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ABSTRACT
With the continuous development of spatial crowdsourcing plat-

form, online task assignment problem has been widely studied as

a typical problem in spatial crowdsourcing. Most of the existing

studies are based on a single-platform task assignment to maximize

the platform’s revenue. Recently, cross online task assignment has

been proposed, aiming at increasing the mutual benefit through

cooperations. However, existing methods fail to consider the data

privacy protection in the process of cooperation and cause the

leakage of sensitive data such as the location of a request and the

historical data of cooperative platforms. In this paper, we propose

Privacy-preserving Cooperative Online Matching (PCOM), which

protects the privacy of the users and workers on their respective

platforms. We design a PCOM framework and provide theoretical

proof that the framework satisfies the differential privacy property.

We then propose two PCOM algorithms based on two different

privacy-preserving strategies. Extensive experiments on real and

synthetic datasets confirm the effectiveness and efficiency of our

algorithms.
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1 INTRODUCTION
In recent years, with the development of mobile Internet and shar-

ing economy technology, people’s daily life has gradually become

inseparable from spatial crowdsourcing applications, such as online

taxi-calling service (e.g., DiDi [2] and Uber [4]) and food delivery
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service (e.g., Eleme [5] and Meituan [3]). The main task of the

spatial crowdsourcing platform is to arrange suitable workers to

complete the spatiotemporal requests on time, and to maximize the

platform’s revenue or maximize the total matching number [29].

In order to enable the spatial crowdsourcing platforms to allocate

requests reasonably, the existing studies design reasonable task

matching algorithms to achieve different goals [12, 24, 26]. These

existing studies mainly focus on designing matching algorithms for

single platform. However, in the real life, the distribution of workers

and requests within a single platform greatly affects the throughput

of the system. Take the situation in Figure 1 as an example.
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(a) Optimal Result of Single Platform Online

Matching
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(b) Optimal result of PCOM

Figure 1: The matching results in different Spatial Crowd-
sourcing Problems

Example 1: Figure 1 shows the locations of users and cars in

different grids. The dashed circle centered on the car represents the

service area of the car. Cars and users of the same color belong to

the same crowdsourcing platform.We denote the platform in yellow

as platform 𝐴, the platform in blue as platform 𝐵, and the platform

in purple as platform 𝐶 . Table 1 shows the arrival time of cars

and users. Figure 1(a) shows the optimal result of single platform

online matching. The matching result is (𝑤1, 𝑟1), (𝑤3, 𝑟3), (𝑤6, 𝑟5),
leaving 𝑟2 and 𝑟4 unmatched. In this case, the platform usually

gives unmatched requests two choices. One is to increase the price

of the request, and the platform dispatches workers from farther

away (e.g.𝑤8) to complete the request. The other one is to let users

wait until there are available workers nearby. However, these two

cases will increase the waiting time of users which will cause a

reduction in user satisfaction. The platform will lose users when

their satisfaction is too low.
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Table 1: The Arrival Order of Workers and Requests

Time 8:00 8:00 8:01 8:02 8:04 8:05 8:06 8:07 8:08 8:10 8:11 8:12 8:13 8:13

Arrival Order 𝑤1 𝑤2 𝑟1 𝑟2 𝑤3 𝑤4 𝑟3 𝑤5 𝑟4 𝑤6 𝑤7 𝑟5 𝑤8 𝑟6

(a) The route of request in AN (b) Cooperative platforms in AN (c) The route of request in Meituan (d) Cooperative platforms in Meituan

Figure 2: The cooperative process in AutoNavi and Meituan

The existing spatial crowdsourcing platforms, such as AN (Au-

toNavi) and Meituan choose multi-platform cooperation to solve

the above problem. As shown in Figure 2, the request that can-

not be completed by the local platform is sent to other platforms.

Workers on other platforms finish cooperation through bidding.

However, only determining cooperation through worker bidding

is not conducive to improving total revenue. It does not consider

the global matching situation. In addition, workers have to focus

on rushing for requests for a long time, which increases the risk of

driving. Research [10] proposes a better way called Cross Online

Matching (COM) for cooperation. It enables the platform deter-

mines whether to cooperate and assign tasks reasonably. COM

improves the efficiency of cooperation while reducing the risk of

work.

The above two cooperation methods are still impractical for

widely used in real-world, due to the ignorance of data privacy pro-

tection. On one hand, the cooperation process of AutoNavi directly

exposes the user’s location information to all platforms, causing the

user’s dissatisfaction. On the other hand, the cooperation process of

COM requires the historical request information of cooperative plat-

forms to calculate a reasonable revenue. Sending historical data to

other platforms may lead to the disclosure of sensitive information,

such as the location of workers’ frequent visits, the pricing method

of the platform, etc. Malicious platforms can use it to infer other

sensitive information, such as the preference of the workers and

the geographical distribution of requests. Based on the additional

information, the malicious company can adjust its operating meth-

ods to seize the market. The leakage of worker preferences will lead

to malicious platforms to snatch workers from other platforms by

adjusting pricing method, and the leakage of geographic distribu-

tion of requests will lead to malicious platforms to snatch requests

from other platforms by adjusting the distribution of workers.

In this paper, to address the challenges above, we design solutions

to perturb the location of requests based on geo-indistinguishable

technology and propose two exponential mechanisms to protect

the privacy of historical data during the process of evaluating co-

operative requests. Most importantly, we provide theoretical proof

of our proposed framework that satisfies the privacy requirement.

In summary, the main contributions of this paper are as follows:

• We formulate the Privacy-Preserving Cooperative Online

Matching (PCOM) and propose PCOM framework, which

considers the privacy protection of sensitive data in the

process of multi-platform cooperation and maximizes the

revenue of each platform.

• We theoretically prove that the proposed PCOM framework

satisfies the differential privacy property. Two algorithms

are designed to solve the PCOM problem based on the

theoretical proof. Algorithm 1 uses platform-based histor-

ical data to directly price the revenue of the request, and

Algorithm 2 comprehensively considers revenue and the

probability of the request being accepted for pricing.

• Extensive experiments on both real and synthetic datasets

verify the effectiveness and efficiency of our algorithms.
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2 PROBLEM STATEMENT
This section formally defines the privacy-preserving cooperative

online matching problem and the evaluation criteria related to it.

2.1 Problem Definition
Before formally defining our PCOM problem, we first introduce

some basic definitions.

Definition 2.1 (Request): A request 𝑟 in spatial crowdsourcing

platform is denoted as 𝑟 =< 𝑡𝑟 , 𝑙𝑟 , 𝑑𝑟 , 𝑣𝑟 >, where 𝑡𝑟 is the appear-

ance time of 𝑟 , 𝑙𝑟 is the appearance location in 2D space of 𝑟 , 𝑑𝑟 is

the travel distance required to complete 𝑟 , and 𝑣𝑟 is the value to be

paid to complete 𝑟 .

Definition 2.2 (Worker): A worker 𝑤 in spatial crowdsourcing

platform is a triplet 𝑤 =< 𝑡𝑤 , 𝑙𝑤 , 𝑟𝑎𝑑𝑤 >, where 𝑡𝑤 is the appear-

ance time of𝑤 , 𝑙𝑤 is the appearance location in 2D space of𝑤 , and

𝑟𝑎𝑑𝑤 is the service radius of𝑤 in 2D space.

Definition 2.3 (Local/Cooperative Platform): The platform is de-

noted as 𝑝 =< 𝑅,𝑊 >, where 𝑅 is the set of requests on 𝑝 and𝑊 is

the set of workers registered on 𝑝 . Given a request 𝑟 , the platform

where request 𝑟 appears is denoted as the local platform (i.e. 𝑝𝑙𝑜𝑐 )

of 𝑟 . On the contrary, a cooperative platform (i.e. 𝑝𝑐𝑜𝑝 ) of 𝑟 is the

platform in the cooperation except the local platform. The workers

in the local platform called local worker, denoted as𝑤𝑙𝑜𝑐 , and the

workers in the cooperative platform called cooperative worker, de-
noted as𝑤𝑐𝑜𝑝 . The requests assigned to the cooperative platform

are cooperative requests.
In Example 1, for request 𝑟1, platform 𝐵 is its local platform,

while other platforms are the cooperative platforms. Worker 𝑤1,

𝑤2,𝑤4 are the local workers of 𝑟1, while others are the cooperative

workers. If 𝑟4 is assigned to𝑤5, 𝑟4 is cooperative requests.

Definition 2.4 (Outer Payment [10]): When a cooperative worker

is needed to serve a request 𝑟 , s/he would like to obtain a payment

𝑣
′
𝑟 ∈ (0, 𝑣𝑟 ]. In this case, 𝑣

′
𝑟 is called the outer payment of 𝑟 .

We assume that the platform will not complete the request to

make itself lose money (i.e. 𝑣
′
𝑟 < 𝑣𝑟 ).

Definition 2.5 (Revenue [10]): We consider the revenue of each

platform in two cases. In the first case, 𝑟 is served by its local worker.

The platform would receive 𝑣𝑟 . In the second case, 𝑟 is served by a

cooperative worker. The platform would receive 𝑣𝑟𝑖 − 𝑣
′
𝑟𝑖
. Assume

that𝑀 is a feasible matching. Let𝑀𝑙𝑜𝑐 be the matching that satisfies

the first case, and 𝑀𝑐𝑜𝑝 be the matching that satisfies the second

case. The total revenue of the platform is calculated by:

𝑅𝑒𝑣 =

|𝑀𝑙𝑜𝑐 |∑︁
𝑖=1

𝑣𝑟𝑖 +
|𝑀𝑐𝑜𝑝 |∑︁
𝑖=1

(𝑣𝑟𝑖 − 𝑣
′
𝑟𝑖
) (1)

Now we can define our Privacy-preserving Cooperative Online
Matching (PCOM) Problem as follows.

Definition 2.6 (Privacy-preserving Cooperative Online Matching
Problem): Given a set of spatial crowdsourcing platforms 𝑃 willing

to participate in cooperation, each platform 𝑝 ∈ 𝑃 contains the

requests and the workers. The workers and requests appear se-

quentially. The PCOM problem aims to find a cooperative matching

result 𝑀 with a maximum revenue 𝑅𝑒𝑣 for every platform in the

cooperation, under the following constraints:

• Time constraint: the requests can only be completed by the

workers who appear before it.

• 1-By-1 constraint: one request can only be served by one

worker at a time. Vise versa.

• Invariable constraint: once a worker is assigned to a request,

the assignment cannot be changed or revoked.

• Range constraint: a worker can only serve the requests

whose location is in the service radius of this worker.

• Privacy constraint: it contains two parts:

– Real-time data privacy: the precise location of the co-

operative request is the most important sensitive real-

time data, so we consider its privacy as real-time data

privacy. When a request needs to be served by coop-

erative workers, the precise location of the request

should not be exposed to cooperative platforms.

– Historical data privacy: the sensitive historical data of

workers contains the appearance location, appearance

time, ending location, ending time, and value of his/her

completed requests. These sensitive data should not

be revealed to cooperative platforms.

In the case of a worker servingmultiple requests at the same time,

the PCOM problem can be regarded as multiple workers appearing

in the same location at the same time. The worker will appear on

the platform again after s/he finishes the service.

PCOM problem mainly focuses on the privacy-preserving pro-

cess in cooperative online matching. Thus, the privacy-preserved

matching algorithm should ensure the privacy constraint.

2.2 Evaluation Criteria
Differential privacy is widely used in the fields of database query

and geographic perturbation as an evaluation criterion of privacy.

Therefore, we also use the same evaluation criterion to measure

the degree of privacy protection.

Definition 2.7 (Differential Privacy [13]): Assume that 𝐷 and 𝐷
′

are two neighboring datasets which differ on at most one element.

Given a randomized algorithm𝐴, Range(𝐴) is the set of all possible
outputs of 𝐴 in 𝐷 and 𝐷

′
. 𝐴 is 𝜀-differentially private if for any

arbitrary output 𝑂 ∈ Range(𝐴):

Pr[𝐴(𝐷) = 𝑂] ≤ exp(𝜀) ∗ Pr[𝐴(𝐷
′
) = 𝑂] (2)

The privacy budget 𝜀 is used to control the ratio of the probability

that𝐴 outputs a value in the same range under different inputs. It is

obvious that the smaller 𝜀 is, the greater the similarity of the output

probability distribution of 𝐴 under different inputs is, that is to say,

𝐴 guarantees a better privacy-preserving level. Normally, 𝜀 ∈ (0, 1].
Using this mechanism can effectively protect any piece of data of

any worker from leaking to other crowdsourcing platforms.

Definition 2.8 ((𝜀, 𝑟 )-Geo-indistinguishability [7]): Based on dif-

ferential privacy, a notion of location privacy has been proposed,

called Geo-indistinguishability(Geo-I). Assume that X is a set of

exact locations. Given a randomized algorithm 𝐴, Range(𝐴) is the
set of possible reported outputs. 𝐴 is (𝜀, 𝑟 )-Geo-indistinguishability
if for all 𝑥, 𝑥

′ ∈ X, 𝑧 ∈ Range(𝐴), which 𝑑 (𝑥, 𝑥 ′) ≤ 𝑟 :

Pr[𝐴(𝑥) = 𝑧] ≤ 𝑒𝜀𝑑 (𝑥,𝑥
′ )
Pr[𝐴(𝑥

′
) = 𝑧] (3)
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Similarly, 𝜀 represents the privacy budget of 𝐴, 𝑟 represents the

radius that satisfies the privacy constraint. Geo-I makes two input

locations with the same output indistinguishable. Hence, the precise

location of the task will not be leaked to other platforms.

3 THE PCOM PROBLEM FRAMEWORK
In this section, we first illustrate the framework of the PCOM prob-

lem. As discussed in the introduction, different from the existing

AutoNavi and COM methods, our PCOM framework can protect

the privacy of both real-time data and historical data. We also the-

oretically prove that the proposed PCOM framework satisfies the

differential privacy property.

3.1 The Framework of PCOM Problem
The PCOM framework contains two cases. When a request 𝑟 ap-

pears on the local platform 𝑝𝑙𝑜𝑐 , 𝑝𝑙𝑜𝑐 determines whether there are

available local workers based on the location of 𝑟 . If the available

local worker set is not empty, 𝑝𝑙𝑜𝑐 will assign 𝑟 to a suitable local

worker using the task assignment methods such as TOTA [26] and

FTOA[28]. If there is no available local worker, 𝑝𝑙𝑜𝑐 will send 𝑟 to

the cooperative platforms and performs the cooperative process.

Figure 3 shows the cooperative process of the PCOM framework.

It consists of five steps:

• To ensure privacy, the local platform (platform A) perturbs

the location of 𝑟 with a privacy level (𝜖1, 𝑟 )-Geo-I according
to the Geo-I mechanism and sends the perturbed request 𝑟

′

to all the cooperative platforms (platform B and C).

• Each cooperative platform finds available workers accord-

ing to 𝑙
′
𝑟 and the constraints in Definition 2.6. The platforms

which have available workers use a differential privacy

mechanism with 𝜖2−𝐷𝑃 privacy level to estimate the outer

payment 𝑣
′
𝑟 of 𝑟 and send 𝑣

′
𝑟 to the local platform.

• After receiving the outer payments returned by all coop-

erative platforms, the local platform selects one with the

smallest 𝑣
′
𝑟 for cooperation (platform B).

• The selected cooperative platform determines whether and

which available cooperative worker to serve 𝑟 according

to the acceptance probability of him/her. The acceptance

probability can be calculated by the definition in [10]. We

assume that the cooperative platform will tell its work-

ers that 𝑟 belongs to other platforms, and the cooperative

workers have the right to refuse to serve 𝑟 .

• Finally, once there is a cooperative worker willing to serve

𝑟 , the local platform releases 𝑟 with a precise location. The

cooperative worker can then verify whether 𝑟 satisfies the

range constraint in Definition 2.6. If the range constraint is

met, 𝑟 can be served; otherwise, 𝑟 is rejected. If 𝑟 is success-

fully served, the cooperative platform will receive 𝑣
′
𝑟 and

the local platform will receive 𝑣𝑟 − 𝑣
′
𝑟 .

Step 1 shows the cooperative platforms only obtain the request

with a perturbed geographic location. Step 2 shows that in the

PCOM framework, the outer payment is estimated by the coopera-

tive platform itself. In this case, the historical request data always

stays in its owner’s platform and never be sent out, which avoids

the leakage of historical data. This pricing method may lead to the

cooperative platformmaliciously increasing the outer price in order

to earn more revenue. However, considering that the local platform

will choose a platform with smaller outer payment to cooperate,

the cooperative platform will return a reasonable price.

⑤Matching based on real geographic location

① Send the perturbed
location of request

①

②Estimate the outer payment based
on differential privacy mechanism

② ③ Selects cooperative
platform and notifies it

④ Request
assignment

Platform A

Platform C

Platform B

Figure 3: The Cooperative Process in PCOM Framework

According to the existing study [23], we assume that the workers

can obtain the exact locations of the cooperative requests via an

extra privacy channel after the assignment. Therefore, cooperations

among all the platforms can be completed successfully.

Example 2: Figure 1(b) shows the optimal result of PCOM. For

platform𝐴, when 𝑟3 appears on the platform, the platform performs

a local matching process which is the same as the COM framework.

𝑟3 is assigned to𝑤3. When 𝑟4 appears on the platform, the platform

performs cooperative process. The location of 𝑟4 (𝑙𝑟4 ) is perturbed

to 𝑙
′
𝑟4
. Then the platform sends 𝑟

′
4
to platform 𝐵 and platform 𝐶 .

These two platforms estimate the outer payment based on differ-

ential privacy mechanism. Suppose 𝑣𝑟4 = 10, the outer payment in

platform 𝐵 is 7 while that in platform 𝐶 is 6. Platform 𝐴 chooses

platform 𝐶 for cooperation. Platform 𝐶 decides to send worker𝑤5

out for cooperation. Finally, the precise location of 𝑟4 is released to

𝑤5. 𝑟4 satisfies the range constrain, thus 𝑟4 can be served by𝑤5.

It is obvious that the privacy protectionmechanismwill affect the

matching results. Therefore, it is necessary to analyze the privacy

of the PCOM framework. We theoretically prove that the PCOM

framework provides ((𝜖1 + 𝜖2) ∗ max

𝑝∈𝑃
|𝑝𝑊 |)-differential privacy,

where |𝑝𝑊 | is the number of workers in cooperative platform 𝑝 .

3.2 Analysis of the Privacy of PCOM
In this section, we provide the privacy analysis of the PCOM frame-

work. We prove that the framework is 𝜀-differentially private.

PCOM returns multi-platform matching results and their rev-

enue. Therefore, for any request, its matching result directly affects

the final result of PCOM. For any request, its geographic location

privacy and the privacy of platform historical data are considered

in the PCOM framework. Obviously, the privacy of one request

does not affect the privacy of another. Thus, the privacy of each

request in the matching process is independent, so the impact of

the privacy on the PCOM framework can be reduced to its impact

on the matching results of a single request. Based on this feature,

we focus on the privacy of a single request matching process.

Lemma 1. Assume that 𝑟𝑎 is a cooperative request,𝑊𝐵 is the set
of all cooperative workers of 𝑟𝑎 ,𝑤𝐵𝑖

∈𝑊𝐵 , and𝑀𝑎𝑡𝑐ℎ is a matching
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mechanism satisfies PCOM framework. The probability that 𝑟𝑎 is
served by the cooperating workers can be calculated by

𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟𝑎,𝑊𝐵) = 1]

= 1 −
| |𝑊𝐵 | |∏
𝑖=0

[1 − 𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟𝑎,𝑤𝐵𝑖
) = 1]]

(4)

It is obvious that lemma 1 holds since 𝑟𝑎 can be served only if

there is one acceptable cooperatingworker. Therefore, the following

privacy analysis will be based on the matching of 𝑟𝑎 and a single

cooperative worker𝑤𝐵𝑖
.

For a given 𝑟𝑎 and𝑤𝐵𝑖
, two conditions must be met for 𝑟𝑎 to be

served by𝑤𝐵𝑖
. First, the range constrain, denoted as𝑑𝑖𝑠 (𝑙𝑟𝑎 , 𝑙𝑤𝐵𝑖

) ≤
𝑟𝑎𝑑𝑤𝐵𝑖

, where 𝑑𝑖𝑠 (𝑎, 𝑏) represents the Euclidean distance between

two locations. Second, the outer payment 𝑣
′
𝑟𝑎

should be less than

the value of 𝑟𝑎 itself, denoted as 𝑣
′
𝑟𝑎
≤ 𝑣𝑟𝑎 .

The PCOM framework adds privacy in two parts: 1. The plat-

form perturbs the location of 𝑟 with a privacy mechanism 𝐾 that

satisfies (𝜖1, 𝑟 )-Geo-I; 2. The cooperative platform uses a privacy

mechanism 𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 that satisfies 𝜖2-DP to calculate outer payment.

The historical data of cooperative workers that needs to be used

in 𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 denoted as ℎ𝑖𝑠𝑊𝐵
. The conditions above are changed

into 𝑑𝑖𝑠 (𝐾 (𝑙𝑟𝑎 ), 𝑙𝑤𝐵𝑖
) ≤ 𝑟𝑎𝑑𝑤𝐵𝑖

and 𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠𝑊𝐵
) ≤ 𝑣𝑟𝑎 .

These conditions are independent to each other, thus the equation

𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟𝑎,𝑤𝐵𝑖
) = 1] can be calculated by

𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟𝑎,𝑤𝐵𝑖
) = 1]

= 𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙𝑟𝑎 ), 𝑙𝑤𝐵𝑖
) ≤ 𝑟𝑎𝑑𝑤𝐵𝑖

] ∗ 𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠𝑊𝐵
) ≤ 𝑣𝑟𝑎 ]

(5)

We discuss the two parts of equation 5 separately.

Lemma 2. Given any privacy mechanism 𝐾 satisfies 𝜖-GEO-I,

𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙𝑟𝑎 ), 𝑙𝑤𝐵𝑖
) = 𝑟 ] ≤ 𝑒𝜖𝑑 (𝑙𝑟𝑎 ,𝑙

′ )𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙
′
), 𝑙𝑤𝐵𝑖

) = 𝑟 ] (6)

where 𝑙
′
is another location on the map.

Proof. 𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙𝑟𝑎 ), 𝑙𝑤𝐵𝑖
) = 𝑟 ] is equal to the probability that

𝑙𝑙𝑟𝑎 is mapped to a point on a circle with 𝑙𝑤𝐵𝑖
as the center and 𝑟 as

the radius. Since 𝐾 satisfies 𝜖-GEO-I [7], equation 6 holds. □

Theorem 1. Given any privacy mechanism 𝐾 satisfies 𝜖-GEO-I,

𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙𝑟𝑎 ), 𝑙𝑤𝐵𝑖
) ≤ 𝑟𝑎𝑑𝑤𝐵𝑖

]

≤ 𝑒𝜖𝑑 (𝑙𝑟𝑎 ,𝑙
′ )𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙

′
), 𝑙𝑤𝐵𝑖

) ≤ 𝑟𝑎𝑑𝑤𝐵𝑖
]

(7)

Proof. From lemma 2, since function 𝑑𝑖𝑠 is a continuous func-

tion, the CDF of it can be expressed as the integral of its probability

density function.

𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙𝑟𝑎 ), 𝑙𝑤𝐵𝑖
) ≤ 𝑟𝑎𝑑𝑤𝐵𝑖

]

=

∫ 𝑟𝑎𝑑𝑤𝐵𝑖

0

𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙𝑟𝑎 ), 𝑙𝑤𝐵𝑖
) = 𝑟 ]𝑑𝑟

≤
∫ 𝑟𝑎𝑑𝑤𝐵𝑖

0

𝑒𝜖𝑑 (𝑙𝑟𝑎 ,𝑙
′ )𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙

′
), 𝑙𝑤𝐵𝑖

) = 𝑟 ]𝑑𝑟

= 𝑒𝜖𝑑 (𝑙𝑟𝑎 ,𝑙
′ )𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙

′
), 𝑙𝑤𝐵𝑖

) ≤ 𝑟𝑎𝑑𝑤𝐵𝑖
]

(8)

□

Theorem 1 shows the privacy properties of the first part in equa-

tion 5. Given the privacy mechanism 𝐾 satisfies 𝜖-GEO-I, the dif-

ference between the probabilities of two locations in the graph

satisfying the worker’s service range is limited to 𝑒𝜖𝑑 (𝑙𝑟𝑎 ,𝑙
′ )
.

Lemma 3. Given any privacy mechanism 𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 satisfies 𝜖-
DP, 𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠𝑊𝐵

) = 𝑝] ≤ 𝑒𝜖𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠
′
𝑊𝐵
) = 𝑝]

where ℎ𝑖𝑠𝑊𝐵
and ℎ𝑖𝑠

′
𝑊𝐵

differ in a single historical request data.

Lemma 3 is a special property of differential privacy. When the

privacy mechanism satisfies 𝜖-DP, lemma3 holds [14].

Theorem 2. Given any privacy mechanism 𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 satisfies 𝜖-
DP,

𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠𝑊𝐵
) ≤ 𝑣𝑟𝑎 ] ≤ 𝑒𝜖𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠

′
𝑊𝐵
) ≤ 𝑣𝑟𝑎 ]

(9)

Proof. From lemma 3, since function 𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 is a discrete func-

tion, the CDF of it can be expressed as the sum of its probability

density function.

𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠𝑊𝐵
) ≤ 𝑣𝑟𝑎 ]

=

𝑣𝑟𝑎∑︁
𝑝𝑖=0

𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠𝑊𝐵
) = 𝑝𝑖 ]

≤
𝑣𝑟𝑎∑︁
𝑝𝑖=0

𝑒𝜖𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠
′
𝑊𝐵
) = 𝑝𝑖 ]

= 𝑒𝜖𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠
′
𝑊𝐵
) ≤ 𝑣𝑟𝑎 ]

(10)

□

Theorem 2 shows the privacy properties of the second part in

equation 5. Given the privacy mechanism 𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 satisfies 𝜖-DP,

the difference between the probabilities of the outer payment cal-

culated on two adjacent historical datasets smaller than the value

of request is limited to 𝑒𝜖 .

Corollary 1. The privacy of a successful single request matching
process satisfies (𝜖1𝑑 (𝑙𝑟𝑎 , 𝑙

′) + 𝜖2)-DP, where 𝜖1 is the privacy level of
𝐾 in PCOM, 𝜖2 is the privacy level of 𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 in PCOM, 𝑑 (𝑙𝑟𝑎 , 𝑙

′) is
the range of geographical protection.

Proof. Based on theorem 1 and 2, equation 5 satisfies

𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟𝑎,𝑤𝐵𝑖
, ℎ𝑖𝑠𝑊𝐵

) = 1]
= 𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙𝑟𝑎 ), 𝑙𝑤𝐵𝑖

) ≤ 𝑟𝑎𝑑𝑤𝐵𝑖
] ∗ 𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠𝑊𝐵

) ≤ 𝑣𝑟𝑎 ]

≤ 𝑒𝜖1𝑑 (𝑙𝑟𝑎 ,𝑙
′ )𝑃𝑟 [𝑑𝑖𝑠 (𝐾 (𝑙

′
), 𝑙𝑤𝐵𝑖

) ≤ 𝑟𝑎𝑑𝑤𝐵𝑖
]∗

𝑒𝜖2𝑃𝑟 [𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒 (𝑟𝑎, ℎ𝑖𝑠
′
𝑊𝐵
) ≤ 𝑣𝑟𝑎 ]

= 𝑒 (𝜖1𝑑 (𝑙𝑟𝑎 ,𝑙
′ )+𝜖2)𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟

′
𝑎,𝑤𝐵𝑖

, ℎ𝑖𝑠
′
𝑊𝐵
) = 1]

(11)

□

Considering that request is not successfully served. The privacy

of this result also satisfies (𝜖1𝑑 (𝑙𝑟𝑎 , 𝑙
′) + 𝜖2)-DP. The proof is the

55



same as the above process, in order to avoid redundancy, we will

not describe it in detail here.

After finishing the privacy analysis based on the matching of

𝑟𝑎 and a single cooperative worker 𝑤𝐵𝑖
, we extend it to multiple

cooperative workers.

Corollary 2. The privacy of a PCOM framework provides at
least ((𝜖1𝑑 (𝑙𝑟𝑎 , 𝑙

′) + 𝜖2) ∗max

𝑝∈𝑃
|𝑝𝑊 |)-differential privacy, where 𝜖1 is

the privacy level of 𝐾 in PCOM, 𝜖2 is the privacy level of 𝐸𝑠𝑡𝑝𝑟𝑖𝑐𝑒
in PCOM, 𝑑 (𝑙𝑟𝑎 , 𝑙

′) is the range of geographical protection, 𝑃 is the
platform set consists of cooperative platforms.

Proof. Based on corollary 1, we first discuss the request which

cannot be served based on PCOM framework. To simplify the

formula, we denote 𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟𝑎,𝑤𝐵𝑖
, ℎ𝑖𝑠𝑊𝐵

) = 1] as 𝑃𝑎𝐵𝑖 , and
𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟 ′𝑎,𝑤𝐵𝑖

, ℎ𝑖𝑠
′
𝑊𝐵
) = 1] as 𝑃 ′

𝑎𝐵𝑖
.

𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟𝑎,𝑊𝐵) = 0] =
| |𝑊𝐵 | |∏
𝑖=0

(1 − 𝑃𝑎𝐵𝑖 )

≤
| |𝑊𝐵 | |∏
𝑖=0

𝑒 (𝜖1𝑑 (𝑙𝑟𝑎 ,𝑙
′ )+𝜖2) (1 − 𝑃

′
𝑎𝐵𝑖 )

= 𝑒 (𝜖1𝑑 (𝑙𝑟𝑎 ,𝑙
′ )+𝜖2) | |𝑊𝐵 | |𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟

′
𝑎,𝑊

′
𝐵) = 0]

(12)

We then discuss the request which can be served. A request can

be served means that at least one worker can successfully serve it,

so the following formula is satisfied.

𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟𝑎,𝑊𝐵) = 1]

=

| |𝑊𝐵 | |∏
𝑖=0

𝑃𝑎𝐵𝑖 +𝐶𝑖| |𝑊𝐵 | | (𝑃𝑎𝐵𝑖 )
𝑖 ∗ (1 − 𝑃𝑎𝐵𝑖 ) | |𝑊𝐵 | |−𝑖

≤ 𝑒 (𝜖1𝑑 (𝑙𝑟𝑎 ,𝑙
′ )+𝜖2) | |𝑊𝐵 | |𝑃𝑟 [𝑀𝑎𝑡𝑐ℎ(𝑟

′
𝑎,𝑊

′
𝐵) = 1]

(13)

□

In practical applications, the perturbation range of precise geo-

graphical location is generally 1 km. So when range of geographical

protection is set to 1 km, PCOM framework provides ((𝜖1 + 𝜖2) ∗
max

𝑝∈𝑃
|𝑝𝑊 |)-differential privacy.

4 DIRECT PCOM ALGORITHM
In this section, we propose a Direct Privacy-preserving Cross Online

Matching (D-PCOM) algorithm to solve the PCOM problem in a

greedy form. To maximize the benefits of the local platform, D-

PCOM prioritizes requests to local workers.

4.1 Overview
We first introduce the matching process of D-PCOM. When a re-

quest 𝑟 appears to a platform, the platform first finds the available

local worker𝑤𝑙𝑜𝑐 to serve 𝑟 . If no local worker is available, D-PCOM

will consider cooperating with the cooperative platform. The local

platform first perturbs the location of 𝑟 based on the Geo-I mecha-

nism in [7] and send 𝑟
′
to all cooperative platforms. The cooperative

platform returns the outer payment 𝑣
′
𝑟 based on all historical re-

quest information with a similar travel distance through a privacy

mechanism. The following cooperative matching process follows

Algorithm 1: The D-PCOM Algorithm

Input: 𝑅,𝑊 , 𝑃𝑐𝑜𝑝 , 𝜖1, 𝜖2
Output: The matching𝑀 , total revenue 𝑅𝑒𝑣

1 𝑀 = ∅, 𝑅𝑒𝑣 = 0, 𝑉
′
𝑟 = ∅

2 foreach new arrival 𝑟 ∈ 𝑅 do
3 Find the available local worker𝑤𝑙𝑜𝑐 ∈𝑊 for 𝑟

4 if 𝑤𝑙𝑜𝑐 ≠ 𝑁𝑈𝐿𝐿 then
5 Assign 𝑟 to𝑤𝑙𝑜𝑐 and put < 𝑟,𝑤𝑙𝑜𝑐 > into𝑀

6 𝑅𝑒𝑣+ = 𝑣𝑟
7 else
8 Perturb the location of 𝑟 with privacy level 𝜖1 and

send 𝑟
′
to the cooperative platforms in 𝑃𝑐𝑜𝑝

9 𝑉
′
𝑟 ← Algorithm2(𝑟 ′, 𝑃𝑐𝑜𝑝 , 𝜖2);

10 if min𝑉
′
𝑟 < 𝑣𝑟 then

11 𝑣
′
𝑟 , 𝑝𝑐𝑜𝑝 ← min𝑉

′
𝑟

12 𝑝𝑐𝑜𝑝 determines available𝑤𝑐𝑜𝑝 to serve 𝑟
′

13 if 𝑤𝑐𝑜𝑝 ≠ 𝑁𝑈𝐿𝐿 then
14 𝑟 send real location to𝑤𝑐𝑜𝑝 in a special way

15 if 𝑑𝑖𝑠 (𝑙𝑤𝑐𝑜𝑝
, 𝑙𝑟 ) ≤ 𝑟𝑎𝑑𝑤𝑐𝑜𝑝

then
16 Assign 𝑟 to𝑤𝑐𝑜𝑝 and put < 𝑟,𝑤𝑐𝑜𝑝 >

into𝑀

17 𝑅𝑒𝑣+ = 𝑣𝑟 − 𝑣
′
𝑟

18 else
19 Reject 𝑟

20 else
21 Reject 𝑟

22 else
23 Reject 𝑟

24 return𝑀,𝑅𝑒𝑣

steps 3 to 5 in the PCOM framework. D-PCOM finally returns the

matching result and the total revenue.

4.2 Algorithm Details
Algorithm 1 shows the procedure of D-PCOM. Since the matching

process of each platform participating in cooperation is the same, we

describe D-PCOM algorithm from the perspective of one platform.

The input of D-PCOM is the request set 𝑅, the local worker set

𝑊 , the cooperative platform set 𝑃𝑐𝑜𝑝 , the privacy level to perturb

location 𝜖1, and the privacy level 𝜖2 to protect sensitive data. The

output of D-PCOM is a matching result 𝑀 and the revenue 𝑅𝑒𝑣

of platform. Initially, let 𝑀 = ∅, 𝑅𝑒𝑣 = 0, and the outer payment

set 𝑉
′
𝑟 = ∅ (Line 1). For each new arrival request 𝑟 , the platform

finds the available worker satisfying all constraints to serve it. If the

available worker𝑤𝑙𝑜𝑐 exists, the platform assigns 𝑟 to𝑤𝑙𝑜𝑐 and the

total revenue is updated by 𝑅𝑒𝑣 = 𝑅𝑒𝑣 +𝑣𝑟 (Line 3-6). If no available
local worker is found, the platform perturbs the location of 𝑟 based

on the Geo-I mechanism in [7] with privacy level 𝜖1 and performs

the cooperative process (Line 8). In the cooperative process, D-

PCOM calls Algorithm 2 to calculate the outer payment set (Line 9).

The elements in the outer payment set include the calculated outer

payment and its corresponding platform. The details of Algorithm
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Algorithm 2: Direct Pricing Algorithm

Input: 𝑟
′
, 𝑃𝑐𝑜𝑝 , 𝜖2

Output: The outer payment set 𝑉
′
𝑟

1 𝑉
′
𝑟 = ∅, 𝑑𝑚𝑖𝑛 = ⌊𝑑𝑟 ′ ⌋, 𝑑𝑚𝑎𝑥 = ⌈𝑑𝑟 ′ ⌉

2 foreach cooperative platform 𝑝𝑐𝑜𝑝 ∈ 𝑃𝑐𝑜𝑝 do
3 Query the unit price distribution set𝑈 of historical

requests which satisfies 𝑑𝑟 ∈ [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ]
4 foreach (𝑢𝑖 ,𝑛𝑢𝑚𝑖 ) ∈ 𝑈 do
5 calculate 𝑃𝑟 [𝑢 = 𝑢𝑖 ] = 𝑒𝜖2∗ln𝑛𝑢𝑚𝑖 /2 ln 2∑|𝑈 |

𝑗=0
𝑒
𝜖
2
∗ln𝑛𝑢𝑚𝑗 /2 ln 2

6 select 𝑢
′
𝑖
based on the probability distribution of 𝑢

7 insert (𝑢′
𝑖
∗ 𝑑𝑟 ′ , 𝑝𝑐𝑜𝑝 ) into 𝑉

′
𝑟

8 return 𝑉
′
𝑟

2 will be illustrated later. After calculating the outer payment, the

platform selects one cooperative platform 𝑝𝑐𝑜𝑝 with the smallest

outer payment 𝑣
′
𝑟 which is smaller than 𝑣𝑟 (Line 11). Then 𝑝𝑐𝑜𝑝

determines available cooperative worker based on the constraints

and the acceptance probabilities (Line 12). Once there is an available

cooperative worker, the platform release the real location to him/her

(Line 14). If the real location still satisfies the range constrain, the

platform assigns 𝑟 to 𝑤𝑐𝑜𝑝 and updates the revenue (Line 16-17).

The request will be rejected in other cases (Line 19 and 21).

Algorithm 2 shows a pricing algorithm with a privacy mecha-

nism. We choose the exponential mechanism in differential privacy

since it has better performance at returning discrete results. We

first introduce the pricing mechanism and then prove its privacy.

The value of a request on a platform is calculated by the unit

price and its distance. For given cooperative request 𝑟
′
, the platform

first queries the unit price distribution of historical requests which

satisfies 𝑑𝑟 ∈ [⌊𝑑𝑟 ′ ⌋, ⌈𝑑𝑟 ′ ⌉] (Line 3). When privacy protection is not

considered, we select the unit price with the most occurrences and

calculate outer payment based on the selected unit price and 𝑑𝑟 ′ .

According to the idea above, we design a privacy mechanism

that satisfies 𝜖2-differential privacy. Based on the definition in ex-

ponential mechanism [19], we set the utility function 𝐹 (𝑝𝑐𝑜𝑝 , 𝑢𝑖 )
that returns the logarithm of occurrences of 𝑢𝑖 . The sensitivity of 𝐹

is ln 2. Then we calculate the probability distribution of 𝑢𝑖 which is

proportional to 𝑒𝜖2∗ln𝑛𝑢𝑚𝑖/2 ln 2
(Line 5). We select 𝑢

′
𝑖
based on the

probability distribution of 𝑢𝑖 ({𝑝0, ...𝑝𝑛}) by randomly generate a

decimal number 𝑎 ∈ [0, 1]. For 𝑥 ∈ [0, 𝑛], if 𝑎 ∈ [∑𝑥
0
𝑝 𝑗 ,

∑𝑥−1
0

𝑝 𝑗 ),
we return the 𝑥th unit price as 𝑢

′
𝑖
(Line 6). We finally insert cooper-

ative platform with its outer payment in 𝑉
′
𝑟 (Line 7).

Theorem 3. The sensitive of the utility function in the exponential
mechanism proposed above is ln 2.

Proof. max | |𝐹 (𝑝𝑐𝑜𝑝 , 𝑢𝑖 )−𝐹 (𝑝
′
𝑐𝑜𝑝 , 𝑢𝑖 ) | |1 = ln(𝑥+1)−ln𝑥 ≤ ln 2

where 𝑝𝑐𝑜𝑝 and 𝑝
′
𝑐𝑜𝑝 are adjacent datasets and 𝑥 is the number of

𝑢𝑖 in 𝑝𝑐𝑜𝑝 . □

Example 3: Considering the situation in Figure 1(b). For request

𝑟1, platform 𝐵 finds an available worker 𝑤1. Thus, D-PCOM per-

forms local matching and assigns𝑤1 to serve it. For request 𝑟4 (𝑑𝑟 =

2.5, 𝑣𝑟 = 10), platform 𝐴 fails to find any available worker for

it, it perturbs the location to 𝑟
′
4
and sends to platform 𝐵 and 𝐶 .

Assume that the privacy level 𝜖2 = 0.5. Take platform 𝐶 as a pric-

ing example. Assume that the unit price distribution in platform

𝐶 is {(2.8, 5), (3, 2), (3.1, 4), (3.5, 1)}, where (2.8, 5) means there

are 5 historical requests in platform 𝐶 which satisfies 𝑑𝑟 ∈ [2, 3]
whose unit price is 2.8. Then 𝑃𝑟 (𝑢 = 2.8) = 𝑒0.5∗ln 5/2 ln 2∑𝑗=4

𝑗=0
𝑒
0.5∗ln𝑛𝑢𝑚𝑗 /2 ln 2 =

0.312. The probability distribution of𝑢𝑖 is (0.312, 0.224, 0.289, 0.175).
Assume that the algorithm selects 3.1 as unit price, then 𝑣

′
𝑟4

=

3.1 ∗ 2.5 = 7.75. (7.75, 𝑝𝐶 ) is inserted to 𝑉
′
𝑟 . Assume that 𝑉

′
𝑟 =

{(10.5, 𝑝𝐵), (7.75, 𝑝𝐶 )}. Since 7.75 < 10 platform 𝐴 selects platform

𝐶 for cooperation. Assume that 𝑤5 is willing to serve 𝑟
′
4
and the

real location still satisfies the range constrain, 𝑟4 is assigned to𝑤5.

Platform 𝐶 receives 7.75 and platform 𝐴 receives 10 − 7.75 = 2.25.

4.3 Algorithm Analysis
D-PCOM algorithm satisfies the privacy requirements in the PCOM

framework and performs matching strictly following the steps in

the framework. Based on the property of the framework, D-PCOM

algorithm provides ((𝜖1 + 𝜖2) ∗max

𝑝∈𝑃
|𝑝𝑊 |)-differential privacy.

The calculational complexity of Algorithm 2 is𝑂 ( |𝑃𝑐𝑜𝑝 |max |𝑈 |),
where |𝑃𝑐𝑜𝑝 | is the number of cooperative platforms andmax |𝑈 | is
the largest number of unit prices obtained from historical requests.

In D-PCOM, the complexity of local matching process is 𝑂 ( |𝑊 |)
which is formed by finding available local workers. The complexity

of cooperative process is 𝑂 (( |𝑃𝑐𝑜𝑝 |max |𝑈 |) +max |𝑊𝑐𝑜𝑝 |), where
max |𝑊𝑐𝑜𝑝 | is the maximum size of worker set in cooperative plat-

form. The complexity of D-PCOM algorithm is 𝑂 ( |𝑅 | ∗ (|𝑊 | +
(|𝑃𝑐𝑜𝑝 |max |𝑈 |) +max |𝑊𝑐𝑜𝑝 |)). The space complexity is 𝑂 ( |𝑊 | +
|𝑅 |), where |𝑊 | (resp. |𝑅 |) is the size of workers (resp. requests).

4.4 Shortcomings of D-PCOM
Similar to the shortcomings in DemCOM [10], the D-PCOM al-

gorithm has two shortcomings. First, in the process of matching,

D-PCOM may assign too many local workers to perform the re-

quests with small value. This will lead to the loss of requests with

larger prices caused by the leakage of workers, reducing the rev-

enue of the platform. Therefore, the platform should allocate more

high-priced requests to local workers. Second, in the process of

calculating the outer payment, D-PCOM considers the historical

requests of all workers on the platform, which ignores the prefer-

ence of available workers of the request. Therefore, for the globally

calculated 𝑣
′
𝑟 , the acceptance probability in 𝑣

′
𝑟 of available workers

is small in some areas with higher unit price, resulting in a higher

probability of 𝑟 being rejected. Similarly, in some areas with lower

unit price, 𝑣
′
𝑟 may be greater than 𝑣𝑟 , resulting in 𝑟 being directly

rejected. On the other hand, since the cooperative platforms per-

form the calculation of the outer payment, they should consider

the willingness of cooperation in local platform. To overcome these

shortcomings, we propose a selectable algorithm.

5 SELECTABLE PCOM ALGORITHM
In this section, we propose a Selectable Privacy-preserving Cross

Online Matching (S-PCOM) algorithm to solve the PCOM problem

which overcomes the shortcomings in D-PCOM.
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5.1 Overview
To solve the first shortcoming, we filter requests by computing a

random threshold. Requests with value larger than the threshold

are assigned based on the local matching process, while others are

assigned based on the cooperative matching process. To solve the

second shortcoming, in the cooperative matching process, we first

find the available cooperative workers according to the disturbed

geographic location, and calculate the outer payment based on

the acceptance probability of the available cooperative workers.

Due to the competitive relationship between cooperative platforms,

the higher the outer payment, the lower the probability of the

cooperative platform being selected by the local platform. Therefore,

considering the willingness of cooperation in local platform, the

expectation of outer payment for worker𝑤 is calculated as

E(𝑣𝑖 ,𝑤) = 𝑣𝑖 ∗ (1 − 𝑃𝑟 (𝑣𝑖 ,𝑤)) (14)

where 𝑃𝑟 (𝑣𝑖 ,𝑤) is the probability that𝑤 would like to serve the re-

quest with outer payment 𝑣𝑖 . Equation 14 estimates the expectation

of the outer payment of the local platform through the acceptance

probability of the available cooperative workers. The cooperative

platform calculates the outer payment 𝑣
′
𝑟 based on the value of the

expectation of outer payment through a privacy mechanism.

5.2 Algorithm Details
Algorithm 3 shows the procedure of S-PCOM. The input and output

of S-PCOM are the same as those in D-PCOM. Initially, let 𝜃 =

⌈ln(max(𝑣𝑟 ) + 1)⌉, where max(𝑣𝑟 ) is the largest value of requests
in 𝑅 (Line 1). 𝑘 controls the threshold of value which is mentioned

in section 5.1. An integer from [1, 𝜃 ] is chosen according to the

probability
1

𝜃
and given to 𝑘 (Line 2). For each new arrival request r,

if 𝑣𝑟 ≤ 𝑒𝑘 , the algorithm performs local matching process (Line 5).

Otherwise, the platform perturbs the location of 𝑟 with privacy level

𝜖1 and performs the cooperative process (Line 7). In the cooperative

process, S-PCOM calls Algorithm 4 to calculate the outer payment

set (Line 8). The details of Algorithm 4 will be illustrated later. After

calculating the outer payment, the platform continues the following

cooperation process (Line 9).

Algorithm 4 shows a pricing algorithm with a privacy mech-

anism. Considering the preference of available workers and the

willingness of cooperation in local platform, the cooperative plat-

form should return an outer payment with a larger expectation.

Thus, we set the utility function 𝐹 (𝑝𝑐𝑜𝑝 , 𝑣𝑖 ) that returns the expec-
tation of 𝑣𝑖 . We do not consider the based measure of 𝑝𝑖 since its

uniform. The sensitivity of 𝐹 is (max 𝑣 ∗ 1

max |𝐻𝑖𝑠𝑤 | ), where max 𝑣

is the maximum value of historical request and max |𝐻𝑖𝑠𝑤 | is the
maximum size of historical request for a single worker.

The cooperative platform first finds the available worker set

(𝑊𝑎𝑣𝑎) of 𝑟
′
based on the location of 𝑙𝑟 ′ (Line 4-6). For each avail-

able worker, the platform queries the historical data whose travel

distance is in [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ] and formulate the historical request

set 𝑅ℎ𝑖𝑠 and historical value set 𝑉ℎ𝑖𝑠 (Line 7-11). Based on the his-

torical value set, the platform calculates the expectation of each

historical value 𝑣𝑖 for all available workers and set the maximum

expectation as the expectation of 𝑣𝑖 (Line 12-15). Then we cal-

culate the probability distribution of 𝑣𝑖 which is proportional to

𝑒𝜖2∗E(𝑣𝑖 )/2(max 𝑣/max |𝐻𝑖𝑠𝑤 |)
(Line 17). We do not consider the based

Algorithm 3: The S-PCOM Algorithm

Input: 𝑅,𝑊 , 𝑃𝑐𝑜𝑝 , 𝜖1, 𝜖2
Output: The matching𝑀 , total revenue 𝑅𝑒𝑣

1 𝜃 = ⌈ln(max(𝑣𝑟 ) + 1)⌉,𝑀 = ∅, 𝑅𝑒𝑣 = 0, 𝑉
′
𝑟 = ∅;

2 𝑘 ← randomly choosing an integer from [1, 𝜃 ] with
probability

1

𝜃

3 foreach new arrival 𝑟 ∈ 𝑅 do
4 if 𝑣𝑟 ≥ 𝑒𝑘 then
5 Call Line 3-6 of Algorithm 1 to perform local

matching process

6 else
7 Perturb the location of 𝑟 with privacy level 𝜖1 and

send 𝑟
′
to the cooperative platforms in 𝑃𝑐𝑜𝑝

8 𝑉
′
𝑟 ← Algorithm4(𝑟 ′, 𝑃𝑐𝑜𝑝 , 𝜖2);

9 Call Line 11-21 of Algorithm 1 to perform

cooperative matching process

10 return𝑀,𝑅𝑒𝑣

measure of 𝑣𝑖 since its uniform. We finally select 𝑣
′
𝑖
based on the

probability distribution of 𝑣𝑖 with the same method in Algorithm 2

and insert cooperative platform with its outer payment in the set

of outer payment (Line 18-19).

Theorem 4. The sensitive of the utility function in the exponential
mechanism proposed above is (max 𝑣/min |𝐻𝑖𝑠𝑤 |)

Proof.

max | |𝐹 (𝑝𝑐𝑜𝑝 , 𝑣𝑖 ) − 𝐹 (𝑝
′
𝑐𝑜𝑝 , 𝑣𝑖 ) | |1 = 𝑣𝑖 ∗max | |Δ𝑃𝑟 [𝑣𝑖 ,𝑤] | |1

= 𝑣𝑖 ∗max{| 𝑛

𝑁 + 1 −
𝑛

𝑁
|, | 𝑛 + 1
𝑁 + 1 −

𝑛

𝑁
|} ≤ max 𝑣/min |𝐻𝑖𝑠𝑤 |

(15)

where 𝑛 is the number of historical data with 𝑣𝑟 < 𝑣𝑖 and 𝑁 is the

total number of historical data of any worker. □

Example 4: Considering the situation in Figure 1(b). Assume

that 𝑣𝑟1=15,𝑣𝑟4=6,𝜖2=0.5. Suppose 𝑘 = 2. When 𝑟1 arrives, 𝑣𝑟1 >

𝑒2, S-PCOM performs local matching and assign 𝑤1 to serve it.

When 𝑟4 arrives, 𝑣𝑟4 < 𝑒2, S-PCOM performs cooperative match-

ing. Assume there is only one available worker in platform 𝐶 and

𝑉ℎ𝑖𝑠 = {4.0, 4.5, 5.2, 6.7, 7}. His/her acceptance probability of the

historical value set is {(4.0, 0.56), (4.5, 0.6), (5.2, 0.7), (6.7, 0.8), (7,

0.9)}. Then the expectation of outer payment in platform 𝐶 is cal-

culated based on line 14-15 in Algorithm 4, {(4.0, 1.76), (4.5, 1.8),

(5.2, 1.56), (6.7, 1.34), (7, 0.7)}. Assume that |𝐻𝑖𝑠𝑤 | = 10. Then

𝑃𝑟 [𝑣 = 4.0] = 𝑒0.5∗1.76/2∗(7/10)∑𝑗=5

𝑗=0
𝑒
0.5∗E(𝑣𝑗 )/2(7/10) = 0.223. The total probability

distribution of 𝑣𝑖 is {(0.223, 0.226, 0.207, 0.192, 0.152)}. Assume that

5.2 is selected as outer price, then platform 𝐴 receives 6 − 5.2 = 0.8.

5.3 Algorithm Analysis
Same as D-PCOM, S-PCOM also provides ((𝜖1 + 𝜖2) ∗max

𝑝∈𝑃
|𝑝𝑊 |)-

differential privacy. The calculational complexity of Algorithm 4 is

𝑂 ( |𝑃𝑐𝑜𝑝 | ∗ |𝑊𝑝𝑐𝑜𝑝 | ∗ |𝑉ℎ𝑖𝑠 |), where |𝑃𝑐𝑜𝑝 | is the number of cooper-

ative platforms, |𝑊𝑝𝑐𝑜𝑝 | is the number of workers in cooperative

platform, and |𝑉ℎ𝑖𝑠 | is the number of historical value. In Algorithm
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Algorithm 4: Optimal Pricing Algorithm

Input: 𝑟
′
, 𝑃𝑐𝑜𝑝 , 𝜖2

Output: The outer payment set 𝑉
′
𝑟

1 𝑉
′
𝑟 = ∅, 𝑑𝑚𝑖𝑛 = ⌊𝑑𝑟 ′ ⌋, 𝑑𝑚𝑎𝑥 = ⌈𝑑𝑟 ′ ⌉

2 foreach cooperative platform 𝑝𝑐𝑜𝑝 ∈ 𝑃𝑐𝑜𝑝 do
3 𝑊𝑎𝑣𝑎 = ∅, 𝑅ℎ𝑖𝑠 = ∅, 𝑉ℎ𝑖𝑠 = ∅
4 foreach𝑤 ∈𝑊𝑝𝑐𝑜𝑝 do
5 if 𝑑𝑖𝑠 (𝑙𝑤 , 𝑙𝑟 ′ ) ≤ 𝑟𝑎𝑑𝑤 then
6 Insert𝑤 into𝑊𝑎𝑣𝑎

7 foreach𝑤 ∈𝑊𝑎𝑣𝑎 do
8 foreach 𝑟 ∈ 𝑅𝑤 and 𝑑𝑟 ∈ [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥 ] do
9 Insert 𝑟 into 𝑅ℎ𝑖𝑠

10 if 𝑣𝑟 ∉ 𝑉ℎ𝑖𝑠 then
11 Insert 𝑣𝑟 into 𝑉ℎ𝑖𝑠

12 foreach 𝑣𝑖 ∈ 𝑉ℎ𝑖𝑠 do
13 foreach𝑤 ∈𝑊𝑎𝑣𝑎 do
14 Calculate E(𝑣𝑖 ,𝑤) = 𝑣𝑖 ∗ (1 − 𝑃𝑟 (𝑣𝑖 ,𝑤))
15 E(𝑣𝑖 ) = maxE(𝑣𝑖 ,𝑤)
16 foreach 𝑣𝑖 ∈ 𝑉ℎ𝑖𝑠 do
17 Calculate

𝑃𝑟 [𝑣 = 𝑣𝑖 ] = 𝑒𝜖2∗E(𝑣𝑖 )/2(max 𝑣/min |𝐻𝑖𝑠𝑤 |)∑| |𝑉ℎ𝑖𝑠 | |
𝑗=0

𝑒
𝜖
2
∗E(𝑣𝑗 )/2(max 𝑣/min |𝐻𝑖𝑠𝑤 |)

18 select 𝑣
′
𝑖
based on the probability distribution of 𝑣

19 insert (𝑣 ′
𝑖
, 𝑝𝑐𝑜𝑝 ) into 𝑉

′
𝑟

20 return 𝑉
′
𝑟

3, the complexity of local matching process is 𝑂 ( |𝑊 |) which is the

same as D-PCOM. The complexity of cooperative matching process

is 𝑂 (( |𝑃𝑐𝑜𝑝 | ∗ |𝑊𝑝𝑐𝑜𝑝 | ∗ |𝑉ℎ𝑖𝑠 |) +max |𝑊𝑐𝑜𝑝 |), where max |𝑊𝑐𝑜𝑝 | is
the largest size of worker set in cooperative platform. The com-

plexity of S-PCOM algorithm is 𝑂 ( |𝑅 | ∗ (|𝑊 | + (|𝑃𝑐𝑜𝑝 | ∗ |𝑊𝑝𝑐𝑜𝑝 | ∗
|𝑉ℎ𝑖𝑠 |) +max |𝑊𝑐𝑜𝑝 |)). The space complexity is𝑂 ( |𝑊 | + |𝑅 |), where
|𝑊 | (resp. |𝑅 |) is the size of workers (resp. requests).

6 EXPERIMENTAL EVALUATION
This section presents the effectiveness, efficiency and scalability of

our proposed PCOM algorithms by conducting a series of experi-

ments on both real and synthetic datasets.

6.1 Experiment Setup
Real Datasets. The real dataset is collected by DiDi, Shenzhou

and Yueche [1]. The real dataset contains the trajectory and the

revenue of every request per day. We use the request trajectory

data provided by the platform to calculate the data required by

workers and requests. We choose 3 real datasets for experiments:

the trajectory of Chengdu on 1st Nov. 2016 (denoted as DCN01 for

DiDi, YCN01 for Yueche, and SCN01 for Shenzhou), those on 15th

Nov. 2016 (denoted as DCN15, YCN15, and SCN15), and those of

Xian on 30th Nov. 2016 (denoted as DXN30, YXN30, and SXN30).

Table 2 shows the details of the real datasets where 𝑅 is the number

Table 2: Real Datasets

DiDi Yueche Shenzhou

DCN01 DCN15 DXN30 YCN01 YCN15 YXN30 SCN01 SCN15 SXN30

R 91321 100973 57611 90589 100448 57638 82331 89312 42134

W 9145 11199 2441 7038 9333 2686 5231 5481 1840

rad 1 1 1 1 1 1 1 1 1

Table 3: Synthetic Datasets

Factors Setting
|𝑅 | 500,1000,2500,5k,10k,20k,50k
|𝑊 | 100, 200, 500, 1000, 2500, 5k, 10k

Geo-I privacy level 𝜖1 0.1, 0.4, 0.7, 1
Exponential mechanism privacy level 𝜖2 0.1, 0.4, 0.7, 1

of requests,𝑊 is the number of workers and 𝑟𝑎𝑑 is the service

radius of the workers.

Synthetic Datasets. For the synthetic dataset, we randomly

pick up the requests and workers from other dates in real datasets.

We randomly select 500-50k requests and 100-10k workers, which

forms a set consisting of 1000-100k requests and 200-20k workers

in total. The location and arriving time are consistent with the

real dataset. We also vary two privacy levels. We assume that the

number of requests and the number of workers between different

platforms are the same. Table 3 shows the settings of these synthetic

datasets. We set the default value following the setting of existing

work [10, 20], which is |𝑅 | = 2500, |𝑊 | = 500, 𝜖1=0.7, and 𝜖2=0.7.

Compared Algorithms. We compared our D-PCOM and S-

PCOM with the state-of-art cross online matching algorithm [10],

denoted as RamCOM. We also compared our algorithms with the

online matching algorithm without cooperation [26], denoted as

TOTA. 1 km is the service radius of most research at present [10, 24,

25]. To make a reasonable comparison with the existing research,

we also set the service radius to 1 km. At the same time, 1 km is a

reasonable setting in real life which workers can quickly arrive at

this distance. We perform experiments on the threshold of S-PCOM

in advance, and find that the algorithm works best when k=3. So

the threshold is set to 3.

We compare the performance of the algorithms to show the

effectiveness of our algorithms in terms of four metrics: (1) the

total revenue of each platform, denoted as 𝑅𝑒𝑣𝐷 , 𝑅𝑒𝑣𝑌 , and 𝑅𝑒𝑣𝑆 ;

(2) the total number of served requests of each platform, denoted

as |𝑀𝐷 |, |𝑀𝑌 |, |𝑀𝑆 |; (3) the total number of completed cooperative

requests, denoted as𝐶𝑜𝑝𝑅 ; (4) The accepted ratio of the cooperative

requests, denoted as 𝐴𝑅. The average response time and memory

cost show the efficiency of our algorithms. We test the scalability

of our algorithms in terms of the total revenue, response time, and

memory cost w.r.t. |𝑅 |, |𝑊 |, 𝜖1, 𝜖2 respectively. Our experiments

are conducted on a machine with 16GB Memory, Intel(R) Core(TM)

i7-9700 CPU @ 3.00GHz, with Windows 10 system, using C++ and

its standard template library (STL).

6.2 Effectiveness
We compare our algorithms with the existing studies in terms of

effectiveness. The experiments are conducted based on the real

datasets, and the results are shown in Table 4-6. We evaluate our

algorithms in terms of four metrics: Total Revenue, Total number
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Table 4: The result on DCN01, YCN01 and SCN01

Methods 𝑅𝑒𝑣𝐷 (×106) 𝑅𝑒𝑣𝑌 (×106) 𝑅𝑒𝑣𝑆 (×106) |𝑀𝐷 | |𝑀𝐷 | |𝑀𝑆 | 𝐶𝑜𝑝𝑅 𝐴𝑅 Response Time (ms) Memory (MB)

TOTA 1.632 1.28 1.031 64,812 61,236 50,368 - - 0.63 48.7

RamCOM 1.661 1.52 1.231 68,672 65,235 52,349 72,054 0.667 1.21 48.7

D-PCOM 1.695 1.393 1.183 75,217 64,492 54,961 19,132 0.404 2.31 51.9

S-PCOM 1.658 1.48 1.195 66,707 69,210 50,209 71,158 0.613 12.02 52.4

Table 5: The result on DCN15, YCN15 and SCN15

Methods 𝑅𝑒𝑣𝐷 (×106) 𝑅𝑒𝑣𝑌 (×106) 𝑅𝑒𝑣𝑆 (×106) |𝑀𝐷 | |𝑀𝐷 | |𝑀𝑆 | 𝐶𝑜𝑝𝑅 𝐴𝑅 Response Time (ms) Memory (MB)

TOTA 1.783 1.731 1.059 69,511 72,151 50,431 - - 0.76 53

RamCOM 1.891 1.873 1.191 71,831 75,651 53,693 75,571 0.75 1.44 53

D-PCOM 1.888 1.824 1.162 78,841 75,266 53,171 24,741 0.449 2.39 54.2

S-PCOM 1.886 1.86 1.216 70,872 74,666 53,914 73,951 0.6 14.34 57.9

Table 6: The result on DXN30, YXN30 and SXN30

Methods 𝑅𝑒𝑣𝐷 (×106) 𝑅𝑒𝑣𝑌 (×106) 𝑅𝑒𝑣𝑆 (×106) |𝑀𝐷 | |𝑀𝐷 | |𝑀𝑆 | 𝐶𝑜𝑝𝑅 𝐴𝑅 Response Time (ms) Memory (MB)

TOTA 0.512 0.509 0.421 22,420 22,134 16,453 - - 0.45 19.6

RamCOM 0.587 0.661 0.513 24,391 24,097 18,104 15,562 0.351 0.95 19.6

D-PCOM 0.557 0.638 0.454 25,551 25,751 17,881 10,657 0.262 1.43 21

S-PCOM 0.613 0.658 0.475 23,766 24,337 17,950 14,840 0.321 2.15 24.3

of completed requests, Total number of Cooperative requests and

Acceptance Ratio. Since the real dataset does not contain the privacy

level, we set 𝜖1=0.7, 𝜖2=0.7 for two PCOM algorithms.

6.2.1 Effectiveness w.r.t Total Revenue. The results show that our

PCOM algorithms still maintain the effectiveness of cooperative

matching under the condition of privacy protection. Take the result

in Table 4 as an example. Comparing to TOTA, D-PCOM increases

the total revenue of each platform by an average of $17347 per

day, while S-PCOM increases $20501. Compared to RanCOM which

does not consider data privacy, the PCOM algorithms only decrease

$4152 which is 1.8% of the total revenue. The effectiveness (w.r.t.

total revenue) of PCOM algorithms has been proven.

6.2.2 Effectiveness w.r.t Total Number of Served Requests. Com-

pared to TOTA, PCOM algorithms both increase the total number

of served requests. Since D-PCOM assigns every possible request

to the local worker, the number of served requests is the largest. In

most cases, the number of served requests of S-PCOM is smaller

than that of D-PCOM. However, the total revenue of S-PCOM is

larger than that of D-PCOM which means S-PCOM serves more

high-value requests. The number of served requests in S-PCOM is

smaller than that in RamCOM due to the perturbation of location.

Some requests cannot be served based on their real location.

6.2.3 Effectiveness w.r.t Total number of Cooperative Requests. Since
TOTA algorithm solves the single-platform matching problem, it

does not have cooperative requests. The total number of cooperative

requests of D-PCOM is smaller than the algorithms with threshold

since it considers the local matching process first. The number of

cooperative requests in S-PCOM is smaller than that in RamCOM
due to the perturbation of location.

6.2.4 Effectiveness w.r.t Acceptance Ratio. TOTA algorithm solves

the single-platform matching problem, it does not have acceptance

ratio. The acceptance ratio of D-PCOM is smaller than S-PCOM. It

means that considering the preference of available workers and the

willingness of cooperation in the pricing process is useful.

6.3 Efficiency
Wedemonstrate the efficiency of the algorithm based on its response

time and memory cost. The experimental results are shown in 4-6.

6.3.1 Efficiency w.r.t Response Time. The response time of PCOM

algorithms is larger than that of TOTA and RamCOM. Because the

unit of response time is milliseconds, it can be tolerated in the real

world. Therefore, the PCOM algorithms remain highly efficient.

6.3.2 Efficiency w.r.t Memory Cost. The memory costs of these

algorithms are almost the same. Since in the pricing process, the

PCOM algorithms select the outer payment based on the historical

data, they cost more memory. Based on the size of the given real

dataset, such a small memory cost shows that the PCOM algorithms

are cost-efficient.

6.4 Scalability
We test the scalability of our algorithms on synthetic datasets.

6.4.1 Total revenue w.r.t |𝑅 |. Figure 4(a) shows the results of total
revenue w.r.t the total number of requests |𝑅 |. For all algorithms, the

total revenue increases with the increase of |𝑅 | due to the increase

of the completed requests. However, the magnitude of growth is

not linear. Because as the number of requests grows, the number

of workers will be insufficient.

6.4.2 Total revenue w.r.t |𝑊 |. Figure 4(b) shows the results of total
revenue w.r.t the total number of workers |𝑊 |. When |𝑊 | < 1000,
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Figure 4: Scalability of Privacy-preserving Cooperative Online Matching Algorithms

the total revenue increases rapidly, since there are sufficient avail-

able workers. However, since the default number of requests is 2500,

when |𝑊 | > 1000, all the requests can be served by local worker.

6.4.3 Total revenue w.r.t 𝜖1. Figure 4(c) shows the results of to-

tal revenue w.r.t the privacy level 𝜖1. The result shows that when

𝜖1 < 0.7, the privacy mechanism has a significant impact on total

revenue. Many cooperation requests are rejected in the fifth step

of PCOM because of excessive perturbation of the geographic lo-

cation. When 𝜖1 > 0.7, the matching results gradually converge.

S-PCOM performs a more cooperative process, so the perturbation

of geographical location has a much greater impact than D-PCOM.

6.4.4 Total revenue w.r.t 𝜖2. Figure 4(d) shows the results of total
revenue w.r.t the privacy level 𝜖2. The result shows 𝜖2 has little

effect on the total revenue. That is because the result of the utility

function in the privacy mechanism is similar. Although the privacy

level has little effect on the results, it still guarantees that the data

will not be attacked.

6.4.5 Response Time w.r.t |𝑅 |. Figure 4(e) shows the results of re-
sponse time w.r.t the total number of requests |𝑅 |. The response
time increases with the increase of |𝑅 |, since more requests should

be assigned. The largest response time is smaller than 5ms and

the increase of response time is almost linear with the exponential

increase of |𝑅 |, which ensures the scalability of the algorithms.

6.4.6 Response Time w.r.t |𝑊 |. Figure 4(f) shows the results of

response time w.r.t the total number of workers |𝑊 |. The result
shows that the response time of S-PCOM is more sensitive since its

complexity is related to |𝑊 |. The largest response time is smaller

than 20ms, which ensures the scalability of the algorithms.

6.4.7 Response Time w.r.t 𝜖1 and 𝜖2. Figure 4(g) and 4(h) show

the response time w.r.t two privacy level in PCOM algorithms. The

result shows they both have little effect on the result. That is because

the privacy level does not affect the complexity of the algorithm.

6.4.8 Memory cost w.r.t |𝑅 |, |𝑊 |, 𝜖1 and 𝜖2. Figure 4(i), 4(j), 4(k)
and 4(l) show the memory costs of algorithms w.r.t. |𝑅 |, |𝑊 |, 𝜖1 and
𝜖2 respectively. It can be seen that as the number of workers and

requests increases, the memory costs also increase. This is because

the increased data needs more memory to store. However, privacy

levels do not affect memory costs as they do not increase data.

6.5 Summary of Result
The experimental results show that the privacy level of location has

a greater impact on the two PCOM algorithms because it directly
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affects the accuracy and completeness of matching. The privacy

level of pricing has little effect on the two algorithms because the

utility function produces similar results. The experimental results

also show that when the degree of privacy is reasonably chosen

(i.e. 𝜖=0.7), S-PCOM performs similarly to the optimal cooperative

matching algorithm that does not consider privacy.

7 RELATEDWORK
Spatial Crowdsourcing Matching. The Spatial Crowdsourcing
Matching problem is based on the task assignment. The main pur-

pose of task assignment is to arrange workers and requests un-

der specific objectives, while satisfying some spatial-temporal con-

strains. According to the arrival scenario, the task assignment ap-

proaches can be categorized into two types: static scenario and

dynamic scenario. We mainly focus on the second scenario. In

dynamic scenario, the algorithms are classified into two types, one-

sided matching and two-sided matching. In one-side matching, only

the information of one-side is unknown, while in two-sided match-

ing, the information of both side is unknown. Approaches have been

proposed to maximize the number of assignments [15–17, 28, 30]. In

one-side matching, Jaillet et al. [16] apply linear program and obtain

the best-known competitive ratio of 0.706. In two-side matching,

Wang et al. [30] extend the charging-based framework to obtain a

better ratio of 0.526. Tong et al. [28] apply the offline-guide-online

method to obtain a ratio of 0.47. Approaches have also been pro-

posed to maximize the total revenue [6, 21]. In one-side matching,

Aggarwal et al. [6] propose a perturbed Greedy algorithm under

adversarial order which achieves a competitive ratio of 1 − 1

𝑒 . In

two-side matching, Ting et al. [21] propose a randomized algorithm

Greedy-RT under adversarial order.

The task assignment algorithms all focus on different objec-

tives on one single platform. When the distribution of requests

and workers is non-uniform, some requests cannot be accepted.

This situation will reduce the revenue of platform the satisfaction

of users. In order to solve this problem, Cheng et al. [10] propose

two Cross Online Matching algorithms which enable cooperation

between platforms. Both of these algorithms can increase the plat-

form’s revenue and solve the problem of non-uniform distribution

of requests and workers. However, these two algorithms do not

consider the issue of data privacy between platforms.

The Incentive Mechanism Problem. The incentive mech-

anism problem determines the rewards to workers in order to

motivate more workers to serve the request. The researches on

this problem is generally divided into two models. First is supply-

and-demand-aware model. In this model, the platform decides the

reward according to the dynamic supply and demand in space and

time. Chen et al. [9] use Markov decision process to determine the

reward to workers. Tong et al. [27] aim to find the optimal pricing

strategy based on bipartite graphs. The second model is auction-

based model. In this model, workers can submit their expected

reward, and the platform makes decision afterward. [8] applies

first-price auction scheme in incentive mechanism for ride-sharing.

The studies above focus on the incentive mechanism on a single

platform. These studies are not applicable due to the requirements

of cross onlinematching problem. The incentivemechanisms in [10]

effectively solve this problem. However, these mechanisms are cal-

culated based on the historical request data of the other platforms,

and the data of other platforms is completely exposed. The mecha-

nisms in our work is privacy-preserved which can reasonably price

the requests without exposing the data.

Privacy-Preserving Task Assignment in Spatial Crowd-
sourcing. In recent years, privacy plays an important role in spatial

crowdsourcing. Most researches focus on the privacy of the location

information of tasks and workers. Kazemi et al. [18] design a voting

mechanism based on the spatial cloak of the workers. Recently,

Differential Privacy [13] is widely used in privacy-preserving task

assignment. To et al. [22] adopt the Private Spatial Decomposi-

tion approach [11] and devise a privacy mechanism to protect the

count of workers in regions. However, these mechanisms cannot

set the privacy on individual location. To solve this problem, Geo-

Indistinguishability [7] is proposed as a formal notion of location

privacy. Tong et al. [20] design a privacy mechanism based on Hi-

erarchically Well-Separated Trees for online task assignment, and

prove the competitive ratio of𝑂 ( 1
𝜖4

log𝑁 log
2 𝑘) where 𝜖 is the pri-

vacy budget. The mechanisms above guarantee the location privacy

between the platform and the worker (request). Using similar ideas,

the mechanisms in our work guarantee the location privacy of the

tasks between platform and platform.

8 CONCLUSION
In this paper, we propose Privacy-preserving Cooperative Online

Matching, which protects sensitive data during the cooperative

matching process. We also design a PCOM framework, and theoret-

ically prove that it provides ((𝜖1 + 𝜖2) ∗max

𝑝∈𝑃
|𝑝𝑊 |)-differential pri-

vacy. Based on the framework, we propose two algorithms D-PCOM

and S-PCOM with two privacy-preserving pricing mechanisms. Ex-

tensive experimental results over real and synthetic datasets show

the effectiveness and efficiency of our algorithms.

In future work, researchers can further discuss more privacy

mechanisms based on the PCOM framework. Similar to single-

platform task matching, the cooperative matching algorithm that

maximizes the benefits of each platform still needs to be studied.
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