explicitly.

Compiling Quantum Circuits: A quantum circuit must be
compiled to allow execution on quantum computers. The first rea-
son is that a quantum computer is able to apply a limited set of
gates [102]. Therefore, the arbitrary gates in a quantum circuit must
be converted to combinations of applicable gates. Many such com-
piled circuits exist, and finding the optimal one is NP-complete [17].
When compiling, an efficient circuit must be chosen considering
the hardware limitations. The second reason for compilation is the
limited connectivity of qubits. Most algorithms assume two-qubit
gates can be applied to any pair of qubits, which is not the case
for real-world quantum hardware. Connectivity constraints might
affect the complexity significantly [62, 139]. For each quantum
method, an efficient way to compile circuits should be developed
to reduce the latency in quantum database applications.

Developing Noise-Resilient Algorithms: Noise reduction
might also be taken into account while designing algorithms, not
only while compiling them. Quantum algorithms that depend on
VQCs, such as VQA or QML, rely on explicit quantum circuits that
can be designed to minimize the circuit depth and swap operations
for a given problem, thus potentially reducing quantum hardware
noise. To this end, the problem structure and symmetries [90, 94] or
the capabilities of the hardware [78]may serve as guidelines. Similar
studies may increase the performance of quantum databases.

Running Experiments on DBMSs: The performances of vari-
ous quantum and classical methods for databases should be eval-
uated for different problem instances and parameter settings, by
integrating them into some DBMS. This allows us to assess quan-
tum speed-ups and choose the most suitable method for a given
problem. These studies can also assess different computing models,
such as cloud-based and on-site quantum computing.

Selecting the Best Approach: We do not expect a single algo-
rithm to dominate all others for all problem instances. Instead, the
focus should be on deciding the best approach for a given instance.
Ideally, on a DBMS, this decision should be made at runtime. To
be able to do this, first, the statistics for various methods and for
various problem settings must be collected. A hybrid quantum al-
gorithm, which utilizes CPU and QPU, might e.g. in some cases be
outperformed by classical algorithms that use CPU [84, 125], GPU
[59] or FPGA [145, 146]. The ability to dynamically choose the best
method and hardware might increase the throughput significantly.

Quantum Acceleration of Other Database Problems: One
might investigate quantum accelerating database problems where
classical machine learning has been applied [75, 79, 107, 114] like
learned indices, workload prediction, natural language interfaces
to data, automating exploratory data analysis and data cleaning.

6 SUMMARY AND CONCLUSIONS
Various quantum algorithms can be used to solve database problems
on NISQ hardware (see Table 1). The exact algorithms work by
coherently evaluating some lengthy functions requiring additional
qubits and long circuit depths. In the near future, these can only be
employed for small problem instances or used as a subroutine for a
hybrid algorithm. Most of the heuristic algorithms do not require
ancilla qubits and all of them have small circuit depths. Those can be
used to find near-optimal solutions to larger problem instances. For
database applications, more than one approach can be implemented,
and the DBMS can switch between them for different instances.
This would give an additional speed-up to a quantum DBMS.

Some of the quantum approaches, such as quantum versions of
nature-inspired heuristics and quantum machine learning, have an
advantage over classical algorithms even when they are simulated
on classical computers. This result shows the potential of quantum
computing. Using the right approaches, even the most primitive
quantum computers can improve the performance of many appli-
cations, including database management systems.

ACKNOWLEDGMENTS
This work is funded by the German Federal Ministry of Education
and Research within the funding program quantum technologies -
from basic research to market – contract number 13N16090.

2349



REFERENCES
[1] 2023. ErgastF1 Benchmark. http://ergast.com/mrd/. Accessed: May 15, 2023.
[2] M. H. Abobeih, J. Randall, C. E. Bradley, H. P. Bartling, M. A. Bakker, M. J.

Degen, M. Markham, D. J. Twitchen, and T. H. Taminiau. 2019. Atomic-scale
imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 7787
(2019), 411–415. https://doi.org/10.1038/s41586-019-1834-7

[3] R.K. Agrawal, Baljeet Kaur, and Surbhi Sharma. 2020. Quantum based Whale
Optimization Algorithm for wrapper feature selection. Applied Soft Computing
89 (April 2020), 106092. https://doi.org/10.1016/j.asoc.2020.106092

[4] David Amaro, Carlo Modica, Matthias Rosenkranz, Mattia Fiorentini, Marcello
Benedetti, and Michael Lubasch. 2022. Filtering variational quantum algorithms
for combinatorial optimization. Quantum Science and Technology 7, 1 (2022),
015021.

[5] David Amaro, Matthias Rosenkranz, Nathan Fitzpatrick, Koji Hirano, andMattia
Fiorentini. 2022. A case study of variational quantum algorithms for a job shop
scheduling problem. EPJ Quantum Technology 9, 1 (2022), 5.

[6] Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis
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