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ABSTRACT
In-memory key-value cache systems, such as Memcached and Redis,
are essential in today’s data centers. A key mission of such cache
systems is to identify the most valuable data for caching. To achieve
this, the current system design keeps track of each key-value item’s
access and attempts to make accurate estimation on its temporal
locality. All it aims is to achieve the highest cache hit ratio. However,
as cache capacity quickly increases, the overhead of managing
metadata for a massive amount of small key-value items rises to an
unbearable level. Put it simply, the current fine-grained, heavy-cost
approach cannot continue to scale.

In this paper, we have performed an experimental study on
the scalability challenge of the current key-value cache system
design and quantitatively analyzed the inherent issues related to
the metadata operations for cache management. We further pro-
pose a key-value cache management scheme, called Catalyst, based
on a highly efficient metadata structure, which allows us to make
effective caching decisions in a scalable way. By offloading non-
essential metadata operations to GPU, we can further dedicate the
limited CPU and memory resources to the main service operations
for improved throughput and latency. We have developed a proto-
type based on Memcached. Our experimental results show that our
scheme can significantly enhance the scalability and improve the
cache system performance by a factor of up to 4.3.
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1 INTRODUCTION
In recent years, we havewitnessed an unprecedented data explosion.
According to International Data Corporation (IDC), the global data-
sphere will grow from 84 Zettabytes in 2021 to 221 Zettabytes by
2026 [20]. Much of these data are unstructured data in forms of key
values. In order to provide high-throughput and low-latency ser-
vices, Internet service providers, such as Google, Meta, and Twitter,
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rely on In-memory Key-value Cache, represented by Memcached [4]
and Redis [7], to handle a huge amount of key-value queries.

An important technical trend behind the wide-spread adoption of
in-memory key-value cache systems is the fast-pace advancement
of memory technologies. In the past twenty years, the industry has
made tremendous progress in increasing DRAM memory capacity
and reducing its cost. Benefiting from several important technology
breakthroughs, such as the 10-nm lithography process, 3D stack-
ing, and multi-die packaging, the capacity of DRAM memory has
increased by more than 100 times, while the price (USD per MB)
has significantly decreased at a similar magnitude [6, 9, 47].

On one hand, such a giant leap in memory hardware technology
brings an enormous opportunity allowing us to build long-desired
large in-memory key-value cache systems to accommodate more
data in memory for high-speed data access. On the other hand, it
also raises a critical challenge to us—As the memory capacity grows
by 100 times larger, how can we manage a massive amount of small
key-value items still in a highly efficient way?

1.1 Critical Issues
At the heart of an in-memory key-value cache system is cache space
management. It is responsible for identifying and caching the most
likely-to-be-reused (hot) data in memory while evicting the cold
data that are unlikely to be accessed again. This caching decision
has a direct impact on the system performance—a query hit in cache
can be quickly served from fast memory, while a query missed in
cache has to be diverted to the backend databases or data stores
and the data has to be retrieved from block storage devices, which
are multiple orders of magnitude slower than DRAMmemory. Such
delays could cause congestion on the backend servers and further
propagate to other components in the whole data center system,
resulting in a broad, system-wide performance impact. Thus, as
the first line of defense, an effective and efficient key-value cache
system plays a key role in modern data center systems.

Traditionally, achieving high hit ratio is the most important (if
not the only) goal in the key-value cache system design. For this
purpose, the cache system closely tracks each key-value item’s
access history to accurately estimate different items’ importance
for caching according to their access locality. However, realizing
such a goal is not at no cost. Memcached, for example, adopts a
simple Least Recently Used (LRU) based replacement policy. All the
key-value items of a slab class are maintained in a doubly linked
list. Upon access, the key-value item is moved to the list head; upon
eviction, the item at the list tail is removed as a victim. It works
well when dealing with a small cache, but unfortunately, as cache
capacity quickly increases, even such a seemingly simple scheme
is difficult to scale. As the number of key-value items increases, the
overhead involved in caching-related metadata operations sharply
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increases to an unbearable level. In experiments, we find that for
a 100-GB Memcached system, disabling the LRU replacement can
immediately observe a performance boost by a factor of 3.3, which
strongly indicates that the overhead of such metadata operations
with a large cache capacity is problematic.

In this work, our study reveals several critical issues inherent
in the current key-value cache system design. First, the current
cache system design mistakenly treats metadata operations for
caching as “trivial-cost” operations and directly embeds them in
the foreground service operations. The unfortunate consequence is
that such non-essential maintenance work, which is not directly
related to serving client queries, cumulatively incurs a significant
amount of overhead, and even worse, it lies on the critical path,
directly affecting the client-perceived performance. Second, in or-
der to accurately estimate the key-value items’ relative values for
caching in terms of access locality, the current design relies on
the lock-protected structure, which enforces frequent metadata
operations to be performed in a serial manner, disabling the possi-
bility of parallelizing metadata operations. Third, the current design
adopts an unnecessarily fine-grained management by associating
each small key-value item with an amount of metadata for track-
ing its access history. Though each being small individually, these
metadata structures in aggregate incur non-trivial spatial overhead,
especially considering that most key-value systems are dominated
by small items (e.g., a few hundreds of bytes), not to mention that
these memory space could be used for caching more data. Lastly, the
constantly happening metadata operations are also directly com-
peting with the latency-sensitive foreground service operations for
very limited CPU resources in terms of both CPU cycles and the
small on-chip cache space. Such an effect is particularly strong to
in-memory key-value cache, which serves client queries directly
from memory at nanosecond speed.

Due to the above-said issues, as the cache capacity quickly scales
up, the traditional key-value cache system design becomes increas-
ingly difficult to remain effective and efficient as desired. Put it
simply, the traditional key-value cache design is unscalable.

1.2 A Scalable Cache Management Scheme
In this work, we present a highly efficient in-memory key-value
cache system design, called Catalyst. To the best of our knowledge,
this study is the first work focusing on addressing the scalability
challenge of themetadatamanagement for caching in large-capacity
in-memory key-value cache systems.

Our design is based on three key considerations. First, we take
the metadata operations for cache management out of the critical
path, allowing queries to return immediately after finishing the
essential service functions (e.g., indexing and data loading). The
caching-related metadata operations are performed in an asyn-
chronous manner. Second, we organize the metadata in a compact,
parallelizable structure, which summarizes the data access history
and can be updated and queried in parallel for high throughput.
This ensures the metadata operations not become the bottleneck
as the cache size grows. Third, we separate metadata operations
(the “maintenance” work) from regular service operations (the “real”
work) and move them off the CPU to avoid the competition for the
limited CPU resources, minimizing the interference. Finally and
most importantly, we relax the precision requirement for cache

replacement. In a very large key-value cache, strictly following the
rule of finding and evicting the “coldest” item is excessively costly
and unnecessary. Instead, we aim to ensure the hot and warm data
remain in cache safely. Such a relaxation on caching requirements
enables us to achieve high efficiency with minimal loss in hit ratio.
With more efficient usage of the system resources, we can achieve
much better scalability compared to the current design.

We have developed a prototype based on Memcached, a widely
used in-memory key-value cache in the industry. This prototype
implements a compact metadata structure, called Hitmap, and an
efficient caching scheme, called Catalyst, to manage the cache meta-
data. We also use Graphics Processing Unit (GPU) to offload the
processing of metadata operations for hardware-assisted accelera-
tion through parallel processing, which removes the interference to
the main service operations on the host CPU. Our experimental re-
sults show that Catalyst can significantly improve the performance
of in-memory key-value cache systems and increase the system
throughput by a factor of up to 4.3 while still achieving comparable
cache hit ratio to the traditional caching scheme.

The rest of the paper is organized as follows. Section 2 presents
the background and motivations. Section 3 introduces the design.
Section 4 presents the implementation and evaluation. Related work
is discussed in Section 5. The last section concludes this paper.

2 MOTIVATION
In a key-value cache system, a fundamental task is to identify the
most likely-to-be-reused (hot) data and keep them in memory for
fast access, while evicting the unlikely-to-be-reused (cold) data to
make room for accommodating new data. With the rapid growth of
key-value cache capacity, the traditional caching schemes are facing
severe challenges in their scalability. In this section, we first use an
experimental example to quantitatively illustrate the impact of the
metadata operations and the associated overhead. Then we analyze
and discuss the critical issues inherent in the current design.

2.1 An Example Case Study
Our example case runs on a W2600CR server equipped with two 8-
core Intel Xeon E5-2690 2.90GHz processors and 128-GB DRAM
memory. We use the popular YCSB benchmark [24] to generate mul-
tiple key-value datasets in different scales (1 GB to 100 GB). Despite
the distinct dataset sizes, the workloads follow the same Zipfian
distribution. We also ensure that all the datasets are contained com-
pletely in memory to avoid triggering replacement operations. For
comparison, we turn off the LRU management in Memcached by
bypassing all the pointer updates while still keeping the related
metadata in memory. With a key-value size of 256 bytes in our
experiments, each item requires 16 bytes for LRU pointers. Conse-
quently, for a 100-GB dataset, approximately 6.25 GB of memory for
metadata is allocated. We collect the throughput for each workload
and compare the performance against the stock Memcached. We
have some interesting observations.

As shown in Figure 1a, Memcached’s performance is consider-
ably boosted when it is not performing any LRU-related metadata
operations. With a 100-GB dataset and LRU turned off, the through-
put can reach 3.85 MOPS (Million Operations per Second) compared
to 1.18 MOPS of the stock Memcached, which is an increase by a
factor of 3.3. AlthoughMemcached does not function as a key-value
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Figure 1: Overhead of Metadata Operations in Memcached for Caching

cache with LRU turned off, the performance gap between the two
reveals an important insight to us—the current process of making
caching decisions involves significant overhead.

To further study this unusual performance gap, we analyze the
cost of each operation component in the query-handling process.
In Figure 1b, we collect the average operation time for hash table
operations, key-value data loading, LRU pointers updates, and the
time that a thread spends on waiting for the lock when another
thread is updating the same LRU list. We can see a small but steady
increase in the operation time for loading the key-value data, which
can be explained by the efficacy decay of the CPU cache [55]. Hash-
ing operations also show slight increases due to the hash table
expansions caused by the larger datasets. The cost associated with
the LRU metadata operations, in contrast, shows a sharp increase
with the dataset size. Although the time spent on manipulating the
LRU pointers only slightly increases from 1.23 𝜇s to 1.46 𝜇s, the
time on lock contention caused by the LRU structure manipulation
increases by a factor of 6.4, from 0.9 𝜇s to 5.8 𝜇s. With the dataset
size of 100 GB, the LRU-related metadata operations account for
56% of the total operation time, making it the dominant factor re-
sponsible for the observed performance drop. The cost breakdown
reveals the root cause of the bottleneck and explains the observed
throughput increase after disabling LRU in Memcached—the high
overhead of metadata operations for caching.

In addition to the latency increase, the limited CPU resources
are also under severe contention. In Figure 1c, we can see that
the metadata operations negatively affect the CPU cache hit ratio,
making the already scarce on-chip cache space even less accessible
to service operations, which are responsible for handling client
queries and retrieving the demanded data. After turning off the LRU,
the key-value data retrieval operations experience less interference
from the metadata operations. For example, with the 100-GB dataset
size, the CPU cache hit ratio increases by 8 pp (Percentage Points).
For in-memory key-value cache queries, which all happen in DRAM
memory at nanosecond speed, such a substantial loss in CPU cache
hit ratio has a significant performance impact.

2.2 Analysis and Discussions
The above-said experimental results demonstrate the strong nega-
tive impact of metadata operations in key-value cache management
on both performance and scalability. Here we discuss several inher-
ent critical issues in the current cache system design.
Issue #1: Metadata operations on the critical path. In order
to differentiate hot and cold key-value items, conventional cache
management needs to maintain certain metadata structures to track
each item access. Such metadata operations are traditionally re-
garded as “trivial-cost” operations and thus conveniently embedded

in the process of handling an incoming query. Memcached, for ex-
ample, maintains a global LRU list for each slab class. Upon each
access, it locks the entire list to ensure the structure’s integrity. As
the dataset size scales up, the number of items contained in each
LRU list also increases, which naturally intensifies the lock con-
tention due to frequent structure changes. As a result, the cost of
metadata updates quickly increases, and worse, these non-essential,
high-cost metadata operations are all synchronous, which puts the
delays directly on the critical path of main service operations.
Issue #2: Serialized metadata operations. Traditional cache
management relies on a linked list based structure. Memcached
adopts an LRU-based algorithm, in which all items in the same slab
class are organized in a doubly linked list. When an item is accessed,
it becomes the Most Recently Used (MRU) item in the cache. To
reflect this change, the newly accessed item needs to be unlinked
from its original position and inserted to the head of the list. Due
to the nature of the list operation, only one change can be made
during each round of list updates. Thus, even with a number of
such metadata operations pending in the system, the updates to the
LRU list have to be performed one by one in a serial manner. Such
a structure fundamentally prohibits performing frequent metadata
operations in a parallelized manner.
Issue #3: Memory resource overhead. Traditional cache sys-
tem design manages the key-value cache items in an overly fine-
grained manner by attaching each individual data item with certain
metadata. Such space overhead for metadata is non-trivial, espe-
cially considering that small items typically dominate key-value
systems [13]. Assuming each 256-byte key-value item has 16 bytes
of pointers for the LRU list, the metadata overhead would account
for 6.25%. Although each item is managed individually, the meta-
data overhead in aggregate becomes significant for a large cache
managing a massive number of small key-value items. For a 1-TB
Memcached server with 256-byte items, the LRU metadata alone
takes more than 64 GB of memory space, which could be used to
accommodate more meaningful data in cache.
Issue #4: Computing resource overhead. In an in-memory key-
value cache server, both processing client queries and updating the
metadata of each accessed item consume CPU resources. Ironically,
as the capacity increases, the system spends even more CPU cycles
and processor cache space on maintaining metadata updates than
handling client queries. In Memcached, each key-value item access
involves at least five memory operations on the metadata for LRU.
In contrast, loading the value data requires only one memory ac-
cess. Even delete operations cannot be exempted from such a 5×
operation overhead. These metadata operations not only compete
for CPU cycles with the service operations, but also compete for
the very limited on-chip cache space. In fact, the above-said five
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memory accesses could evict more valuable key-value data from
the CPU cache, causing reduced CPU cache hit ratio.

These issues severely impact the performance and scalability of
in-memory key-value cache systems. We need to reconsider the
cache management in the current system design. In this paper, we
aim to design a new scheme to make asynchronous, parallelizable,
space-efficient, and low-cost metadata operations.

3 DESIGN
To address the above-said challenges, we propose Catalyst, a cache
management mechanism for large in-memory key-value systems.
In this section, we first introduce a novel data structure for tracking
a large amount of key-value items with low overhead, enabling
the key-value caches to scale without performance degradation.
We then present the procedure of updating the metadata structure
and how to carry out a replacement algorithm to make eviction
decisions. Finally, we discuss the key benefits of our design for
solving issues in the current system design.

3.1 Organizing Key-value Metadata
A large key-value cache system often needs to manage billions of
items with high performance. Attempting to accurately identify
the “coldest” data for eviction is unrealistic and also unnecessary.
We need a compact, parallelizable structure to closely approximate
the LRU algorithm with minimal loss in hit ratio.

3.1.1 Hash Counters. We create an independent data structure,
called hash counter, to estimate the relative temporal locality of key-
value items in cache. Inspired by Bloom filter [18], hash counter is
a hash-based bit array (see Figure 2) with 𝑁 hash functions, using
which a key is hashed and mapped to a set of 𝑁 bits in the array. In
our experiments, we find that using three hash bits (𝑁=3) achieves
good performance at a relatively low cost. Further increasing the
number of hash bits for each key cannot bring substantial addi-
tional benefits. We use the widely adopted non-cryptographic hash
functions, MurmurHash3 [5] and SpookyHash [8], to calculate the
three hash values in a way similar to prior study [40]. The bit array
is initialized to zero. Upon access, the set of 𝑁 bits to which the
key is mapped is set to one. Given a key, if its corresponding 𝑁 bits
are all set, we call this key is “marked”, which indicates that the
key has been accessed. Although the possibility of hash collision is
very small, the hash counter may report false positive result (an un-
accessed key is mistakenly reported as accessed), but it guarantees
no false negative (an accessed key is reported as unaccessed).

Though simple, the hash counter structure brings several im-
portant advantages, making it particularly suitable for handling
metadata operations. First, it gets rid of the lock-protected linked
list structure, which fundamentally removes the lock contention

problem and the strict requirement to perform metadata operations
in serial. This not only immediately reduces the processing time
of each individual metadata operation, and more importantly, it al-
lows the key-value cache to parallelize the operations. Second, since
we detach the metadata from the key-value data itself, this simple
and independent data structure allows us to quickly access and up-
date the metadata without reading the entire key-value data block,
making it possible to asynchronize and batch metadata operations
together, so that we can move these non-essential maintenance
work off the critical path. Third, this structure also significantly
reduces the memory overhead for metadata. Each item is mapped
to only 𝑁 bits, and each bit could be shared by multiple keys. Also,
the size of the hash counter is adjustable. In contrast to the fixed
metadata-to-data ratio with LRU, hash counter can flexibly adjust
its size by mapping more or less keys to the hash bits at different
precision. Finally, the independent bit array and the hash function
based structure enable us to easily offload the metadata operations
from the host CPU to a more suitable device, GPU. This not only
removes the competition for the limited CPU resources, which now
can be dedicated to service-handling operations, but also fully ex-
ploits the unique strength of the GPU hardware in handling massive
parallel operations, such as hashing and bit array-based computing
in our case.

The hash counter is a very efficient structure to manage the
metadata of a large number of key-value items in cache. The size of
the hash counter can affect the precision of verifying the presence
of a key in the hash counter. Figure 2 illustrates a 8-bit and a 16-bit
hash counter. Each block represents one bit. Each key is mapped to
two unique bit entries of the hash counter. In this example, only
Key1 has been accessed. Both hash counters correctly report the
status of Key1 and Key3, while the smaller 8-bit hash counter gives
a false positive result on Key2 due to hash collision. Note that hash
counter does not report false negative results. Thus it guarantees
that it is impossible to misclassify an accessed item as “unaccessed”,
meaning that hot and warm data would not be mistakenly evicted.
We will study this effect in Section 4.3.

The hash counter can help us differentiate the relatively hot and
cold items—a marked item in the hash counter is hot, whereas an
unmarked item is cold. A rudimentary cache replacement mech-
anism can be implemented based on the hash counter. However,
we can only make binary decisions, since the item is either hot or
cold and it cannot further differentiate hot and warm items. We
need a deeper access history information at a finer granularity to
effectively approximate the LRU replacement.

3.1.2 The Hitmap Structure. We introduce a multi-level bit array
structure, called hitmap, to differentiate the temperatures of the
key-value items at a higher resolution. As illustrated in Figure 3,
the hitmap integrates𝑀 levels of hash counters, each of which has
a different size. Hitmap tracks the keys’ access counts as follows.

Initially all the hash counters are reset to zeros. When a key is
accessed, it is inserted (marked) in the hitmap from the lowest level
to the highest level. We first check the level-1 hash counter. If any
mapped bit is unset, meaning that the key has never been accessed,
then all the mapped bits of the key are set to one to mark the access;
if all the mapped bits are already set, meaning that the key has been
accessed at least once, then we proceed to the next level and check

4342



Victim Keys
Merge

SET/GETSET

Update Compaction

Level 4

Level 3

Level 2

Level 1

GPUHost CPU

Key-value
Data

Operations

Reference Keys

Set Counter

Hitmap

Figure 3: Hitmap and Overall Structure of Catalyst

the mapped bits there in the same way. This process repeats until
reaching the level where the key is not marked or the top level. If
not marked, we set the bits and return.

Hitmap essentially records the access count (up to 𝑀) for the
queried key. For example, in a four-level hitmap, if a key can be
found in levels 1 and 2, its access count is two. If a key is tested
positive in all four levels, we know that this key has been accessed at
least four times. Only hot items could accumulate enough accesses
to climb to the top level in the hitmap. The higher levels capture
hotter items, and the colder items are at the lower levels. To some
extent, this multi-level hitmap resembles a “heatmap” of accesses
over the hash mapping space, allowing us to make more accurate
eviction decisions to protect hot items while evicting the cold ones.
3.1.3 Hitmap Size. A naïve organization of hitmap is to make the
hash counters at different levels the same size. In order to reduce the
memory footprint of the hitmap structure, we organize the multi-
level hitmap in an “inverted pyramid” shape, with the bottom-level
hash counter being the smallest and the top level being the largest,
as shown in Figure 3. In particular, the hash counter size at each
level is twice of the level immediately below it. The 2:1 ratio is a
deliberate choice, which will be explained in Section 3.1.4.

This compact metadata structure design uses much less memory
than a hitmap with equal-sized hash counters, but it still offers com-
parable performance. This is for several reasons. First, the primary
purpose of the lower-level hash counters is to filter out the cold
items. Since the hash counter guarantees no false negatives, a small
hash counter is adequate to find cold items, which are those with
at least one “0” hash bit entry. Some cold items may have a slim
chance of passing the test in a small hash counter because of the
false positive effect, but they can still be filtered out when they
move up to a larger, higher-resolution hash counter in the next
level. Second, the level-1 hash counter in the hitmap receives the
most accesses. Thus, a smaller hash counter can be loaded in GPU
much faster due to its small size. The querying and updating are
also faster due to fewer bit flips. Finally, the higher-level hash coun-
ters are mainly for differentiating the hot and warm items. A larger
hash counter allows for a higher resolution, eventually translating
into more accurate eviction decisions. With a stack of varying-sized
hash counters, Catalyst can enjoy the best of both worlds, high
accuracy and high efficiency. It allows us to achieve similar perfor-
mance at a much lower cost compared to the traditional LRU. More
detailed study can be found in Section 4.3.

3.1.4 Rolling Compaction. The fill rate (the percentage of “1” bits)
can impact the efficacy of hitmap. Due to the nature of the hash-
based bit array, multiple keys could be mapped to the same bit. Thus,
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Figure 4: An illustration of Rolling Compaction

once a bit entry is set, it can no longer be set back to zero. As the
fill rate of a hash counter increases, the hot and cold items become
indistinguishable, affecting our ability to make proper eviction
decisions.

This aging effect could be mitigated by simply resetting the hash
counters periodically. However, after a fresh reset, all the bits in
the hash counter become zero, losing all previously recorded access
history, which is unacceptable. We design a rolling compaction
scheme to address this challenge. It works as follows.

As described previously, the multi-level hitmap structure records
the access counts of key-value items. The presence of a key in the
𝑚-th level hash counter indicates that the key has been accessed for
at least𝑚 times. In the rolling compaction process, we move each
hash counter one level down and retire the level-1 hash counter.
It essentially decrements every key’s access count by one, making
the keys originally being accessed only once eligible for eviction.

The challenge is how to compact a larger upper-level hash
counter into a smaller lower-level hash counter without losing
the access information. Since we cannot reverse-map a hash bit
back to the original key, it is impossible to rerun the hash mapping
process to set the bits one by one. Even if it was feasible, it would
be too costly. We use a simple yet very effective method.

Recall that as described previously, we set the𝑚-th level hash
counter to be twice the size of the (𝑚-1)-th level hash counter. This
is a deliberate design to enable us to map the hash bit entries to
the lower level without recalculating the hash values. Since we
use the same set of hash functions at all levels, the generated hash
values for mapping are identical. Thus, we can easily merge (OR)
two bits into one and set the corresponding bit in the lower-level
hash counter. As illustrated in Figure 4, we simply OR the first and
second half of the original level-2 bit array into a new bit array of
half size for level 1. Thus, the new level-1 hash counter is essentially
a compact version of the original level-2 hash counter. It downsizes
a higher-level hash counter to the lower level, which has a lower
resolution but still retains most access information.

During each round of compaction, we first create a compacted
version of the level-2 hash counter as described above to replace
the current level-1 hash counter, and then we proceed to level 3
and repeat the same process until reaching the top level. After the
compaction process propagates through all levels, the top-level
hash counter is reset, while the lower levels still retain the access
information rolled down from the upper levels. This process effec-
tively preserves valuable access history and ensures non-disrupted
operation, and it only takes a few simple bit array operations, which
are highly efficient and easily parallelizable on GPU. This rolling
compaction process is described in Algorithm 1.
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Algorithm 1: Rolling Compaction
𝐿(𝑚): Level-𝑚 hash counter;
𝐶𝑖 (𝑎): Hash counter value of Key(𝑎) in level 𝑖;
𝑇 : The number of sampled keys in a batch;
𝑆 : Compaction trigger threshold;
M: The number of levels in the hitmap;
for each batch of sampled keys do

𝑃 ← 0;
for each sampled key 𝑎 do

if 𝐶1 (𝑎) = 0 then
𝑃 + +;

end
end
if 𝑃

𝑇
< 𝑆 then

for each level𝑚 from 2 to𝑀 do
𝐿(𝑚 − 1) ← 𝐿(𝑚) ;

end
𝐿(𝑀) ← 0 ;

end
end

The appropriate timing of compaction is also critical. If com-
paction is triggered too early, we may lose too much access his-
tory and could mistakenly evict some hot items; If compaction is
triggered too late, the fill rate of hitmap can become too high to
differentiate hot and cold data. In Catalyst, we monitor the system
status by sampling the memory content to determine the timing for
compaction. The randomly selected key-value items can represent
the overall system’s status at anytime. We focus on the level-1 hash
counter, since it has the highest fill rate of any level. By checking
the sampled keys in level 1, we estimate the fill rate of level 1 based
on the percentage of cold items found among the sampled keys. If
most of the sampled keys are unmarked, it means that the fill rate
is low and the hitmap can continue to function at high efficiency;
otherwise, if the majority of the sampled keys are marked, it means
that the current fill rate is too high and the level-1 hash counter
is losing its efficacy, indicating that we should start rolling com-
paction to retire the aged hash counter. In this way, we create a
connection between the system status and the fill rate, allowing us
to fine-tune the hitmap based on system status. Once we acquire
the status of the fill rate, we can set a threshold to trigger the rolling
compaction. In our prototype, we start rolling compaction, if less
than 5% of the sampled keys are unmarked. We find this setting
works well in our experiments (see details in Section 4.3).
3.1.5 Protecting New Items. A side effect of the compaction pro-
cess is that if compaction happens right after a key-value item is
accommodated into the cache (SET), this item could be mistakenly
identified as a cold item. Since rolling compaction retires the level-1
hash counter, the newly cached item would not have a chance to be
reaccessed and could be evicted out of the cache prematurely. To
prevent such a situation, we add a companion level-1 hash counter,
called set counter, to the hitmap structure. The purpose is to record
the recently cached key-value items since last compaction. The size
of the set counter is equal to that of the level-1 hash counter. Upon
a SET request, we update the bits in both the level-1 hash counter
and the set counter. During compaction, we merge the set counter
bits into the new level-1 hash counter and reset the set counter for

the next round. This effectively sets the newly inserted keys twice,
offering them a second chance and protecting them from being
evicted without having a chance for reaccess.
3.1.6 Handling Zombie Data. A well-known limitation of LRU is
on handling one-time-access data. Once being admitted into cache,
these data becomes “zombie data” and stays in the cache for a long
period of time until reaching the end of the LRU list. It negatively
affects the caching performance, since these data occupies valuable
cache space and causes unnecessary eviction of other more useful
data. An added benefit of the set counter with rolling compaction is
to clean such zombie data out. It essentially enforces a test period
for each newly admitted data in cache—the zombie data would be
flushed out of the cache after two compaction cycles. If a key is
not found in any level of the hitmap or the set counter, it means
that the key has not been accessed since being cached. These keys
will be marked as eviction candidates. This allows us to proactively
locate and evict the zombie data, minimizing its negative effect.

3.2 Metadata Operations in Catalyst
In Catalyst, the metadata operations, which handle the hitmap
structure update and query, are asynchronized and separated from
the main service operations, which handle client requests, such as
SET, GET, and DELETE. We adopt GPU as the hardware accelerator
to process metadata operations. It brings two benefits.

First, the hitmap structure is based on bit array and hashmapping,
which makes metadata operations simple and parallelizable, and
such operations are particularly suitable and highly efficient for
running on GPU. Second, offloading metadata operations to GPU
also physically separates the non-essential maintenance work from
service operations, dedicating the limited CPU resources to the
“real” work and removing the heavy interference.

In this section, we discuss three main operations in Catalyst,
namely transferring data between devices, updating metadata in
the hitmap, and making eviction decisions.
3.2.1 Transferring Access History. In Catalyst, a client request is
handled by the main working threads. Each access should be passed
to the GPU for updating the hitmap structure and preparing for the
eviction decision later. A naïve approach is to send each accessed
key to the GPU individually. This is clearly sub-optimal for three
reasons. First, the system needs to pin a memory page (usually
4 KB) in memory for transferring data to the GPU via Direct Mem-
ory Access (DMA). However, the size of a single key is often too
small compared to the page size. Second, the cache system needs to
make a system call for each inter-device data transfer, adding more
overhead to the CPU. Finally, GPU is a high-throughput computing
device. Processing each key access individually is very inefficient
and cannot exploit its strength in parallel processing.

To fully utilize the PCIe bandwidth and the GPU’s computing
power, Catalyst uses reference pool to collect a set of accessed keys
to send to GPU in batch. To mitigate the overhead in memory
transfer, Catalyst keeps the reference pool in a designated pinned
memory block to ensure its availability. Each reference pool is a
4-KB page pinned in memory. So the memory block is always ready
for transfer, which avoids the overhead of preprocessing.

Another optimization is to choose not to directly send the keys
but the hash digests of the keys to the GPU. Since these hash digests
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Algorithm 2: Hitmap Update
𝐶𝑖 (𝑎): Hash counter value of Key(𝑎) in level 𝑖;
𝐶𝑠𝑒𝑡 (𝑎): Companion set counter value of Key(𝑎);
M: The number of levels in the hitmap;
for each referenced key 𝑎 do

for each level 𝑖 from 1 to𝑀 do
if 𝐶𝑖 (𝑎) = 0 then

𝐶𝑖 (𝑎) ← 1;
if 𝑖 = 1 and 𝑆𝐸𝑇 then

𝐶𝑠𝑒𝑡 (𝑎) ← 1;
end
break;

end
end

end

are already used for hash mapping in the key-value cache, it would
not incur extra overhead and it brings three benefits. First, the hash
digest size (4 bytes) is typically smaller than the key size. Second,
due to the smaller size, the reference pool can accommodate more
keys, lowering the amount of data for inter-device transfer. Finally,
the fixed size of hash digests allows us to avoid the alignment
problem in the memory page, which simplifies the design.

3.2.2 Updating Hitmap Structure. Catalyst collects the access his-
tory of the keys on the CPU. For a SET request, the hash digest
is logged into the reference pool after completing the insertion
operations to the hash table and the cache space. For a GET request,
similarly, the working thread first locates the target data and re-
turns the value, then it adds the hash digest to the reference pool. If
a key is accessed multiple times, we keep multiple hash digests in
the reference pool to record its access history. For a DELETE request,
the request returns after the removal of its index and data. As it is
impossible to clear a hash bit once it is set, the metadata remains in
the hitmap and will be flushed by the rolling compaction process.

The multi-level hitmap structure is maintained on GPU. Its size
is determined by the size of the level-1 hash counter and the height
of the hitmap. Assuming a four-level hitmap with a 256-MB level-1
hash counter, we need about 4-GB GPU memory in total. We will
study the parameter setting in Section 4.3. It is also worth noting
that as a general data structure, hitmap can be implemented on
CPU, but it is more efficient running on highly parallel GPU.

In Catalyst, the keys are sent to the GPU in batches to update
the hitmap. When the GPU receives a batch of referenced keys, it
evenly distributes the jobs across all the Streaming Multiprocessors
(SMs) to update the metadata in parallel. We first check if the key is
marked in level 1. If it is unmarked, Catalyst inserts the key into the
level-1 hash counter, and for a SET request, we also mark it in the
companion set counter; if it is already marked, we move one level
up to check the level-2 hash counter. This process repeats until
finding a hash counter in which the key is unmarked or reaching
the top level. If the key is unmarked, we mark it in the hash counter.
This hitmap update process is shown in Algorithm 2.

3.2.3 Making Eviction Decisions. The hitmap structure captures
the access history of key-value items and places them into different
levels. The position of an object in the multi-level hitmap represents
its recency and frequency combined—in the hitmap, an item moves

one level up upon each access, and if not being accessed for a while,
it moves down during compaction. The highest level where a key
is tested positive represents the temperature of the key-value item.
Put it simply, the higher the level is, the hotter the key is. If a key
is tested negative at all levels in the hitmap, it means that this
key-value item has not been accessed recently and has not been
accessed often in the past, indicating that the key is among the
coldest ones and thus is eligible for eviction.

We classify the key-value items into different temperature zones,
according to their positions in the multiple levels of the hitmap.
For example, with a four-level hitmap, the items are categorized
into five temperature zones, from the hottest (Zone 4) to the coldest
(Zone 0). If a key is found in the level-4 hash counter, it is placed in
Zone 4; if a key is not found in any levels, it is placed in Zone 0. The
different temperatures provide adequate locality information for
us to approximate the LRU replacement at low cost. To achieve a
similar effect of evicting the least recently used objects, we always
evict the items whose keys are in Zone 0 first.

To make eviction decisions, Catalyst randomly samples a set of
keys and sends them to GPU together with the batch of referenced
keys. The number of sampled keys is set equal to that of the ref-
erenced keys, which is to ensure a sufficient number of candidate
victims examined for eviction. Catalyst looks up each sampled key’s
position in the hitmap to determine its temperature zone. After all
is done, the sampled keys and their temperature information are
sent back to the host CPU, which then merges the sampled items
that are colder than the existing ones in the victim pool. When
space is needed, the coldest victim item is evicted from the pool. As
the victim keys are sampled at the same rate as the key references,
the more frequent the key references are, the more frequently the
victim pool is refilled and updated. It ensures that the victim pool
has sufficient items ready for eviction. Though rarely happens, in
extreme cases when the victim pool is completely drained, inserting
an item has to wait for the eviction process to complete, which is
similar to other cache systems under such a situation.

3.3 Summary
Catalyst achieves its design goal with four important measures.
(1) The design decouples the caching-related metadata operations
from the main service operations, moving these non-essential main-
tenance work out of the critical path and making these metadata
operations performed in an asynchronized way. (2) Catalyst aban-
dons the lock-protected linked list based structure, removing the
lock contention and the strict requirements for serial operations.
The multi-level hitmap structure is based on bit array and hash map-
ping, which are parallelizable and very suitable for execution on
GPU. (3) The hitmap structure provides a highly compact, summa-
rized representation of the key-value items’ access history, which
allows us to approximate the principle of LRU replacement at a
much lower cost. (4) Offloading the metadata operations to GPU
not only removes the interference to main service operations and
reduces the contention on the limited CPU resource, but it also ex-
ploits the unique strength of GPU in handling parallel tasks. With
all these optimizations together, Catalyst fundamentally addresses
the scalability challenge and allows a large-capacity in-memory
key-value cache to handle a massive amount of small key-value
items in a very efficient manner.
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4 IMPLEMENTATION AND EVALUATION
4.1 Implementation
To evaluate the proposed scheme, we have developed a prototype of
Catalyst based on Memcached [4], an in-memory key-value cache
system widely deployed in industry. It adopts a multi-threaded
design to handle concurrent requests, making it an appropriate
platform to demonstrate the performance of our design.

We have modified the metadata management and operations re-
lated to cache replacement in Memcached, while keeping the work-
flow of regular query operations unchanged. We added about 2,600
lines of CUDA C code to realize the functions presented in Section 3.
As a versatile programming model, CUDA supports different mem-
ory allocation and data transfer modes. We use explicit memory
allocation (e.g., with cudaMalloc) and actively manage the data
transfer between devices (e.g., with cudaMemcpy) in our prototype,
which allows us to explicitly store all metadata structures in GPU
memory for best performance. The GPU also supports unified mem-
ory (e.g., with cudaMallocManaged), which allows the GPU to share
the host memory space with some performance penalty. Our proto-
type can also be adapted to run with unified memory for obtaining
more memory space to host the metadata.

We have also implemented a lightweight intermediate library
for efficiently operating the GPU device. It has three main func-
tions: (1) Sending jobs. Initiate data transfer to send the access
information collected in reference pool to the GPU device memory.
(2) Launching kernels. After receiving the jobs from the key-value
cache, launch GPU kernels to process and update the metadata of
the keys in the current batch. (3) Receiving results. After each batch
finishes updates, transfer the victim list back to the host CPU.

4.2 Experimental Setup
Our key-value cache system runs on a W2600CR server equipped
with two 8-core Intel Xeon E5-2690 2.90GHz processors, 128-GB
DRAM memory, and an NVIDIA GTX 1050 Ti GPU with 4-GB
GDDR5 memory via PCIe 3.0 x16. This entry-level GPU costs
about $80-100 on the second-hand market, incurring minimal extra
cost. A 120-GB Intel 540 flash SSD is used for the experiments with
Extstore [1]. We use two Lenovo TS440 ThinkServers as clients.
Each server has a 4-core Intel Xeon E3-1245 3.4 GHz processor, 16-
GB DRAM memory, and a 7,200 RPM 1-TB Seagate disk drive. Each
server simulates 64 concurrent clients to send queries. Our backend
database is a MongoDB 4.2 database running on a 4-TB 7,200 RPM
Seagate hard drive, hosted on a Dell T620 server with a 6-core Intel
Xeon E5-2630 2.3 GHz processor and 32-GB memory. For sufficient
network bandwidth, we aggregate four 10-Gbps Ethernet ports to-
gether on the key-value server and two 10-Gbps Ethernet ports on
each client machine and the database server. We use Ubuntu 20.04
with Linux kernel 5.4 and Ext4 file system. Our CUDA C code is
compiled using nvcc with CUDA 9.2.

We use the Yahoo! Cloud Serving Benchmark (YCSB) [24] to
generate workloads with four access patterns, Zipfian, Hotspot,
Latest, and Uniform, to emulate different workloads [19, 26] and
collect the traces. The key-value data content is not of interest in
this study and is thus filled with random data. Our synthesized
workloads follow the size distribution of dataset APP, SYS, and ETC
reported in a study of Facebook workloads [13]. The majority of

the items in APP are around 300 bytes, following a generalized
extreme value distribution [14]. SYS follows the same distribution
but comprises more larger items. Most are around 600 bytes. ETC
follows a generalized Pareto distribution [11], and its value sizes
are more evenly distributed from 14 bytes to around 1 KB.

We use a homegrown tool, called keystone, to replay the work-
load traces against the key-value cache system for repeatable tests.
This tool allows us to precisely repeat a workload with a specified
number of clients and test the system performance with each of
the above-mentioned data sets. We collect the system timestamp in
nanoseconds with the CLOCK_MONOTONIC_RAW clock [2] and calcu-
late the operation time on the key-value cache server. We use the
tool perf [3] in Linux to analyze the CPU cache hit ratio.

4.3 Evaluation
4.3.1 Overall Performance. In this set of experiments, we evalu-
ate the overall performance of the in-memory key-value cache by
pairing it with a backend database server with 1 TB of key-value
data, allowing the system to test the effectiveness of its cache space
management scheme. We configure Catalyst with the best overall
settings. The hitmap is configured with four levels of hash counters,
whose sizes are 256 MB, 512 MB, 1 GB, and 2 GB, from level 1 to
level 4, respectively. A 256-MB set counter is employed to keep
track of newly inserted keys through SET requests.

We use the APP dataset with Zipfian and Hotspot workloads to
simulate typical use cases of key-value caches. We also run the
Uniform workload to represent the worst-case scenario in which
the workload access pattern exhibits minimal locality. In our eval-
uation, we compare Catalyst against three baseline cases, namely
Memcached, MemC3 [29], and Redis [7]. In addition to the three
in-memory cache systems, we also set up a flash-based cache, Ext-
store [1], which extends Memcached with an external flash SSD, to
demonstrate the versatility of the proposed scheme and its compat-
ibility with different storage configurations.

Our experiments show that Catalyst is very efficient and closely
approximates LRU with low overhead. For given memory space,
Catalyst is able to cache more key-value items than Memcached for
better performance. As shown in Figure 5a-5c, Catalyst shows up
to 7.3 pp higher hit ratio than Memcached with Zipfian workload.
Even in cases with similar hit ratios, Catalyst is able to process
requests at a much higher throughput (Figure 5d-5f). Thanks to the
highly efficient metadata management, Catalyst sees a 23%–333%
throughput increase. Figure 5g-5i show the latency results. Com-
pared to Memcached, Catalyst reduces the 50th percentile overall
latency (represented by the thick bars) by up to 20.6%. The 99th
percentile overall latency (represented by the line bars) does not
show notable differences, as it is primarily determined by the slow
backend database rather than the caching mechanism. We also
show the 50th and 99th percentile latencies of the “hit-in-cache”
queries, illustrated as triangles and circles in Figure 5g-5i, respec-
tively. The corresponding values can be read from the right axis.
In the figures, we can see that the two Extstore-based schemes
exhibit higher latencies than the others, due to the use of flash SSD
as cache extension. Compared to Memcached, Catalyst shows up
to 35% lower 50th percentile latency and slightly higher (up to 3.5%)
99th percentile latency, which shows the benefit of removing inter-
ference of metadata operations and the small overhead in handling
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Figure 5: Overall Hit Ratio, Throughput, and Latency Performance of Catalyst
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Figure 6: Scalability of Catalyst with Various Dataset Sizes (10% Cache Ratio)

cache hits. With the Uniform workload, Catalyst’s performance
aligns with Memcached, showing that it does not bring negative
impact on performance, even in such a worst-case scenario.

MemC3 uses the CLOCK replacement algorithm to reduce its
metadata footprint, which makes it, like Catalyst, able to keep more
data in memory. However, MemC3 exhibits slightly lower cache hit
ratios compared to Catalyst across all tests. For a similar purpose,
Redis also attempts to reduce the memory usage of metadata by
associating a 3-byte LRU clock with each key-value item and relying
on random sampling to identify cold items for eviction. However,
due to its less effective caching mechanism, Redis cannot achieve
the same hit ratio as Catalyst. Besides the lower hit ratios, both
MemC3 and Redis involve metadata operations on the critical path.
For instance, MemC3 needs to update the circular list and clock
hand upon each access, while Redis requires to acquire timestamps

and update each item’s LRU clock. In contrast, Catalyst processes
the metadata asynchronously, eliminating the overhead from the
critical path. In our tests, Catalyst outperforms MemC3 and Redis
by up to 67.4% and 169.4%, respectively, showcasing its significantly
better performance.

As a versatile scheme, Catalyst can be adapted into various key-
value systems. We have implemented an enhanced version of Ext-
store by augmenting it with Catalyst, denoted as Cat.-Ext. In this
configuration, we allocate 50% of the key-value items to be stored
on flash SSD as an alternative to the all-in-memory cache systems.
As shown in Figure 5, Cat.-Ext. consistently outperforms Extstore
and exhibits throughput improvement of up to 71.4%. It is worth
noting that the performance improvement brought by Catalyst on
Extstore is less significant compared to that on Memcached. This
can be attributed to the substantial speed disparity between DRAM
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Table 1: Throughput (KOPS) with Small Datasets (Zipfian)

Dataset (GB) 1 2 4 8 16 32
Memcached 139 137 132 124 112 109
Catalyst 231 230 229 227 221 216
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Figure 7: Hitmap Configuration

memory and flash SSD. While Cat.-Ext. offers superior efficiency
in metadata management, the overall system performance is still
constrained by the speed of the underlying flash SSD.

4.3.2 Scalability Study. Figure 6 presents a comparison of the scal-
ability of the six cache systems. The dataset sizes range from 80 GB
to 1 TB, with a key-value cache configured at a fixed 10% cache
ratio, varying from 8 GB to 100 GB. Although the hit ratio largely
remains constant as the system scales up due to the fixed cache
ratio, the overall throughput shows significant changes.

In our tests, Memcached experiences a 50% drop in throughput,
while Catalyst maintains more stable performance even with a
scale-up factor of 12.5×. Notably, Catalyst’s throughput only de-
creases by 5.1% for the Zipfian workload and 6.1% for the Hotspot
workload, showcasing its better scalability, in contrast to MemC3’s
23.8% and Redis’s 38.9% drop in throughput. It clearly demonstrates
that Catalyst scales well with growing data volumes. Table 1 com-
pares Memcached and Catalyst with small datasets. It shows that
under less scalability pressure, Memcached performs better with
smaller datasets, however, it still significantly lags behind Catalyst
in throughput. In the next sections, we will study each component
individually. To fully exercise the cache server, we run our experi-
ments with the cache server only and use a cache size of 100 GB
and the Zipfian workload, unless otherwise specified.

4.3.3 Hitmap Configuration. The configuration of hitmap can im-
pact its efficacy. This set of tests studies the effect of the number
and size of hash counters in hitmap. Figure 7a shows the hit ratios
with different hitmap heights. With only one or two levels of hash
counters, the hit ratio is noticeably lower than LRU. When using
three levels of hash counters, Catalyst’s cache hit ratio quickly
improves, with only 0.4-1.6 pp lower than LRU across all workloads.
With four levels of hash counters, Catalyst can nearly match the
hit ratio of LRU under the Hotspot and Latest workloads and is
only 0.4 pp lower than that of LRU with the Zipfian workload.

We have also tested the key-value cache server with a mixed
workload to better represent real-world scenarios. We mix the Zip-
fianworkload with one-time write requests at a 1:1 ratio, denoted as
Mix. Our evaluation results reveal that with a dedicated set counter
and rolling compaction, Catalyst can distinguish the one-time re-
quests and actively evict the zombie data, which protects the hot
items. In contrast, LRU inserts the one-time accessed items to the
head of the LRU list upon access and waits for them to be flushed
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Figure 8: Compaction Configuration

after staying through the long list. The poor efficiency of LRU when
dealing with such a workload is reflected in the hit ratio, which is
up to 22 pp lower than Catalyst.

Figure 7b shows the hit ratio of a four-level hitmap with different
sizes. When using four equal-sized 256-MB hash counters (a narrow
rectangle shape), we cannot match the hit ratio of LRU. This is
due to the high fill rate of the small hash counters, which fail to
distinguish hot items from the warm ones. Having four such small
hash counters does not improve either. In contrast, when using
four equal-sized 2-GB counters (a wide rectangle shape), we can
achieve a high resolution (false positive rate lower than 0.0001%)
on all four levels. This improves the hit ratio, making it similar to
LRU. However, the performance comes at the cost of GPU memory.
Catalyst uses hash counters that vary in size at different levels. The
first level is set to 256 MB, and each upper layer doubles the size
of the one below it (an inverted pyramid shape). This allows us to
enjoy the best of both approaches. The smaller hash counters at the
bottom can filter out cold items even with a higher false positive
rate, while the larger hash counters at the top can distinguish hot
and warm items with a higher resolution. We achieve a hit ratio
nearly identical to that of using four large hash counters with only
46.9% of the memory usage (3.75 GB vs. 8 GB).

4.3.4 Hitmap Compaction. Due to the nature of the hash counter
design, we expect to see the efficacy decreases as the fill rate in-
creases. To maintain the effectiveness of the hitmap, we need to
periodically perform hitmap compaction to retire the aged hash
counters. In Figure 8, we show how different compaction config-
urations affect the cache performance. We vary the compaction
threshold setting from 2% to 20% (the percentage of the sampled
keys that are unmarked in the level-1 counter). We have also tested
the case with compaction disabled, denoted as Catalyst-overflow.
We can see that when allowed to overflow, the hit ratio decreases
as the query count increases, which clearly proves that compaction
helps maintain the efficacy of hitmap over time.

Our experimental results show that compaction at 5% yields the
best hit ratio results. A more aggressive compaction trigger (20%)
may evict warm data prematurely, while a delayed compaction
(2%) may lead to lack of available cache space. In Figure 8a, with
the configuration at 5%, Catalyst is able to maintain a stable hit
ratio of 88.5%-88.7%, nearly identical to the 88.9% of LRU. Other
settings show more fluctuations in hit ratio. The 5% compaction
trigger also gives the best throughput. In Figure 8b, the throughput
with compaction at 5% eventually is 67%–336% higher than other
compaction settings, up to 506% higher than the overflow case, and
246% higher than the stock Memcached.

4.3.5 Batch Size. GPU is known to have high computation band-
width and supports a high degree of parallelism. We test the cache
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Figure 9: Data Transfer Batch Size
server performance with different reference pool transfer batch
sizes, ranging from one to one million keys per batch.

As shown in Figure 9a, the overall throughput is very low when
using an excessively small batch size. For example, when transfer-
ring a single key at a time, the key-value cache server can only
process requests at a throughput of 0.05 MOPS, and 0.17 MOPS
with transfer batch size of 10 keys. This is because the cache server
needs to be constantly waiting for the GPU to process metadata in
many small batches to reclaim enough space. The whole system is
in effect stalled due to the low throughput on the GPU.

In addition, using a very small batch size also leads to under-
utilized PCIe bandwidth without reducing the batch transfer time
much. In fact, transferring a batch of 1-10k keys demands almost
the same amount of time, which is mostly for making system calls,
initiating transfer, and launching kernels, etc. Our tests show that
on average, it takes the system 170 𝜇s to transfer a batch of 10k keys
to the GPU and about 140 𝜇s to process the metadata in hitmap.

As the batch size increases, the overall throughput improves.
After reaching 10k batch size, the raw GPU throughput keeps in-
creasing, but the cache server experiences a slowdown with further
increased batch size. In particular, when the batch size reaches 1 mil-
lion, the GPU can update 9.75 million keys per second, but overall
the cache system sees a throughput of only 3.12 MOPS.

To study the root cause of this unusual phenomenon, we collect
the cache server hit ratio in Figure 9b. We see a clear trend in our
evaluations—a larger batch size results in a lower hit ratio. For
example, the hit ratio of 1-million batch size is up to 7.5 pp lower
than the 1k batch size. This is due to the lag between the time
when a query is served and when its metadata is updated. Ideally,
we desire to have such lag as small as possible, so that the hitmap
can timely reflect the changes. Although a larger batch size can
better exploit the computing power of GPU, it makes the cache less
responsive. As a result, we see the disparity between the throughput
observed on the GPU and on the cache server.
4.3.6 System Overhead. Catalyst also aims to achieve low over-
head on system resources. Benefiting from its compact and flexible
metadata structure, Catalyst is much more efficient in memory us-
age than Memcached. As shown previously (Figure 7a), Catalyst
can achieve a comparable hit ratio to LRU with a three- or four-
level hitmap. In Figure 10a, we compare their memory usages for
metadata. When managing a 100-GB cache with three-level hitmap,
Catalyst’s metadata footprint is only 37.4%, 36.5%, and 33.2% of
Memcached’s usage with dataset APP, SYS, and ETC, respectively;
With a four-level hitmap, Catalyst matches the LRU hit ratio while
still saving at least 25% of memory for metadata.

Catalyst is also highly efficient on operations. Figure 10b shows
the overhead breakdown in details. In Catalyst, the metadata oper-
ations have a fixed overhead per request, around 0.4 𝜇s, regardless

of the dataset size differences. The stable operation cost shows high
scalability of our design. As a result, when serving a 100-GB dataset
in the cache server, the system spends about 6.8% of the total time
on Catalyst-related operations, which is substantially lower than
the 56% overhead of LRU in Memcached (see Figure 1b).

4.3.7 Effect on CPU Cache. CPU cache is an important resource.
LRU in Memcached impairs the CPU cache hit ratio in two aspects.
First, when a key-value item is loaded, the LRU pointers are also
loaded and take extra space. Second, when the LRU list is updated,
the related pointers also need to be loaded into the CPU cache
to complete the list change. Both can cause interference to other
operations that are in need of the limited CPU cache space.

In this test, we study how metadata management impacts the
CPU cache hit ratio and its effect on the cache server’s throughput.
Figure 10c shows the CPU cache hit ratio of the stock Memcached,
Memcached without LRU (same as in Section 2), and Catalyst. In the
figure, we can see that Catalyst shows up to 15.5 pp higher in CPU
cache hit ratio compared to the stock Memcached. The modified
Memcached without LRU operations sits between the two, as it still
has the extra spatial overhead. It is interesting to find that Catalyst
performs even better than Memcached without LRU. As CPU cache
is much faster than DRAM memory, the requests can be served at a
higher rate with more efficient usage of the on-chip cache space. In
particular, with a 64-GB dataset, the throughput of Catalyst is 5.12%
higher than the modified Memcached.

4.3.8 GPU Hardware Resources. Catalyst demands GPU hardware
resources for processing metadata to make eviction decisions. In
this section, we study the impact of memory and computing power
of GPU on the performance of Catalyst.
Unified memory. CUDA provides support for unified memory. By
managing host memory and device memory in a single space, we
can exceed the limit of physical memory capacity on GPU by using
available system memory on the host, which could be beneficial
when the GPU memory alone is insufficient for accommodating the
entire hitmap structure. In this experiment, we evaluate Catalyst’s
performance with unified memory as an alternative to explicit
memory allocation in the scenarios in which the system relies
partially on the host memory to store the metadata. Figure 11a
illustrates Catalyst’s unified memory configuration, denoted as
Catalyst-Uni. The results show that when using unified memory,
we can observe a decrease of up to 7.5% in throughput compared
to fully storing all metadata in GPU memory, but Catalyst still
significantly outperforms Memcached.
Computing power. Catalyst demonstrates its ability to effectively
manage the key-value cache metadata with a low-cost, entry-level
GTX 1050Ti GPU, an “obsolete” device by today’s standard. To
evaluate the effect of using a more powerful GPU, we replace the
GTX 1050Ti with an RTX 2080 Super GPU. Interestingly, although
the number of CUDA cores increases from 768 to 3072, it does not
bring notable performance difference in Figure 11b. The throughput
difference between the two devices is less than 2.2%. Although the
average GPU usage of the RTX 2080 Super is reduced to 25.2% due to
more available cores, the computing resources on the GTX 1050 Ti
are not fully utilized either (only 68.7% with explicit memory allo-
cation, and 63.2% with unified memory). These results indicate that
Catalyst does not require an expensive, high-end GPU. A low-cost
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GPU, such as GTX 1050 Ti (only $80-100 USD on the second-hand
market), works sufficiently well for processing metadata, and it adds
minimally to the overall system cost, which makes it a cost-efficient
solution in practice.

5 RELATEDWORK
In recent years, key-value systems have been extensively studied in
both academia and industry [4, 7, 10, 13, 22, 23, 25, 27, 28, 43, 44, 48,
51, 52, 60, 63]. In this section, we discuss the most related works.

The scalability concerns of large-capacity key-value stores have
motivatedmany research studies [12, 16, 30, 31, 36, 50, 54, 55, 58, 59].
To reduce memory overhead, Wu et al. apply data compression to
Memcached to virtually expand the memory capacity for storing
more key-value data [59]. Wang et al. make use of page coloring to
improve CPU cache efficiency and enhance the scalability of Mem-
cached and Redis by reorganizing key-value items into dedicated
memory partitions [55]. Ghigoff et al. apply pre-stack processing
to intercept key-value requests from the NIC to overcome the limi-
tation of Linux’s network stack [30]. Unlike the above works, we
focus on an important bottleneck that has not received its deserved
attention, the scalability problem caused by metadata operations in
in-memory key-value cache systems.

There are also many research works focusing on optimizing the
caching algorithms for key-value stores [15, 17, 21, 29, 37, 41, 42,
49, 56, 57, 61]. For example, Fan et al. replace the caching algorithm
in Memcached with a CLOCK-based algorithm to achieve a smaller
memory footprint [29]. They also free certain operations (e.g., SET
and GET) from lock contention by maintaining version counters.
Wu et al. propose an efficiency-centric variant of LRU, the E-LRU,
which divides the memory space into three components to store
different data [57]. Hyperbolic Caching introduces the notion of
cost classes for managing the cached objects [17]. The algorithm
requires extra metadata attached to each object to record cost and
expiration time. Beckmann et al. introduce the least hit density
(LHD) algorithm for key-value caches, which makes eviction de-
cisions based on an object’s age and lifetime [15]. Our rationale

in this work is entirely different from these prior studies. Instead
of only focusing on the algorithm’s hit ratio, we study the severe
overhead involved in the process of making caching decisions and
find solutions to address the incurred scalability problem. Further-
more, rather than tailoring the existing data structures, our scheme
proposes a novel metadata structure to overcome the critical issues
inherent in the current design for cache management.

Some prior works seek to increase the performance of key-value
stores by adding additional hardware to the system and accelerating
certain operations [32–35, 38, 39, 45, 46, 53, 62–64]. For example,
Mega-KV maintains the entire hash indexing structure in GPU [63].
With its high computing bandwidth, hashing operations on GPU
can be completed much faster than on CPU. Due to the nature of the
key-value store’s workflow, indexing needs to be calculated before
the data can be located. The tradeoff between hashing throughput
and latency must be carefully balanced when offloading the index-
ing request to GPU. In this work, we offload the metadata-related
maintenance work to GPU. Since such operations can be performed
asynchronously, our approach is insensitive to the latency issue
caused by using GPU, which allows us to exploit the computational
advantages without the need to sacrifice performance. Mao et al.
implement a Memcached accelerator using FPGA, in which a por-
tion of the key-value data is stored on a dedicated SRAM cache [46].
Such an approach requires a redesign of the existing application and
it is also deeply integrated with specific hardware. Our approach
optimizes caching-related metadata management and operations,
which can run on a low-cost, general-purpose GPU, making it a
cost-efficient solution in practice.

6 CONCLUSION
In-memory key-value cache systems are essential in today’s Inter-
net services. However, the cache management in the current system
designs is unscalable due to the sharp increase of overhead associ-
ated with intensive metadata operations. In this paper, we present
a scheme, called Catalyst, to efficiently manage the metadata of
key-value items with minimal overhead. Our experimental results
show that Catalyst can significantly improve the performance of
in-memory key-value cache systems at a low cost.
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