
CDSBen: Benchmarking the Performance of Storage Services in
Cloud-native Database System at ByteDance

Jiashu Zhang
Wen Jiang
Bo Tang∗

Department of Computer Science and
Engineering, Southern University of

Science and Technology
zhangjs2018@mail.sustech.edu.cn
11810406@mail.sustech.edu.cn

tangb3@sustech.edu.cn

Haoxiang Ma
Lixun Cao

Zhongbin Jiang
Yuanyuan Nie

ByteDance
mahaoxiang@bytedance.com
caolixun@bytedance.com

jiangzhongbin@bytedance.com
nieyuanyuan@bytedance.com

Fan Wang
Lei Zhang

Yuming Liang
ByteDance

wangfan.666@bytedance.com
zhanglei.michael@bytedance.com
liangyuming@bytedance.com

ABSTRACT
In this work, we focus on the performance benchmarking prob-
lem of storage services in cloud-native database systems, which
are widely used in various cloud applications. The core idea of
these systems is to separate computation and storage in traditional
monolithic OLTP databases. Specifically, we first present the char-
acteristics of two representative real I/O workloads at the storage
tier of ByteDance’s cloud-native database veDB. We then elaborate
the limitations of using standard benchmarks such as TPC-C and
YCSB to resemble these workloads. To overcome these limitations,
we devise a learning-based I/O workload benchmark called CDS-
Ben. We demonstrate the superiority of CDSBen by deploying it
at ByteDance and showing that its generated I/O traces accurately
resemble the real I/O traces in production. Additionally, we verify
the accuracy and flexibility of CDSBen by generating a wide range
of I/O workloads with different I/O characteristics.

PVLDB Reference Format:
Jiashu Zhang, Wen Jiang, Bo Tang, Haoxiang Ma, Lixun Cao, Zhongbin
Jiang, Yuanyuan Nie, Fan Wang, Lei Zhang, and Yuming Liang. CDSBen:
Benchmarking the Performance of Storage Services in Cloud-native
Database System at ByteDance. PVLDB, 16(12): 3584 - 3596, 2023.
doi:10.14778/3611540.3611549

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DBGroup-SUSTech/CDSBen.

1 INTRODUCTION
The migration of many applications to the cloud has prompted
the development of cloud-native database systems by large enter-
prises, such as Amazon Aurora [35], Microsoft Socrates [5], Huawei
Taurus [13], and Alibaba PolarDB [8]. These database systems are
designed to provide high availability, elasticity, and performance by

∗Dr. Bo Tang is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 12 ISSN 2150-8097.
doi:10.14778/3611540.3611549

decoupling the compute and storage tiers in traditional monolithic
OLTP databases. This enables independent deployment and scaling
of compute and storage services. In cloud-native database systems,
application transactions are first converted to I/O requests through
the compute tier, and then applied to the storage tier. Therefore,
ensuring excellent storage services is crucial for achieving low
application latency and high overall throughput.

Despite the importance of storage services, to the best of our
knowledge, no tool could be utilized to evaluate the performance of
storage tiers effectively. In this work, we focus on the performance
evaluation of storage services in cloud-native database systems
as the engineering team at ByteDance always faces the following
difficult questions.
• How about the performance of the storage tier in veDB (the

cloud-native database at ByteDance) if the transactions per
second (TPS) doubles?

• What is the maximum throughput if the read-write ratio of
transactions changes dramatically?

• What will happen if we change the techniques in the current stor-
age service slightly, e.g., applying a new I/O requests scheduling
strategy in veDB?
A comprehensive benchmark is necessary to effectively evaluate

the performance of the storage tier in cloud-native database systems
and answer the questions posed earlier.While benchmarks like TPC-
C and YCSB have been proposed to evaluate monolithic database
systems or KV storage engines [7, 11, 14, 16, 21], adapting them
to evaluate storage services in cloud-native database systems is
challenging. This is due to the lack of tuning knobs for simulating
real workloads in production environments accurately, and none
of these benchmarks inherently consider the impact of decoupling
compute and storage in cloud-native database systems.

Another approach to answer these questions is to deploy and con-
figure a cloud-native database and replay the corresponding transac-
tion workload to collect measurements. However, this method is not
always practical because the corresponding transaction workload
may not be available in the production environment, and because
obtaining the I/O workload of a transaction workload is expensive
since it involves executing transactions exactly in the compute tier
of cloud-native database systems.

3584

https://doi.org/10.14778/3611540.3611549
https://github.com/DBGroup-SUSTech/CDSBen
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611540.3611549
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Primary Replica Replica

RW RO RO

RW RO RO

Data Data Data

Transactions

I/O requests

Compute
tier

Storage
tier

Application
tier

Network

…

…

Douyin Xigua Video Toutiao

Figure 1: The architecture of ByteDance’s veDB

In this work, we introduce CDSBen, a learning-based bench-
mark for evaluating storage service performance at ByteDance. To
create this benchmark, we first analyzed two real I/O workloads,
veDB_OSS and veDB_SYNC, from the storage tier of the veDB
cloud-native database at ByteDance. Through this analysis, we
identified key workload characteristics such as intensity, burstiness,
and distribution skewness. We then created CDSBen, which utilizes
two models: an IOPS sequence estimation model that uses a recur-
rent neural network (RNN) to estimate the IOPS sequence of the
I/O workload, and a joint distribution estimation model that utilizes
a Random Forest Regressor to estimate the joint distribution of I/O
requests’ segment address and buffer size. CDSBen then adapts the
YCSB benchmark to generate I/O requests and execute them on the
storage tier of veDB.

In summary, our CDSBen enjoys four nice properties:
• High accuracy: it generates realistic I/O workloads for storage

tier performance evaluation in cloud-native database systems as
it explicitly embeds the characteristics of transaction workloads
via the RNN model and Random Forest Regressor. Moreover, the
complex execution procedure in the compute tier also has been
considered by the learning-based models implicitly.

• Good flexibility: it can be used to generate a wide range of
realistic workloads, e.g., different read-write ratios and different
TPS. In addition, CDSBen adapts YCSB to generate I/O requests,
which does not rely on any physical data layout.

• Ease of use: CDSBen avoids lots of cumbersome engineering
efforts (e.g., exact transaction execution in the compute tier)
and makes the performance evaluation easy to compare by only
requiring users to configure few parameters (i.e., overall TPS
and the ratio of each transaction type) in it.

• Great extensibility: the design of CDSBen does not rely on
any specific design of veDB and can be adapted to other cloud-
native database systems (e.g., Amazon Aurora, Alibaba PolarDB)
easily by training the models with the log statistics from the
corresponding cloud-native database.
We believe that CDSBen will be widely used by the engineers,

developers, and users of cloud-native database systems (i) as an eval-
uation and verification tool for the storage services development;
(ii) to identify the proper storage engine to improve the overall

PageStore

Primary

Transaction

Buffer pool

Global redo log buffer LogStore

Redo log shipping

Submit
redo log

Persist redo log

Read page
with version

…

Page 0 v0 Page 0 v1log Page 0 v2log

Page n v0 Page n v1log Page n v2log

Segment 0

…

Compute tier Storage tier

Page 0 v0 Page 0 v1log Page 0 v2log

Page n v0 Page n v1log Page n v2log

Segment N

…

Figure 2: Transaction processing at veDB

query processing efficiency; and (iii) to tune the configurations in
the storage tier (e.g., the number of storage nodes, the size of buffer
pool) for better performance.

The remainder of this paper is organized as follows.We introduce
the background of cloud-native database systems and present the
characteristics of two real I/O workloads at ByteDance in Section 2.
We discuss the limitations of existing benchmarks in Section 3. We
propose a learning-based benchmark CDSBen in Section 4 and
conduct extensive experiments to demonstrate its superiority in
Section 5. We conclude this paper in Section 6.

2 PRELIMINARIES
In this section, we first introduce the architecture of cloud-native
database systems by taking ByteDance’s cloud-native database
veDB as an example. Then, we abstract I/O requests and analyze two
representative workloads at veDB to illustrate the characteristics
of real I/O workloads in ByteDance’s production environment.

2.1 Cloud-native database: veDB
Figure 1 illustrates the architecture of a typical cloud-native data-
base, i.e., veDB at ByteDance. It consists of three tiers. The top
application tier includes various applications, e.g., Douyin, Xigua
video, and Toutiao News at ByteDance, which issue millions of
transactions per second and pass them to compute tier in the middle.
The compute tier includes a primary database kernel for read/write
(RW) transactions and several replica database kernels for read-
only (RO) transactions. The query capacity of cloud-native database
systems could be dynamically adjusted by changing the number of
read-only nodes. Each data record in the bottom storage tier can
be accessed by the database kernels in the middle compute tier via
I/O requests.

Figure 2 illustrates the query processing at veDB. The transac-
tions from the top application tier are processed by the primary
database kernel in the middle compute tier. Each transaction de-
rives a set of redo logs that record the page modifications. The redo
logs are first received by the global redo log buffer and then are
persisted at the append-only LogStore. After that, the redo logs
are shipped to PageStore for page modifications. PageStore man-
ages the multiple pages as segments and provides segment-based
interfaces for page reading and writing. The segment is the basic

3585

unit in the storage tier of veDB. It is a widely used concept in other
cloud-native database systems (e.g., Aurora, PolarDB). Specifically,
each segment in PageStore of veDB has several GBs and contains
many chain maps. Each chain map stores multiple page versions
and the logs among them, as shown in Figure 2.

It is challenging to benchmark the performance of storage ser-
vices in the cloud-native database veDB. On the one hand, a mono-
lithic database does not decouple compute and storage tiers. Thus,
existing end-to-end benchmarks (e.g., TPC-C) are not suitable for
cloud-native database systems as they do not inherently consider
the decoupled storage tier in cloud-native database systems. On the
other hand, the storage tier I/O requests in cloud-native database
systems are significantly different from these I/O requests in typical
KV storage engines or traditional file systems as they are generated
by the complex database kernel in the compute tier.

2.2 Segment-based I/O request abstraction
As shown in Figure 1, the I/O requests at storage tier are derived
by the compute tier in cloud-native database systems. To design
tools or benchmarks that accurately estimate the performance of
the storage tier, it is essential to abstract the I/O requests properly.

Without loss of generality, the I/O requests on the storage tier
of veDB at ByteDance include two fundamental operations read
and write. There are two options to abstract the read and write
operations: (i) fine granularity, which considers the read and write
operations on the physical hard disk unit (a.k.a. page); (ii) coarse
granularity, which considers the read and write operations on the
basic unit of storage tier (i.e., segment in veDB’s PageStore) in
cloud-native database systems.

In this work, we abstract the read and write operations at the
storage tier with coarse granularity, i.e., the format of data read
and write the on storage tier can be represented by read(timestamp,
offset in segment X, fixed buffer size) and write(timestamp, offset
in segment X, variable buffer size). The key reason to use segment-
based I/O abstraction is ‘the log is the database’ in cloud-native
database systems. Specifically, the storage tier of cloud-native data-
base systems should be capable of log replaying and multi-version
page management, e.g., generating an intermediate version of a
page by applying redo log. Segment abstracts read/write operations
and ignores the details of storage layout and architectures, which
are likely to be different among different systems. In other words,
the segment-based I/O abstraction is applicable to any cloud-native
database, which follows ‘the log is the database’ principle.

2.3 Two real I/O workloads in veDB
With segment-based I/O abstraction, it is essential to study the
characteristics of real I/O workloads in production to design a
benchmark that accurately evaluates the storage tier performance
in cloud-native database systems. After investigating hundreds of
real I/O workloads in veDB, which are from various applications at
ByteDance, we have the following observations: (i) all are OLTP
workloads with short transactions; (ii) the burstiness of different
workloads are varying, e.g., some of them being highly bursty,
while others being relatively steady; and (iii) the skewness of all
workloads are obvious, e.g., the segment distribution of read and
write operations.

Figure 3: IOPS sequence of veDB_OSS with TPS 1,040

In subsequent, we conduct a detailed analysis of two representat-
ive real I/O workloads veDB_OSS and veDB_SYNC in the produc-
tion environment of ByteDance’s cloud-native database veDB. The
analysis covers intensity, burstiness, and skewness (i.e., read-write
ratio, write buffer size distribution, and segment ID distribution).
For intensity and burstiness, we analyze the IOPS sequence of
each I/O workload. For skewness, we unify read-write ratios, write
buffer sizes, and segment IDs into a joint distribution matrix and
conduct analysis on it. As will be demonstrate shortly, veDB_OSS
is bursty and read-intensive, while veDB_SYNC is relatively steady
and write-intensive.
Read-intensive I/O workload veDB_OSS. It is a distributed ob-
ject storage system at ByteDance, which provides storage services
for non-structured data. For example, it updates the metadata of the
objects in the database when users post videos in Douyin. When
users click and view videos published by others, veDB_OSS sends
select queries to the database to get their metadata. Figure 3 il-
lustrates a 600-second I/O workload of veDB_OSS in ByteDance’s
cloud-native database veDBwith TPS 1040. The IOPS of veDB_OSS
ranges from 39 to 3,447, and it has an average value of 1,382 with a
standard deviation of 505. 90.4% of operations are read operations.
Therefore, the I/O workload of veDB_OSS is read-intensive, and its
burstiness is high.

We investigate other characteristics of veDB_OSS in Figure 4.
We first plot the total number of read operations in each segment
among these 600 seconds in Figure 4(a). Obviously, the distribution
of read operations in veDB_OSS is highly skewed, i.e., 94.0% of read
operations are on segments 7 and 8. In comparison, the distribution
of write operations in Figure 4(b) is also skewed, but the pattern is
different. Figure 4(c) shows the distribution ofwrite operations w.r.t.
their write buffer sizes. As the write buffer size grows, the number
of operations falls. The buffer sizes of most write operations are
quite small (e.g., less than 4KB). In Figure 4(d), we visualize the
joint distribution of the segment ID and buffer size via heatmap.
The deeper the color is in the cell, the more operations there are.
We can clearly observe that the distributions of operations w.r.t.
segment ID and buffer size are not independent.
Takeaway: The real I/O workloads on the storage tier of cloud-native
database systems have high bursty, and the corresponding segment
ID and buffer size joint distribution are skewed, which is complex and
cannot be easily described by a few intuitive parameters.

Write-intensive workload veDB_SYNC.Many hardware devices
have been sold by ByteDance and are used by billions of users.
veDB_SYNC is designed to synchronize data between servers and

3586

Figure 4: The characteristics of real I/O workload of veDB_OSS with TPS 1,040

Figure 5: The characteristics of real I/O workload of veDB_SYNC with TPS 13,108

Table 1: Comparison of two real workloads at veDB

Characteristics veDB_OSS veDB_SYNC
IOPS intensity 39 to 3,500 600 to 1,000
Read/write ratio 9:1 0:1

Burstiness High Low
Hot/cold date ratio 1:3 11:8

Buffer size 0 to 12 KB 1 to 28 KB

these devices. As veDB_SYNC pushes data to devices, the status
of devices will be updated in the database. Figure 5 shows a 600-
second IOPS of veDB_SYNCwith TPS 13,108 at ByteDance. Almost
all of the operations of veDB_SYNC are write operations as the
devices update their status in the database. Thus, we omit the curves
of read and write operations per second in Figure 5(a). The num-
ber of write operations per second ranges from 654 to 964, the
average is 820, and the standard deviation is 56. Obviously, the
veDB_SYNC workload is write-intensive and its burstiness is re-
latively low. Figure 5(b) shows the distribution of operations on
segment ID, which is skewed and is obviously different from the I/O
workload of veDB_OSS, e.g., 19 different segments are accessed in
veDB_SYNC, instead of 8 segments in veDB_OSS. Figure 5(c) shows
the distribution of operations on buffer size. Similar to veDB_OSS,
the number of operations decreases with the rising of the buffer
size. However, both the maximum buffer size and the average buf-
fer size are larger than those of veDB_OSS. Last, we present the
joint distribution of the segment ID and the buffer size among all
write operations of veDB_SYNC in Figure 5(d). Interestingly, the
write operations with large buffer sizes (e.g., ≥ 4KB) only appear
in several segments, i.e., segments 11, 14, and 15. Moreover, the

joint distribution heatmap of veDB_SYNC in Figure 4(d) is visually
different from veDB_OSS’s in Figure 5(d).

Table 1 summarizes the characteristics of two representative real
I/O workloads in ByteDance’s veDB.
Takeaway: While the real I/O workloads on the storage tier are
bursty and skewed in general, the degree of these characteristics (e.g.,
IOPS intensity, I/O requests burstiness, distribution of target address,
buffer size, and the joint distribution) in various I/O workloads can be
significantly different.

3 EXISTING SOLUTIONS
We analyze the limitation of existing solutions and discuss the most
relevant studies in this section.

3.1 Existing benchmarks analysis
Many (if not all) existing benchmarks for database system per-
formance evaluation are in two categories, micro-benchmarks and
macro-benchmarks [34].We elaborate on how to adapt them to eval-
uate the performance of the storage tier in cloud-native database
systems as follows.

Micro-benchmarks evaluate the performance of a specific com-
ponent in the database system. YCSB is a representative of micro-
benchmarks for storage tier performance evaluation [23, 25, 33].
It is straightforward to adapt YCSB to measure the performance
of the storage tier in cloud-native database systems as the YCSB-
generated I/O trace can be applied to the storage tier easily. Macro-
benchmarks evaluate the end-to-end query performance of the
tested database system. TPC-C is a macro-benchmark widely used
for OLTP database system performance evaluation [8, 9, 13, 35].
To evaluate the performance of the storage tier, we first generate

3587

Figure 6: The characteristics of YCSB generated I/O workload with IOPS 1,382

Figure 7: The characteristics of I/O workload of TPC-C generated transaction workload with TPS 80, IOPS 860

TPC-C transaction workloads, then execute them on the compute
tier to obtain the corresponding I/O workloads, and last measure
the performance of the storage tier by the obtained I/O workloads.

With the above adaption, both micro-benchmark (YCSB) and
macro-benchmark (TPC-C) can be used to evaluate the storage tier
performance in cloud-native database systems. In subsequent, we
elaborate on the limitations of both micro- and macro-benchmarks
by analyzing how far the benchmarks’ generated I/O workloads
are from two real I/O workloads veDB_OSS and veDB_SYNC in
production at ByteDance. Specifically, we configure the knobs in
micro-benchmark YCSB and macro-benchmark TPC-C to simulate
veDB_OSS and veDB_SYNC at ByteDance, respectively1.
YCSB knobs configuration. YCSB generates various I/O traces
(each including a sequence of read and write operations) on the
storage tier by offering several knobs, e.g., IOPS, read-write ratio,
and target address distribution [11, 25, 33]. We tried our best to
tune these knobs to make the YCSB-generated I/O workload as
close as possible to the real I/O workload veDB_OSS at ByteDance.
Specifically, we set the IOPS and the ratio of read operations of YCSB
generated I/O workload as 1,382 and 90.4%, which are the same as
the average IOPS and the read ratio in veDB_OSS. Since YCSB does
not offer knobs to configure thewrite buffer size distribution, we set
the ratio of write operations with buffer size 1KB and 16KB as 9.5%
and 0.1%, respectively, such that the average buffer sizes of YCSB
and veDB_OSS are the same. We use Zipfian distribution in YCSB
to simulate the accessed segment ID distribution in veDB_OSS as
YCSB does not support exact segment ID distribution configuration.
TPC-C knobs configuration. TPC-C generates five types of trans-
actions on the computer tier. Users can tune the ratio of each type

1We omit the discussions of using TPC-C to simulate veDB_OSS and using YCSB to
simulate veDB_SYNC as they share the same conclusions.

of transaction and the overall TPS. First, the real I/O workload
veDB_SYNC is write-intensive as in Section 2.3. To obtain the I/O
workload generated by TPC-C which most resembles veDB_SYNC,
we maximize the ratio of the most write-intensive transaction New-
Order in TPC-C, which is 45%. The other four types, Payment,
Order-Status, Delivery, and Stock-Level are set to 43%, 4%, 4%, and
4%, which are the minimum ratio required by TPC-C [12]. Second,
since TPC-C generates transaction workloads instead of I/O work-
loads, we cannot set its IOPS directly. We manually tune the TPS (as
80) so that the average IOPS (i.e., 860) of its corresponding I/O work-
load (after compute tier execution) is close enough to the average
IOPS (i.e., 820) of the real workload veDB_SYNC at ByteDance.

We next analyze the limitations of these existing benchmarks by
analyzing the characteristics of their generated I/O workloads in
Figures 6 and 7, w.r.t. the real I/O workloads in Figures 3, 4, and 5.
Q1 Accuracy: how close are the benchmark generated I/O
workloads to real ones? Even though we tried our best to tune the
knobs in YCSB to generate an I/O workload that is close to the real
I/O workload veDB_OSS, the characteristics of generated I/O work-
load (see Figure 6) are quite different from those of veDB_OSS (see
Figure 4). For example, the standard deviation of YCSB-generated
IOPS is only 19.4, which is 505 in veDB_OSS. The IOPS sequences
are also obviously different when we compare Figure 3 with Fig-
ure 6(a). The same conclusions hold when we compare the TPC-C
generated I/O workload in Figure 7 with veDB_SYNC at ByteDance
in Figure 5. For example, the I/O workload generated by TPC-C
in Figure 7(a) contains approximately 10% of read operations, but
veDB_SYNC is write-only, as shown in Figure 5(a).

3588

Conclusion: Both micro-benchmark YCSB and micro-benchmark
TPC-C fail to generate I/O workloads which accurately resemble the
real I/O workloads in the production environment of ByteDance.

Q2 Flexibility: how flexible are the micro- and macro- bench-
marks in the production environment? The flexibility of a
benchmark is its ability to generate I/Oworkloadswith various char-
acteristics, e.g., intensity, burstiness, and skewness. YCSB provides
several knobs for users to directly tune the intensity and read-write
ratio. However, for the distribution of segment ID, users can only
choose from fixed options like Zipfian distribution and uniform
distribution, instead of specifying any real and complex distribu-
tions at will. Thus, the segment ID distributions of read and write
operations in YCSB-generated I/O workloads in Figures 6(b) and (c)
differ from those of veDB_OSS in Figures 4(a) and (b) significantly.
Moreover, YCSB does not have knobs to tune the joint distribution
of segment ID and buffer size, which is essential for the real I/O
workload of cloud-native database systems in production. In TPC-C,
users are only able to tune the TPS and the ratio of five types of
transactions, which seriously constrains its flexibility. For example,
it cannot generate a write-only I/O workload as veDB_SYNC at
ByteDance.
Conclusion: While micro-benchmark YCSB and macro-benchmark
TPC-C provide knobs for workload configurations, the flexibility of
the generated I/O workloads is very limited for the purpose of storage
tier performance evaluation in cloud-native database systems.

Q3 Usability: are the micro- and macro- benchmarks easy to
use? A benchmark with high usability in cloud-native database
systems should generate I/O workloads directly on the storage
tier with simple user configurations. While users of TPC-C are
only required to configure the TPS and the ratio of transaction
types, TPC-C issues transactions on the compute tier and does not
generate I/O workloads directly in cloud-native database systems.
To use TPC-C to benchmark the storage tier, deploying the compute
tier is necessary, which introduces auxiliary engineering effort and
expensive extra costs. YCSB does not require deploying the compute
tier, but users have to manually configure the intensity and the
skewness of the generated I/O workload in YCSB, which hurts its
usability as these configurations require the experience and effort
of users.
Conclusion: For the storage tier performance evaluation in cloud-
native database systems, the micro-benchmark YCSB has better us-
ability than the macro-benchmark TPC-C, but the usability of YCSB
should be improved significantly as it requires tedious effort to set the
detail configurations properly.

3.2 Trace replayers analysis
Trace replayers are widely used for storage systems performance
evaluation. They replay traces of previously executed I/O work-
loads [3, 24, 34]. They are easy to use because they directly use
the prepared I/O traces. The major disadvantage is their reliance
on traces, which severely limits their flexibility because I/O traces
are not always available. Specifically, for what-if performance eval-
uation scenarios, such as when users want to evaluate the per-
formance of the cloud-native database systems with a doubled TPS
of a deployed application, traces are not available because such
workload never occurred in the production environment before.

Table 2: Summary of solutions

Solution Accuracy Flexibility Usability
YCSB low medium medium
TPC-C medium medium low

Trace replayer high low high
Our CDSBen high high high

We summarize the existing studies in Table 2. To sum up, none
of the existing work achieves high accuracy, good flexibility, and
easy-to-use simultaneously in benchmarking the storage tier of
ByteDance’s cloud-native database veDB.

3.3 Other relevant studies
Cao et al. characterized three real key-value workloads on RocksDB
at Facebook. They then proposed a key-range-based model to bet-
ter synthesize key/value workloads on RocksDB [10]. Asyabi et al.
proposed a benchmark for state storage of stream processing sys-
tems in [6]. Many studies focused on the performance evaluation
of storage services such as cloud file systems [1, 4, 27–29]. The
common limitation of all the works above is that these benchmarks
or workload generators still rely on the user to directly configure
the workload to generate. Therefore, although they characterized
I/O workloads from different aspects, the complexity of determ-
ining the exact I/O workload to generate is not reduced and still
falls on the user, which makes them in the middle between micro-
benchmarks like YCSB and macro-benchmarks like TPC-C, but not
significant advancements. 0 In comparison, as will be presented
shortly, CDSBen leveraged models to reduce such complexity and
achieve high accuracy, good flexibility, and ease of use at the same
time. In addition, some of the relevant studies characterized the
inter-arrival time of IO requests for burstiness [1, 4, 27–29]. We
do not do so because the inter-arrival time distribution in our ex-
periments spans five orders of magnitude, and small errors in the
estimated frequency of high inter-arrival time lead to large errors
in intensity.

4 LEARNING-BASED SOLUTION: CDSBEN
Figure 8 depicts the architecture of our proposed learning-based
benchmark CDSBen. It consists of two key models: (i) the IOPS
sequence estimation model, which estimates the IOPS sequence of
an I/O workload; and (ii) the joint distribution estimation model,
which estimates the joint distribution of the I/O requests’ segment
ID and buffer size. The working procedure of CDSBen is as fol-
lows. These two models in CDSBen are trained with the features
which are extracted from the logs of real workloads at first. We will
present the details of model training shortly. With the trained mod-
els, CDSBen then takes the features of the (expected) transaction
workloads as input and estimates the IOPS sequence and the joint
distribution of the desired I/O workload, respectively. CDSBen next
adapts YCSB to generate the exact I/O requests of the workload
accordingly. Last, CDSBen executes the generated I/O workload
and evaluates the performance of the storage tier in cloud-native
database systems. We next present the key techniques of CDSBen.

3589

ReLU
ReLU

Linear
Linear

ReLU
ReLU

Linear

ReLU
ReLU

Linear
Linear

ReLU
ReLU

Linear

Weight
vector

Generator

1424
1366
126
128
126

Weight vector

Buffer size
Target address

......

Random forest Regressor
Decision tree 1 Decision tree n

Generated Joint distrubution

h

C

Target address

Bu
ffe

r s
ize

Target address

Bu
ffe

r s
ize

Generated IO requests

IOPS sequence generation model Joint distrubution generate model

Generated IOPS sequence

1424
1366
126
128
126

Figure 8: The architecture of our proposed learning-based benchmark CDSBen

Feature vectors of
transaction workloads

Transaction logs

I/O workload logs IOPS sequence

Joint distribution

[597 748 416 625 …]
[674 692 636 541 …]

...
[976 642 726 905 …]

Segment ID

Bu
ffe

r
si

ze

Time, Connection, SQL statement
06:43:01.413000Z,24,Query UPDATE stock S_QUANTITY=12,
S_YTD=S_YTD+4, S_ORDER_CNT=S_ORDER_CNT+1,
S_REMOTE_CNT=S_REMOTE_CNT+0 WHERE S_I_ID=12695 AND
S_W_ID=1;
2022-02-09T06:43:01.413142Z 24 Query UPDATE stock SET
S_QUANTITY=76, S_YTD=S_YTD+1,
S_ORDER_CNT=S_ORDER_CNT+1, S_REMOTE_CNT=S_REMOTE_CNT+0
WHERE S_I_ID=59093 AND S_W_ID=1;
……

Time Operation Segment ID Buffer size
06:43:01.413000Z, Read request, 0x0004, null
06:43:01.705029Z, Write request, 0x000F, 2KB
06:43:02.037052Z, Read request, 0x0008, null
06:43:02.268574Z, Write request, 0x0010, 1KB
06:43:02.648347Z, Write request, 0x0008, 4KB
06:43:03.482346Z, Read request, 0x0010, null
06:43:03.789765Z, Write request, 0x0010, 1KB
06:43:04.582671Z, Write request, 0x0008, 1KB
……

Time, Connection, SQL statement
06:43:01.413000Z,24,Query UPDATE stock S_QUANTITY=12,
S_YTD=S_YTD+4, S_ORDER_CNT=S_ORDER_CNT+1,
S_REMOTE_CNT=S_REMOTE_CNT+0 WHERE S_I_ID=12695 AND
S_W_ID=1;
2022-02-09T06:43:01.413142Z 24 Query UPDATE stock SET
S_QUANTITY=76, S_YTD=S_YTD+1,
S_ORDER_CNT=S_ORDER_CNT+1, S_REMOTE_CNT=S_REMOTE_CNT+0
WHERE S_I_ID=59093 AND S_W_ID=1;
……

Time, Connection, SQL statement
06:43:01.413000Z,24,Query UPDATE stock S_QUANTITY=12,
S_YTD=S_YTD+4, S_ORDER_CNT=S_ORDER_CNT+1,
S_REMOTE_CNT=S_REMOTE_CNT+0 WHERE S_I_ID=12695 AND
S_W_ID=1;
2022-02-09T06:43:01.413142Z 24 Query UPDATE stock SET
S_QUANTITY=76, S_YTD=S_YTD+1,
S_ORDER_CNT=S_ORDER_CNT+1, S_REMOTE_CNT=S_REMOTE_CNT+0
WHERE S_I_ID=59093 AND S_W_ID=1;
……

22.5

21.5

…

2.0

2.0

27.0

25.8

…

2.4

2.4

45.0

43.0

…

4.0

4.0

……

Time Operation Segment ID Buffer size
06:43:01.413000Z, Read request, 0x0004, null
06:43:01.705029Z, Write request, 0x000F, 2KB
06:43:02.037052Z, Read request, 0x0008, null
06:43:02.268574Z, Write request, 0x0010, 1KB
06:43:02.648347Z, Write request, 0x0008, 4KB
06:43:03.482346Z, Read request, 0x0010, null
06:43:03.789765Z, Write request, 0x0010, 1KB
06:43:04.582671Z, Write request, 0x0008, 1KB
……

Time Operation Segment ID Buffer size
06:43:01.413000Z, Read request, 0x0004, null
06:43:01.705029Z, Write request, 0x000F, 2KB
06:43:02.037052Z, Read request, 0x0008, null
06:43:02.268574Z, Write request, 0x0010, 1KB
06:43:02.648347Z, Write request, 0x0008, 4KB
06:43:03.482346Z, Read request, 0x0010, null
06:43:03.789765Z, Write request, 0x0010, 1KB
06:43:04.582671Z, Write request, 0x0008, 1KB
……

0.30 0.28 … 0.25
0.12 0.09 … 0.03

…
0.03 0.01 … 0.00

0.30 0.28 … 0.25
0.12 0.09 … 0.03

…
0.03 0.01 … 0.00

0.30 0.28 … 0.25
0.12 0.09 … 0.03

…
0.03 0.01 … 0.00

!

"

#

Figure 9: The example of feature embedding

4.1 Feature embedding
The logs of transaction workloads and the corresponding I/O work-
loads are embedded into feature vectors. Both the IOPS sequence
estimation model and the joint distribution estimation model are
trained from the embedded feature vectors. In particular, the trans-
action workloads are a mixture of several types of transactions.
For example, the veDB_OSS workload includes four types of trans-
actions, SELECT, INSERT, UPDATE, and DELETE. We parse the
compute tier log and count the TPS of each transaction type as the
features of the transaction workloads. As shown in Figure 9, the
left transaction logs are embedded into the right feature vectors X.

For the IOPS sequence estimation model training, we also im-
plement a parser of the real I/O workload logs and extract feature
vectors from them, which are used for the IOPS sequence estimation
model. As illustrated in Figure 9, the IOPS sequence feature vector
Y is encoded by counting the IOPS in the log. For example, the IOPS
of the first four seconds are 597, 748, 416, and 625, which embeds
the intensity and burstiness of the real I/O workload implicitly.

For the joint distribution estimation model training, we embed
accessed segment IDs and buffer sizes of all the I/O requests into
a joint distribution matrix, asZ shows in Figure 9. Moreover, we
associate different weights to different buffer sizes as the the per-
formance of the storage tier to process thewrite requests with large

buffer sizes is obvious different from those with small buffer sizes.
Hence, each elementZ[𝑖] [𝑗] shows the percentage of I/O requests
in segment ID 𝑖 with buffer size 𝑗-KB after normalization.
Discussion. The advantages of the feature embedding methods
above are two-folds: (i) it is simple and generic as it extracts feature
vectors from the workload logs; and (ii) it builds upon the segment-
based I/O abstraction (see Section 2.2) and does not rely on any
specific designs of ByteDance’s veDB. Hence, it can be extended to
other cloud-native database systems easily.

4.2 IOPS sequence estimation model
In CDSBen, the ideal model to estimate the IOPS sequence of an
I/O workload should (i) capture the long-distance dependence re-
lationship well, because the I/O workload is always not short, the
IOPS sequence of an I/O workload is a time series, and the adjacent
number of I/O requests per second is highly dependent; (ii) achieve
good performance even when the training data is small, as the
training data may not always be as large as expected in production.

Recurrent neural network (RNN) [2] is characterized by main-
taining state continuity and capturing the dependency in sequence
context. Moreover, its structure inherently supports variable output
length, which allows us to freely output the required length of the
IOPS sequence without changing the network structure. Advanced
RNN models, e.g., long short-term memory (LSTM), address the
limitation of the basic RNN model that it forgets information of
long-distance sequence. Thus, we employ LSTM in our IOPS se-
quence estimation model. We omit the discussion of gated recurrent
unit (GRU), another advanced RNN model as LSTM outperforms
GRU in our internal testing experiments.
Model design.As shown in Figure 8, the IOPS sequence estimation
model consists of three modules: embed module, LSTM module, and
output module. The embed module is used to map the feature vector
of the transaction workload to dense embedding cell state 𝑐 and
hidden state ℎ. We employ two two-layer fully connected neural
networks with 𝑅𝑒𝐿𝑈 activation function in the embed module.
The LSTM module takes cell state 𝑐 , hidden state ℎ and Y𝑡−1 (the
IOPS value at timestamp 𝑡 − 1) as input to estimate Y𝑡 , the IOPS
value at timestamp 𝑡 by Equation (1), where𝑊𝑓 ,𝑊𝑖 ,𝑊𝑜 and𝑊𝑐

are parameter matrices of input connections,𝑈𝑓 ,𝑈𝑖 ,𝑈𝑜 and𝑈𝑐 are

3590

parameter matrices of recurrent connections. 𝑏 𝑓 , 𝑏𝑖 and 𝑏𝑜 are bias
vectors, ◦ denotes element-wise multiplication, 𝜎𝑔 is the activate
function 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ,𝜎𝑐 and𝜎ℎ is the hyperbolic tangent function. 𝑓𝑡 , 𝑖𝑡 ,
𝑜𝑡 and 𝑐𝑡 are the activation vector of forget gate, input gate, output
gate, and cell input respectively. 𝑐𝑡 and ℎ𝑡 are the cell state vector
and hidden state vector, where the initial 𝑐0 and ℎ0 are computed
by embed module. ℎ𝑡 is also the output Y𝑡 of the LSTM module.
The output module performs a linear transformation on the output
of the LSTM module to adjust its dimension to the output length
of the required IOPS sequence. We use a one-layer fully connected
neural network as our output layer.

𝑖𝑡 = 𝜎𝑔 (𝑊𝑖Y𝑡−1 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)
𝑜𝑡 = 𝜎𝑔 (𝑊𝑜Y𝑡−1 +𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)
�̃�𝑡 = 𝜎𝑐 (𝑊𝑐Y𝑡−1 +𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)
𝑐𝑡 = 𝑓𝑡 ◦ 𝑐𝑡−1 + 𝑖𝑡 ◦ �̃�𝑡
ℎ𝑡 = 𝑜𝑡 ◦ 𝜎ℎ (𝑐𝑡)

(1)

Learning models always trade-off between the model accuracy
and training/inference cost. To provide a highly accurate IOPS
sequence estimation model with acceptable training and inferring
cost inCDSBen, as shown in Figure 8, we stack five 1024-unit LSTM
layers together. The first layer takes the cell state 𝑐 and hidden state
ℎ (from embed module) and the IOPS Y0 of timestamp 0 as input
and its output is a 1024-sized vector. The next four layers in turn
receive the output vector of the previous LSTM layer as input
and return a 1024-sized vector accordingly. In order to enhance
the stability of the output of the model and to further reduce its
accumulated error during the generation of the IOPS sequence, we
use kernel regularizers to punish the weight of the last LSTM layer.
We avoid gradient disappearance or gradient explosion issues in
deep neural network (as we concatenated five LSTM layers) by
utilizing the structure of ResNet [17]. In particular, we connect
the input and output of LSTM layers by skip-connection and use
𝑓 (Y𝑡−1, 𝑐, ℎ) = Y𝑡 − Y𝑡−1 in LSTM module, instead of the original
𝑓 (Y𝑡−1, 𝑐, ℎ) = Y𝑡 .
Model training. The IOPS sequence estimation model in CDSBen
is an end-to-end model and we use backpropagation to optimize it.
The loss function is the mean absolute error (MAE)

∑︁𝑛
𝑖=0 |Ŷ𝑖 −Y𝑖 |,

where Y is the real IOPS sequence, and Ŷ is the estimated IOPS
sequence. The Adam optimizer [19] is used for model training and
the learning rate is 1 × 10−4. The training process terminates when
the loss of the model fluctuates slightly.
Model inference. During the inference phase, CDSBen first takes
the TPS of each type of transaction and the initialized IOPS at
timestamp 0 as input. Then, it estimates the rest IOPS sequence
via the IOPS sequence estimation model accordingly. We employ a
three-layer fully connected neural network to initialize the IOPS
value at timestamp 0 (i.e., Y0).

4.3 Joint distribution estimation model
In this section, we design the joint distribution estimation model
to estimate the joint distribution of segment ID and buffer size of
each read or write operation in the workload.
Model design. In the literature, there are two categories of models
that can be adapted to estimate the joint distribution matrix in our

case. The first category estimates the entire joint distribution matrix
Z by the model. For example, it treats the joint distribution matrix
as an image and uses a generative adversarial net (GAN) [15] or
variational auto-encode (VAE) [20] to generate it. However, the
major limitation of the models in this category is that they do not
have the ability to distinguish the hot/cold segments via the gener-
ated joint distribution matrix as the segment ID is meaningless in
these models. The second category estimates each element in the
joint distribution matrix one by one. For example, models such as
decision tree [32], support vector machine [30], and logistic regres-
sion [18] take the feature vector of transaction workload, segment
ID 𝑖 , and buffer size 𝑗-KB tuple as input, then estimatesZ[𝑖] [𝑗] in-
dependently. Our solution adapts the model in the second category.
Specifically, we design a model for joint distribution based on ran-
dom forest regressor[26, 31], which includes a number of different
and independent decision trees (i.e., there are 1,200 decision trees
in our experiments) as our joint distribution estimation model. It
shows the superiority in the following two aspects: (i) it estimates
the joint distribution of I/O workload accurately by exploiting the
property of multiple decision trees, as we will elaborate on shortly;
and (ii) it enjoys high efficiency as different decision trees can run
in parallel as they are mutually independent.
Model training. In the training phase of each decision tree in the
random forest regressor, it randomly selects 𝑛 feature vectors of
transaction workloads and their corresponding joint distribution
matrices to form its training dataset (a.k.a., bootstrap dataset). Thus,
the bootstrap dataset includes 𝑛 pairs of ((X, 𝑖, 𝑗),Z[𝑖] [𝑗]) in Fig-
ure 9, where the 3-tuple (X, 𝑖, 𝑗) is the input and Z[𝑖] [𝑗] is the
output.

Each decision tree is trained as follows [26]. We first put all input
3-tuple (X, 𝑖, 𝑗) into an input matrixM and set it as the input of the
decision tree. The label is all elementsZ[𝑖] [𝑗] of all these 𝑛 joint
distribution matrices Z. The decision tree recursively splits the
feature space in M by grouping the feature vectors with the same
value or close values in the label. Suppose the data at node 𝑎 in the
decision tree is a vector Q𝑎 with 𝑁𝑎 samples, for each candidate
split 𝜃 = (𝑘, 𝑡𝑎) which consists of feature 𝑘 and its threshold 𝑡𝑎 ,
the data is divided into two subsets Q𝑙𝑒 𝑓 𝑡

𝑎 (𝜃) and Q𝑟𝑖𝑔ℎ𝑡
𝑎 (𝜃) by the

following rules:

Q𝑙𝑒 𝑓 𝑡
𝑎 (𝜃) = {(𝑥, 𝑧) |𝑥𝑘 ≤ 𝑡𝑎} and Q𝑟𝑖𝑔ℎ𝑡

𝑎 (𝜃) = Q𝑎 \ Q𝑙𝑒 𝑓 𝑡
𝑎 (𝜃)

We use mean squared error (MSE) as the loss function H in
Equation (2), where 𝑧 is the mean of all 𝑧 values in 𝑁𝑎 .

H(Q𝑎) =
1
𝑁𝑎

∑︂
𝑧∈Q𝑎

(𝑧 − 𝑧𝑚)2 (2)

The function 𝐺 (in Equation 3) measures the quality of split 𝜃
on node 𝑎.

𝐺 (Q𝑎, 𝜃) =
𝑁
𝑙𝑒 𝑓 𝑡
𝑎

𝑁𝑎
H(Q𝑙𝑒 𝑓 𝑡

𝑎 (𝜃)) + 𝑁
𝑙𝑒 𝑓 𝑡
𝑎

𝑁𝑎
H(Q𝑟𝑖𝑔ℎ𝑡

𝑎 (𝜃)) (3)

The training of each decision tree is to find the parameters to
minimize the loss:

𝜃∗ = argmin𝜃𝐺 (Q𝑎, 𝜃) (4)

3591

The decision trees recursively split the two subsets𝑄𝑙𝑒 𝑓 𝑡
𝑎 (𝜃) and

𝑄
𝑟𝑖𝑔ℎ𝑡
𝑎 (𝜃) until (i) the decision tree reaches the maximum allowable

depth or (ii) 𝑁𝑎 = 1. In order to reduce the variance of estimation
results and to improve the accuracy of the joint distribution es-
timation model, we employ two stochastic processes during the
above model training phase. In particular, the probability of each
((X, 𝑖, 𝑗),Z[𝑖] [𝑗]) tuple to be included by a specific bootstrap data-
set is 1 − (1 − 1

𝑛)
𝑛 . It is 1 − 1

𝑒 = 0.632 when 𝑛 is large. In other
words, almost 37% of the whole training dataset will not be used
in a specific decision tree. We use them to improve the generaliza-
tion ability of the trained decision tree. Second, it only uses 50% of
randomly selected transaction workload features for each decision
tree branching.
Model inference. During inference, we obtain the whole joint
distribution matrix by estimating the value of each segment ID
and buffer size, with TPS of each transaction type in the workload
one by one. Specifically, for each 3-tuple of transaction workload
feature, segment ID, and buffer size (X, 𝑖, 𝑗), we take the mean of
all outputs from each trained decision tree in the Random Forest
Regressor as the estimated value.

After joint distribution is estimated, it needs normalization to
be used in workload generation. Since the joint distribution matrix
is normalized by considering weights of different buffer sizes, we
reverse this process and remove the weights. Then, we divide the
joint distribution matrix by the sum of every element, so that the
joint distribution matrix is the joint discrete probability distribution
of segment ID and buffer size, which is used in workload generation.

4.4 YCSB-adapted I/O workload generation
With the estimated IOPS sequence and the joint distribution in an
I/O workload, we adapt YCSB to generate the exact I/O requests
in it. For each timestamp 𝑡 in the IOPS sequence with IOPS Y𝑡 , we
uniformly distributed these I/O requests in the timestamp 𝑡 . For
each request, it randomly selects segment ID and buffer size from
the joint distribution. If the buffer size is 0, then this request is a
read request. Otherwise, it is a write request. After the requests
are generated, we modify YCSB to bypass its configurations, load
the generated requests, and execute them on the storage tier of
veDB. We rely on the built-in implementation of YCSB for metrics
collection. After the execution is complete, the time consumed
to execute each I/O request will be reported by YCSB, where we
conduct analysis for performance evaluation.

4.5 Discussions of CDSBen

Usage. With the proposed CDSBen, we present how to use it to
evaluate the performance of the storage tier in cloud-native data-
base systems. First, we collect the workload logs from the compute
tier and the storage tier and embed them to train the models in
CDSBen. Then, the user inputs the feature vector of their desired
workload to CDSBen and obtains the corresponding generated I/O
workload. Last, we execute the generated I/O workload on the stor-
age tier with adapted YCSB and measure the performance metrics
accordingly.

Because of the robust design of CDSBen’s architecture, it also
can be used to generate the I/O workloads which have diurnal

patterns or seasonality. For example, assume a transaction work-
load with strong seasonality, e.g., the average TPS of a transaction
workload being 1,000 in the morning, increasing to 20,000 at noon,
and dropping back to 500 in the evening. To generate realistic I/O
workloads for it, the user inputs three feature vectors to CDSBen,
whose average TPS are 1,000, 20,000, and 500. CDSBen generates
the corresponding I/O workloads for each input feature vector. All
generated I/O traces are concatenated together as an overall gener-
ated I/O workload for a transaction workload with seasonality.

By exploiting CDSBen, all the questions in Section 1 can be
answered effectively. To exemplify, if the user wants to evaluate the
performance of the storage tier when the TPS of the transaction
workload doubles or the read-write ratio changes, he only needs
to modify the input feature vectors of the transaction workload in
CDSBen, and CDSBen will generate the corresponding I/O work-
load for subsequent performance evaluation on storage tier. For the
techniques changed in the underlying storage tier, the users only
need to execute the CDSBen generated I/O workload on the latest
version, then measure the performance metrics and compare them
with the previous ones.
Extensibility. It consists of three steps to use CDSBen for storage
tier performance evaluation in cloud-native database systems: (i)
feature embedding, (ii) model training, and (iii) I/O workload gener-
ating. For the feature embedding, as our discussion in Section 4.1,
our method is generic as (i) systems need little to no modifica-
tion to generate the logs needed, and (ii) CDSBen builds upon the
segment-based I/O abstraction, which supports ‘the log is the data-
base’ principle in all cloud-native database systems. For the model
training, both models (in Sections 4.2 and 4.3) do not rely on any
specific design of ByteDance’s veDB. In addition, they are trained
offline. Thus, they do not incur extra runtime overhead. For the I/O
workload generating, we adapted the widely used YCSB to generate
the estimated I/O workload, which confirms that our CDSBen is
applicable to other cloud-native database systems as YCSB does not
rely on any physical data layout. In conclusion,CDSBen holds great
extensibility, and it can be adapted to evaluate the performance of
the storage services in other cloud-native database systems, e.g.,
Aurora and Socrates.
Limitations. Even though CDSBen has multiple desirable qualities
for performance evaluation of the storage tier of cloud-native data-
base systems, including high accuracy, good flexibility, ease of use,
and high extensibility, it also has several limitations. First, the mod-
els of CDSBenmust be trained individually for each workload. This
is becauseCDSBen is semantic oblivious. In the embedding of trans-
action workloads, we do not consider the definition of transactions
or tables, and only consider TPS. Although due to the lightweight
design the models, it only takes minutes in our experiments to train
them for each workload, we are working on a semantic aware ver-
sion to reduce this overhead and further improve flexibility. Second,
CDSBen works the best only on directly accessible storage tiers
where the workloads are derived by compute tier on the above, be-
cause essentially CDSBen leverages models to learn the behaviors
of the compute tier and estimate the outputs on the storage tier.
When the storage tier is not directly accessible, such as to bench-
mark monolithic databases like MySQL, end-to-end benchmarks
like TPC-C are better options. When the compute workloads are

3592

not accessible for model training, such as when we are testing the
storage tier with workloads from an external compute tier, CDS-
Ben’s functions are the same as YCSB, because it relies on YCSB
for workload execution.

5 EXPERIMENTAL EVALUATION
In this section, we first demonstrate the the high accuracy of CDS-
Ben by comparing its generated realistic I/O workloads with the cor-
responding real I/O workloads (i.e., veDB_OSS and veDB_SYNC)
in production at ByteDance (see Section 5.1). We then evaluate
the flexibility and usability of CDSBen by measuring its ability to
generate various realistic I/O workloads in Section 5.2. Last, we
report the measured tail latency of CDSBen’s generated workloads
on veDB, which is very close to the performance of running real
I/O workloads (see Section 5.3).
Experimental setting.We deploy the cloud-native database veDB
in a mini-cluster with 4 nodes at ByteDance. We use one as the
RW computation node in the computation tier, its CPU is two-way
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz and the memory size
is 376GB. The rest three are storage nodes in the storage tier. Each
of them has a 4TB SSD.

5.1 Case study

Case study on veDB_OSS.We first investigate how close the CDS-
Ben generated I/O workload is to the real veDB_OSS I/O workload.
We collect the logs of veDB_OSS service in production at Byte-
Dance. The TPS of veDB_OSS ranges from 1,000 to 10,000. We use
the veDB_OSS transaction workload feature vectors, their corres-
ponding IOPS sequences, and joint distributions whose TPS is from
1,000 to 6,5000 as training data. All veDB_OSS transaction work-
loads with TPS larger than 6,500 are used as testing data. We input
the transaction workload feature vector into CDSBen to estimate
the IOPS sequence and joint distribution and compare them with
the ones we obtained by executing the transaction workloads on
veDB. Figure 10 shows the comparison between the real veDB_OSS
I/O workload, i.e., computing the veDB_OSS transactions (its TPS
is 9,218) on compute tier and obtaining its derived I/O workload,
and CDSBen generated veDB_OSS I/O workload.
IOPS sequence: As shown in Figure 10(a), the IOPS sequence of
veDB_OSS estimated by CDSBen shares a similar trend (e.g., in-
tensity and burstiness) with the real IOPS sequence of veDB_OSS.
In particular, the mean and the standard deviation of the IOPS se-
quence in real veDB_OSS I/O workload (i.e., computed) are 8,658
and 2,120, respectively. The corresponding values of CDSBen’s
estimated IOPS sequence are 8,538 and 2,303. Obviously, our es-
timated IOPS sequence is very close to the real IOPS sequence of
veDB_OSS. It confirms the high accuracy of the designed IOPS
sequence estimation model of CDSBen in Section 4.2.
Joint distribution: Figure 10(b) and (c) visualize the joint distribu-
tions of the computed I/O workload and CDSBen’s estimated I/O
workload of veDB_OSS. Visually, the hot/cold access patterns of
our estimated joint distribution in Figure 10(c) and the computed
joint distribution in Figure 10(b) are similar. For example, the write
requests with large buffer sizes are on segment 7 and 8 in both

Table 3: Evaluation of veDB_OSS services by varying TPS.
𝜇𝐼𝑂𝑃𝑆 and �̂�𝐼𝑂𝑃𝑆 are computed and estimated average IOPS.
𝜎𝐼𝑂𝑃𝑆 and �̂�𝐼𝑂𝑃𝑆 are standard deviations of IOPS.

TPS 𝜇𝐼𝑂𝑃𝑆 �̂�𝐼𝑂𝑃𝑆 𝜎𝐼𝑂𝑃𝑆 �̂�𝐼𝑂𝑃𝑆 K-L divergence
6,892 7,337 6,493 1,863 1,738 0.00711
7,700 7,792 7,245 2,029 1,946 0.00713
8,457 8,328 7,851 1,949 2,113 0.00713
9,218 8,658 8,538 2,120 2,303 0.00714
9,693 8,958 8,890 2,004 2,399 0.00719

joint distributions. This shows that our joint distribution estima-
tion model in Section 4.3 achieves high accuracy. Additionally, we
compute the Kullback-Leibler divergence (K-L divergence), which
measures the difference between two distributions in mathematical
statistics. It ranges from 0 to +∞ and smaller values indicate higher
similarity [22]. For the distributions in Figure 10(b) and (c), this
value is 0.00714, indicating an extremely small difference between
the computed and estimated joint distributions of veDB_OSS. This
confirms the high accuracy of the designed joint distribution estim-
ation model of CDSBen in Section 4.3.

We summarize the statistics of CDSBen estimated I/O workloads
and real I/O workloads of veDB_OSS with different TPS (from
6,892 to 9,693) in Table 3. 𝜇𝐼𝑂𝑃𝑆 and �̂�𝐼𝑂𝑃𝑆 are the computed and
estimated average IOPS respectively, and 𝜎𝐼𝑂𝑃𝑆 and �̂�𝐼𝑂𝑃𝑆 are the
standard deviation of the computed and estimated IOPS sequences.
In this table, the small difference between the computed and estim-
ated average IOPS and standard deviations, as well as the small K-L
divergence values indicate that the models in CDSBen can estimate
the I/O workloads of veDB_OSS with high accuracy even when
the TPS of the transaction workload for which we estimate I/O
workloads is different from the transaction workloads we use for
model training.
Case study on veDB_SYNC. We next demonstrate the high accur-
acy of CDSBen by the case study on real veDB_SYNC workload.
Similarly, we use the veDB_SYNC transaction workloads with low
TPS (i.e., ≤ 10, 000) as training data, and estimate the corresponding
I/O workloads for the veDB_SYNC workloads with high TPS (i.e.,
17,354).
IOPS sequence: Figure 11(a) shows the CDSBen’s estimated and
real computed IOPS sequences of veDB_SYNC workload when the
TPS is 17,354. The estimated veDB_SYNC IOPS sequence has high
accuracy as (i) the estimated curve overlapped the computed curve
(real IOPS sequence) significantly; and (ii) the characteristics of two
IOPS sequences are very similar. For example, themean of computed
and estimated IOPS sequences are 1,046 and 999 respectively.
Joint distribution: We then investigate the accuracy of the CDS-
Ben’s estimated joint distribution. The heatmaps in Figures 11(b)
and (c) show the joint distribution of real computed and estimated
veDB_SYNC I/O workload. First, the K-L divergence of these two
joint distributions is 0.00332, which verifies the high accuracy of
the joint distribution estimation model in CDSBen from the statist-
ical aspect. Second, due to the power of random forest regressor,
our joint distribution estimation model predicts the non-uniform
distribution of read/write requests accurately. For example, the dis-
tribution of write requests with large buffer sizes in the estimated

3593

 Computed Estimated

IO
PS

Time (sec)
(a) IOPS sequence (b) Computed joint distribution (c) Estimated joint distribution

Figure 10: Real veDB_OSS I/O workload (Computed) vs. CDSBen generated veDB_OSS I/O workload (Estimated)

 Computed Estimated

Time (sec)

IO
PS

(a) IOPS sequence (b) Computed joint distribution (c) Estimated joint distribution

Figure 11: Real veDB_SYNC I/O workload (Computed) vs. CDSBen generated veDB_SYNC I/O workload (Estimated)

(a) Estimating high TPS (b) Estimating high write ratio

Figure 12: Effectiveness evaluation of CDSBen on TPC-C

joint distribution heatmap is almost the same as those in the real
computed heatmap, e.g., segments with ID 10, 14, 18 and 19.

5.2 Effectiveness evaluation
In this section, we elaborate good flexibility and ease of use prop-
erties of CDSBen. Taking the reproducibility and availability into
consideration, we verify the good flexibility and ease of use of CDS-
Ben by conducting extensive experiments on standard benchmark
TPC-C. We use the implementation of TPC-C in BenchBase [14]
and set its scale factor as 1,000. We compare the estimated I/O
workloads with the computed I/O workloads of TPC-C transaction
workloads with different TPS and different mixtures of five types of
transactions. In particular, the TPS of TPC-C ranges from 50 to 400
in our experiments. We fix the ratios of transaction type Payment,
Delivery, and Stock-Level to 43%, 4%, and 4%, same as the required
minimum values in TPC-C specification respectively [12], and vary
the ratios of the most write intensive transaction type New-order

and the most read intensive transaction type Order-Status to gener-
ate workloads with different write-intensiveness. Specifically, the
ratio of New-Order increases from 0% to 45%. Accordingly, the ratio
of Order-Status drops from 49% to 4%.
Evaluation of IOPS sequence estimation model.We first use
the logs from TPC-C transactions whose TPS is smaller than 275 as
training data and estimate the TPC-C I/O workloads with high TPS
(i.e., ≥ 275) to evaluate the flexibility of CDSBen’s IOPS sequence
estimation model. Figure 12(a) plots the average value of each estim-
ated IOPS sequence under different TPC-C transaction workloads.
Here,𝑤 means the ratio of New-Order transaction type. For demon-
stration purposes, we only plotted values with 𝑤 changing from
0% to 45% with a step size of 15%. As shown in Figure 12(a), the
average values of IOPS sequences in our CDSBen-estimated I/O
workload (see red dots) are close to (or even identical with) the
corresponding average values of the computed I/O workload (see
blue triangles). The errors between these two sets of values are from
-3.18% to 10.1%, which confirms that CDSBen’s IOPS sequence es-
timation model is flexible enough to estimate I/O workloads with
varying characteristics, i.e., TPS and RW ratios, while preserving
high accuracy. We next use the TPC-C workloads with low write
ratios (the ratio of New-Order smaller than 30%) to estimate its I/O
workloads with high write ratios (the ratio of New-Order ranges
from 30% to 45%) among all levels of TPS, i.e., TPS ranges from 50 to
400 with step size 50. As shown in Figure 12(b), the average absolute
error is 4.46% in all cases, which also shows the good flexibility of
CDSBen’s model to function properly for different I/O workloads.
Evaluation of joint distribution estimation model. We next
demonstrate the flexibility of CDSBen’s joint distribution estima-
tion model by comparing the joint distributions of the estimated

3594

TPS Ratio TPS Ratio TPS Ratio

(a) K-L divergence (b) RW ratio (c) Avg. buffer size

Figure 13: TPC-C joint distribution evaluation

and computed I/O workloads for various TPC-C transactions via
box plots in Figure 13. In each experiment, we use the trained mod-
els in Figure 12(a) and (b) to estimate the workloads with high TPS
(denoted as TPS) and high write ratio (denoted as Ratio).
K-L divergence: Figure 13(a) plots K-L divergence values of the
joint distributions for every the estimated and computed TPC-C
workloads. All values are very small, i.e., less than 0.03, in both
estimating high TPS and high write ratio cases.
Read-write ratio: Figure 13(b) compares the read-write ratios of the
estimated and computed I/O workloads for all TPC-C workloads.
The average error is less than 10% and 20% for high TPS and high
write-ratio workloads respectively. On the one hand, it shows the
superiority of CDSBen to accurately resemble real I/O workloads.
On the other hand, it confirms that it is challenge to generate I/O
workloads with exact read-write ratios as the real ones.
Buffer size: Figure 13(c) investigates the average buffer sizes in the
estimated and computed I/O workloads for all tested TPC-C work-
loads. The errors between the estimated workloads and computed
workloads are smaller than 0.05. It confirms that the average buffer
size in CDSBen’s estimated I/O workloads is almost the same as
the exact one for all tested cases.

Besides the evaluated good flexibility, the experiments in Fig-
ures 12 and 13 also indicate that CDSBen is easy to use. During
the experiments, after the models are trained, the only input from
the user is the feature vector of the target workload. By changing
the input feature vectors for different intensity or read-write ratios,
corresponding I/O workloads will be generated for performance
evaluation and the questions in Section 1 are answered by executing
the I/O workloads. For example, we can change the input feature
vector from (60, 116, 8, 8, 8) (overall TPS being 200, ratio of New-
Order being 30%) to (120, 232, 16, 16, 16) (overall TPS being 400)
to generate I/O workloads for which the TPS doubles, as in Fig-
ure 12(a), or to (90, 86, 8, 8, 8) (ratio of New-Order being 45%), as in
Figure 12(b) to simulate the case where the read-write ratio changes
dramatically. Instead of tuning complex knobs or deploying the
compute tier, we only have to change the human-understandable
input feature vector in CDSBen, which is simple-and-effective.

5.3 Evaluation of tail latency
In this experiment, we show that the tail latency of running CDS-
Ben’s estimated I/O workload is significantly closer to the tail
latency of running real I/O workload on veDB compared with the
tail latency of running YCSB generated I/O workload.

We first configure CDSBen and YCSB to generate I/O workloads,
which simulate the real veDB_OSS workload of veDB. Specifically,
we use a veDB_OSS transaction workload with TPS 9,218. The

Figure 14: Tail-latency evaluation

average IOPS and the standard deviation of the corresponding I/O
workload is 8,658 and 2,120 respectively. For CDSBen’s estimated
veDB_OSS I/O workload, the estimated average IOPS is 8,538 and
the standard deviation is 2,303. For YCSB-generated I/O workload,
we set the average IOPS as 8,658.

We then run these three workloads (i.e., CDSBen’s estimated,
YCSB’s generated, and the real one) on veDB and measure its tail
latency. Figure 14 plots the measured tail latencies of running three
I/O workloads of veDB_OSS in microseconds. Compared with the
tail latency of YCSB-generated I/O workloads, the tail latency of
CDSBen’s estimated I/O workload is much closer to the real com-
puted veDB_OSS I/O workload. In addition, the tail latency of
YCSB generated I/O workload is always smaller than real com-
puted veDB_OSS I/O workload as real veDB_OSS service has high
burstiness in production, as shown in Figure 3.

6 CONCLUSION
In this work, we present CDSBen, a new benchmarking tool de-
signed to evaluate the performance of storage services in cloud-
native database systems. Firstly, we introduce two real-world work-
loads, veDB_OSS and veDB_SYNC, which are currently in produc-
tion at ByteDance. We then discuss the limitations of existing micro-
and macro-benchmarks, such as YCSB and TPC-C, in capturing
the characteristics of actual I/O workloads. Next, we propose a
novel learning-based solution, CDSBen, which consists of two key
models, the IOPS sequence estimation model and the joint distri-
bution estimation model, to overcome the limitations of current
solutions. To validate the superiority of CDSBen for storage ser-
vices performance evaluation in cloud-native database systems,
we conduct extensive experiments using ByteDance’s veDB. Our
results demonstrate that CDSBen outperforms existing benchmark-
ing tools and it provides more accurate performance predictions
for storage services in cloud-native database systems. CDSBen is
open sourced at Github. We plan to extend it for other cloud-native
database systems in the future as it does not reply on any specific
design of veDB at ByteDance.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their constructive
comments and insightful suggestions to improve the quality of
this paper. This work was partially supported by Shenzhen Funda-
mental Research Program (Grant No. 20220815112848002) and the
Guangdong Provincial Key Laboratory (Grant No. 2020B121201001).
Dr. Bo Tang is also affiliated with the Research Institute of Trust-
worthy Autonomous Systems, Southern University of Science and
Technology, Shenzhen, China.

3595

REFERENCES
[1] Cristina L. Abad, Mindi Yuan, Chris X. Cai, Yi Lu, Nathan Roberts, and Roy H.

Campbell. 2013. Generating Request Streams on Big Data Using Clustered
Renewal Processes. Performance Evaluation 70, 10 (2013), 704–719.

[2] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria
Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. 2018. State-of-the-art
in Artificial Neural Network Applications: A Survey. Heliyon 4, 11 (2018), e00938.

[3] Ibrahim Umit Akgun, Geoff Kuenning, and Erez Zadok. 2020. Re-Animator:
Versatile High-Fidelity Storage-SystemTracing and Replaying. In SYSTOR. 61–74.

[4] Ahmad Al-Shishtawy and Vladimir Vlassov. 2013. ElastMan: Elasticity Manager
for Elastic Key-Value Stores in the Cloud. In CAC. 1–10.

[5] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-
dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chait-
anya Sreenivas Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and
Vikram Wakade. 2019. Socrates: The New SQL Server in the Cloud. In SIGMOD.
1743–1756.

[6] Esmail Asyabi, Yuanli Wang, John Liagouris, Vasiliki Kalavri, and Azer Bestavros.
2022. A New Benchmark Harness for Systematic and Robust Evaluation of
Streaming State Stores. In EuroSys. 559–574.

[7] Dina Bitton, David J. DeWitt, and Carolyn Turbyfill. 1983. Benchmarking Data-
base Systems A Systematic Approach. In VLDB. 8–19.

[8] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui
Wang, and Guoqing Ma. 2018. PolarFS: An Ultra-Low Latency and Failure
Resilient Distributed File System for Shared Storage Cloud Database. PVLDB 11,
12 (2018), 1849–1862.

[9] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,
Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,
Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,
Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers. In SIGMOD.
2477–2489.

[10] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020. Character-
izing, Modeling, and Benchmarking RocksDB Key-Value Workloads at Facebook.
In FAST. 209–223.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In SoCC. 143–154.

[12] Transaction Processing Performance Council. 2010. TPC Benchamrk C Standard
Specification. Retrieved July 3, 2023 from https://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-c_v5.11.0.pdf

[13] Alex Depoutovitch, Chong Chen, Jin Chen, Paul Larson, Shu Lin, Jack Ng, Wenlin
Cui, Qiang Liu, Wei Huang, Yong Xiao, and Yongjun He. 2020. Taurus Database:
How to Be Fast, Available, and Frugal in the Cloud. In SIGMOD. 1463–1478.

[14] Djellel E. Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux.
2013. OLTP-Bench: An Extensible Testbed for Benchmarking Relational Data-
bases. PVLDB 7, 4 (2013), 277–288.

[15] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In NeurIPS. 2672–2680.

[16] Jim Gray. 1992. Benchmark Handbook: For Database and Transaction Processing
Systems. Morgan Kaufmann Publishers Inc.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR. 770–778.

[18] David W. Hosmer Jr, Stanley Lemeshow, and Rodney X. Sturdivant. 2013. Applied
Logistic Regression. John Wiley & Sons.

[19] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optim-
ization. arXiv preprint arXiv:1412.6980 (2014).

[20] Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes.
arXiv preprint arXiv:1312.6114 (2013).

[21] Scott T. Leutenegger and Daniel Dias. 1993. A Modeling Study of the TPC-C
Benchmark. In SIGMOD. 22–31.

[22] Miodrag Lovric et al. 2011. International Encyclopedia of Statistical Science.
Springer Berlin Heidelberg.

[23] Lanyue Lu, Thanumalayan S. Pillai, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2016. WiscKey: Separating Keys from Values in SSD-conscious
Storage. In FAST. 133–148.

[24] Michael P. Mesnier. 2007. //TRACE: Parallel Trace Replay with Approximate
Causal Events. In FAST. 153–167.

[25] Zhu Pang, Qingda Lu, Shuo Chen, Rui Wang, Yikang Xu, and Jiesheng Wu. 2021.
ArkDB: A Key-Value Engine for Scalable Cloud Storage Services. In SIGMOD.
2570–2583.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Ma-
chine Learning in Python. JMLR 12 (2011), 2825–2830.

[27] Rekha Pitchumani, Shayna Frank, and Ethan L. Miller. 2015. Realistic Request
Arrival Generation in Storage Benchmarks. In MSST. 1–10.

[28] Zujie Ren, Weisong Shi, JianWan, Feng Cao, and Jiangbin Lin. 2017. Realistic and
Scalable Benchmarking Cloud File Systems: Practices and Lessons from AliCloud.
TPDS 28, 11 (2017), 3272–3285.

[29] Zujie Ren, Biao Xu, Weisong Shi, Yongjian Ren, Feng Cao, Jiangbin Lin, and
Zheng Ye. 2016. iGen: A Realistic Request Generator for Cloud File Systems
Benchmarking. In CLOUD. 343–350.

[30] Johan A. K. Suykens and Joos Vandewalle. 1999. Least Squares Support Vector
Machine Classifiers. Neural Processing Letters 9, 3 (1999), 293–300.

[31] Vladimir Svetnik, Andy Liaw, Christopher Tong, J. Christopher Culberson,
Robert P. Sheridan, and Bradley P. Feuston. 2003. Random Forest: a Classi-
fication and Regression Tool for Compound Classification and QSAR Modeling.
Journal of Chemical Information and Computer Sciences 43, 6 (2003), 1947–1958.

[32] Philip H. Swain and Hans Hauska. 1977. The Decision Tree Classifier: Design
and Potential. IEEE Transactions on Geoscience Electronics 15, 3 (1977), 142–147.

[33] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and
Peter Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database.
In SIGMOD. 1493–1509.

[34] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P. Wright. 2008. A
Nine Year Study of File System and Storage Benchmarking. ACM Trans. Storage
4, 2 (2008), 1–56.

[35] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal
Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharat-
ishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases. In SIGMOD. 1041–1052.

3596

https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cloud-native database: veDB
	2.2 Segment-based I/O request abstraction
	2.3 Two real I/O workloads in veDB

	3 Existing Solutions
	3.1 Existing benchmarks analysis
	3.2 Trace replayers analysis
	3.3 Other relevant studies

	4 Learning-based Solution: CDSBen
	4.1 Feature embedding
	4.2 IOPS sequence estimation model
	4.3 Joint distribution estimation model
	4.4 YCSB-adapted I/O workload generation
	4.5 Discussions of CDSBen

	5 Experimental Evaluation
	5.1 Case study
	5.2 Effectiveness evaluation
	5.3 Evaluation of tail latency

	6 Conclusion
	Acknowledgments
	References

