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ABSTRACT
Graph Neural Networks (GNNs) have shown exceptional perfor-
mance across a wide range of applications. Current frameworks
leverage CPU-GPU heterogeneous environments for GNN model
training, incorporating mini-batch and sampling techniques to miti-
gate GPU memory constraints. In such settings, sample-based GNN
training can be divided into three phases: sampling, gathering, and
training. Existing GNN systems deploy various task orchestration
methods to execute each phase on either the CPU or GPU. How-
ever, through comprehensive experimentation and analysis, we
observe that these task orchestration approaches do not optimally
exploit the available heterogeneous resources, hindered by either
inefficient CPU processing or GPU resource bottlenecks.

In this paper, we propose NeutronOrch, a system for sample-
based GNN training that ensures balanced utilization of the CPU
and GPU. NeutronOrch decouples the training process by layer and
pushes down the training task of the bottom layer to the CPU. This
significantly reduces the computational load and memory footprint
of GPU training. To avoid inefficient CPU processing, NeutronOrch
only offloads the training of frequently accessed vertices to the
CPU and lets GPU reuse their embeddings with bounded staleness.
Furthermore, NeutronOrch provides a fine-grained pipeline design
for the layer-based task orchestrating method. The experimental
results show that compared with the state-of-the-art GNN systems,
NeutronOrch can achieve up to 11.51× performance speedup.
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1 INTRODUCTION
Graph Neural Networks (GNNs) [48] are a novel class of Deep
Neural Networks (DNNs) designed to process graph-structured data.
They have demonstrated remarkable effectiveness across various
graph applications [2, 7, 8, 21, 38, 46, 54]. Recently, GPUs have been
extensively used to accelerate GNN training owing to their high
memory bandwidth and massive parallelism [15, 20].

Considering the growing sizes of graphs in real-world applica-
tions, full-graph GNN training that loads and trains the entire graph
on the GPU is impractical due to the limited GPU memory capacity
[17, 24, 33, 42, 44]. As a result, sample-based approaches that train
on sampled subgraphs have emerged as a promising solution for
training large graphs with limited GPU resources [11, 53, 56]. In
this approach, the input data, including vertex features and graph
structure, are stored in the host memory while the training pro-
cess is offloaded to GPUs [43, 57]. The sample-based GNN training
divides the training vertices into multiple individual computation
units (i.e., batch). To train on each batch, the training process first
samples the 𝐾-hop subgraphs for the training vertices, following
a given neighbor sampling rule, then gathers the required vertex
features based on the sampled subgraph and loads the subgraph and
the involved vertex features onto the GPU. Finally, GPU performs
training process and updates the corresponding model parameters.

This training mechanism, known as the sample-gather-train
paradigm has gained widespread adoption in various GNN systems
[3, 5, 9, 14, 23, 28–30, 36, 39, 40, 42, 43, 47, 50, 52, 55]. These systems
decouple the three steps and deploy them on different computation
devices to achieve high performance. Early systems [5, 23, 36, 42, 43]
employ graph sampling and feature gathering on CPUs. These
systems store the graph data in the CPU memory, perform CPU-
based graph sampling, and collect the required features on the CPU
side before transferring them to GPUs. This approach allows the
GPUs to be dedicated solely to training tasks. On the other hand,
some other systems [3, 19, 28, 39, 43, 47, 50, 52, 55] leverage GPU-
accelerated graph sampling. They store the graph topology in either
GPU or pinned CPU memory and perform the sampling on GPUs,
relieving CPUs from the heavy random memory access. Moreover,
recent systems [3, 23, 28, 39, 47, 50, 52, 55] also employ GPU-based
feature gathering to optimize overall performance. They store the
vertex feature completely or partially (with a caching mechanism)
on GPUs, converting the heavy host-GPU data communication and
CPU memory access to efficient GPU global memory access. The
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Figure 1: Classification tree of existing GNN systems and
their task orchestrating methods.

GPU-based graph sampling and GPU-based feature caching can be
used jointly to optimize performance.

Figure 1 provides an overview of existing GNN systems and their
task orchestrating methods using a 3-layer binary tree. Each path
from the root to the leaf represents a specific task orchestrating
method, where the CPU is selected when traversing the left child,
and the GPU is selected when traversing the right child. Since
performing training on the CPU is not an efficient option when
GPU is equipped, the existing task orchestrating methods on CPU-
GPU heterogeneous framework contain only four categories.

Having conducted intensive experiments and analysis, we find
that existing task orchestrating methods that decouple the compu-
tation based on the step do not fully utilize heterogeneous resources
due to inefficient CPU processing or GPU resource contention. As-
signing one or two steps to the CPU may cause inefficient CPU
processing to become a bottleneck and lead to a long GPU waiting
time to receive the input training data. In contrast, assigning two
or more steps to the GPU may result in GPU resource contention
although GPU parallel processing can significantly enhance the
performance of each single step. This is because the training data,
cached features, and graph topology need to be simultaneously
stored within the constrained GPU memory while the computation
kernels of sampling and training are completed for GPU cores.

To illustrate this, we implement the four task orchestrating meth-
ods in DGL [43] and compare their performance on a 3-layer GCN
model with the Reddit dataset [21]. We evaluate the GPU utilization,
CPU utilization, and per-epoch runtime as shown in Figure 2. The
CPU and GPU utilization (the formal definitions are given in Section
2.3) implies the efficiency of task orchestration which affects the
training performance on heterogeneous platforms. Generally, high
GPU utilization is a prerequisite for achieving high performance,
i.e., shorter runtime, but strategically offloading computation to the
CPU can further enhance overall performance. Take the runtime
results in Figure 2 as an example, despite the lower GPU utilization
of the second method (CPU:S GPU:G T) compared to the fourth
method (CPU:- GPU:S G T), the second method boasts higher CPU
utilization, resulting in higher overall resource utilization. Conse-
quently, the second method achieves a shorter runtime compared to
the fourth one. Based on these observations, we design a new task
orchestrating method that comprehensively utilizes heterogeneous
resources and achieves optimal runtime performance.

In this work, we rethink the roles of CPU and GPU in sample-
based GNN training and propose a hotness-aware layer-based task
orchestrating method to optimize performance. Unlike existing
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Figure 2: Comparison of resource utilization and per-epoch
execution time for different task orchestrating methods. The
S, G, and T represent the sample, gather, and train steps of
sample-based GNN training.

methods that allocate each step to a single device, we decouple
the training task by layers and employ the computation of each
sub-task (sample-gather-train) to a specific device. This is based on
our observation that the multiple hops of neighbor sampling cause
most of the training resources (especially the memory) consump-
tion to be in computations from the bottom layer (i.e., the outermost
layer of the sampled subgraph). Offloading computation of the bot-
tom layer to the CPU can significantly reduce the computation
and memory requirement of the GPU. Furthermore, the volume of
CPU-GPU communication can be significantly reduced by transfer-
ring computed embeddings instead of raw features. Considering
offloading the computation of a complete GNN layer to the CPU
may make the CPU processing a new bottleneck if not carefully
optimized, we propose a hotness-aware embedding reusing method
that reduces CPU computation by periodically computing the his-
torical embedding (HE) of high-hotness vertices (i.e., frequently
accessed vertices) and reusing them across batches. To manage the
staleness caused by reusing HE from previous batches, we propose
a super-batch pipelined training, which combines bounded stale-
ness processing [6, 12, 30, 33] with CPU-GPU pipelining techniques.
Specifically, we combine 𝑘 adjacent batches into a super-batch and
control the staleness of HE among super-batches, overlapping GPU
and CPU computation tasks while strictly and efficiently implement-
ing bounded staleness. Previous HE-based methods [6, 9, 14, 33]
uniformly reuse HE for all vertices, neglecting the influence of
vertex hotness on resource utilization or failing to ensure bounded
staleness among batches. Such approaches are not applicable to our
method, which emphasizes balancing GPU-CPU heterogeneous re-
source utilization while ensuring bounded accuracy. By integrating
the above techniques, we propose NeutronOrch, a sample-based
GNN system that effectively utilizes heterogeneous resources.

We make the following contributions.

• We provide a comprehensive analysis of resource utilization
issues associated with the task orchestrating methods for sample-
based GNN systems on GPU-CPU heterogeneous platforms.

• Wepropose a hotness-aware layer-based task orchestratingmethod
that effectively leverages the computation andmemory resources
of the GPU-CPU heterogeneous system.

• We propose a super-batch pipelined task scheduling method that
seamlessly overlaps different tasks on heterogeneous resources
and efficiently achieves strict bounded staleness.
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Table 1: Notations

Notation Description

a𝑙𝑣 aggregation results vector of vertex 𝑣 at the 𝑙𝑡ℎ layer
h𝑙𝑣 embedding vector of vertex 𝑣 at the 𝑙𝑡ℎ layer
Ai Adjacency matrix of the 𝑖𝑡ℎ iteration
Âi Adjacency matrix after symmetric normalization of the 𝑖𝑡ℎ iteration
W𝑙

𝑖
Weight matrix at the 𝑙𝑡ℎ layer of the 𝑖𝑡ℎ iteration

H𝑙
𝑖

Embedding matrix at the 𝑙𝑡ℎ layer of the 𝑖𝑡ℎ iteration
Z𝑙
𝑖

Input matrix to activation function at the 𝑙𝑡ℎ layer of the 𝑖𝑡ℎ iteration
∇L Gradient of the loss function
∇Z𝑙L = 𝛿𝑙 Gradient matrix of the loss L with respect to Z𝑙 at the 𝑙𝑡ℎ layer
∇W𝑙L Gradient matrix of the loss L with respect toW𝑙 at the 𝑙𝑡ℎ layer
𝑔(𝑊𝑖 ) Gradient of the loss function with respect to𝑊 at the 𝑖𝑡ℎ iteration
L Loss of the GNN
𝐼 Number of iterations in an epoch or number of batches
𝐿 Number of layers of GNN model
𝜂 Learning rate
𝜖 Staleness bound

We evaluate the performance of NeutronOrch using three popu-
lar GNNmodels, GCN [21], GraphSAGE [11], and GAT [41]. Experi-
mental results demonstrate that, compared with five state-of-the-art
sample-based GNN systems, DGL [43], Pagraph [23], GNNlab [52],
DSP [3], and GNNAutoScale [9], NeutronOrch achieves speedups
of up to 11.51×, 9.72×, 2.43×, 1.63×, and 9.18×, respectively.

2 BACKGROUND
2.1 Graph Neural Networks
Graph-structured data serves as the input for Graph Neural Net-
works (GNNs), where each vertex or edge is associated with a
high-dimensional feature vector. A typical GNN model comprises
multiple layers that compute a low-dimensional embedding for
each vertex. Each layer contains an aggregation phase and an up-
date phase [58]. For example, in a GNN with 𝐿 layers, during the
aggregation phase of layer 𝑙 , each vertex 𝑣 combines its neighbors’
embedding vectors at the 𝑙 − 1 layer with its own embedding vector
to generate the aggregation result 𝑎𝑙𝑣 using an aggregation function:

𝑎𝑙𝑣 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸 (ℎ𝑙−1𝑢 |∀𝑢 ∈ 𝑁𝑖𝑛 (𝑣) ∪ {𝑣}) (1)

where 𝑁𝑖𝑛 (𝑣) represents the incoming neighbors of vertex 𝑣 , ℎ𝑙𝑣
represents the node embedding vector of vertex 𝑣 at l-th layer, and
ℎ0𝑣 is the input feature of vertex 𝑣 . The aggregate functions can be
sum, average, max/min, etc. Next, during the update phase, each
vertex computes its output embedding vector ℎ𝑙𝑣 by applying an
update function to the aggregation result 𝑎𝑙𝑣 :

ℎ𝑙𝑣 = 𝑈𝑃𝐷𝐴𝑇𝐸 (𝑎𝑙𝑣,𝑊 𝑙 ) (2)

After𝐿 layers, each vertex’s feature vector becomes a low-dimensional
embedding of its neighbors up to 𝐿 hops away.

2.2 Sample-based Mini-batch GNN Training
Sample-based mini-batch GNN training splits the training vertices
into multiple mini-batches. It first splits training vertices into mini-
batches according to the batch size, then samples the multi-hop
subgraph of each batch. The sampled subgraph is generated by
a reverse traversal from the training vertices. There is a fanout
parameter to specify the number of sampled neighbors per layer or
vertex for controlling the size of the sampled subgraph. According
to the sampled subgraph, we launch the gathering step to collect
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Figure 3: An example of sample-based GNN training for a
two-layer GNN, where vertex 4 is the vertex with a ground-
truth label for training.

the features of sampled vertices. The batch of training vertices, the
gathered features, and the sampled subgraph are then fed into the
GNNmodel for training. Specifically, there is a forward computation
process of vertex embeddings, loss computation with predicted
labels and ground-truth labels, and a backward computation process
of gradients. The layer-wise parameters are updated after each batch
processing, so the parameters are updated multiple times instead
of once in full-graph training.

Figure 3 shows an illustrative example of sample-based mini-
batch GNN training model mapping to CPU-GPU heterogeneous
execution environment. This is a 2-layer GNN model on a graph of
9 vertices with a training set containing only a single vertex 4. The
input data, including graph data and high-dimensional features,
are typically stored in host memory, while GPUs perform the GNN
training on mini-batched and sampled subgraphs. In each training
batch, this approach follows a sample-gather-train processing
flow. Firstly, the graph sampling algorithm uniformly selects two
neighboring vertices for each vertex. Secondly, the required ver-
tex features are gathered based on the sampled subgraph and the
training vertices. Then, they are loaded from the CPU to the GPU
through a PCIe interconnect. Finally, the GPU performs forward
and backward computations, computing and updating the model
parameters correspondingly.

2.3 Resource utilization
We adopt the existing definitions of CPU and GPU utilization (𝑈𝐶𝑃𝑈
and𝑈𝐺𝑃𝑈 ) following the existing works [18, 25, 26, 31]. The CPU
utilization 𝑈𝐶𝑃𝑈 is defined by the ratio of busy cycles to total

cycles across all physical cores [18], i.e.,𝑈𝐶𝑃𝑈 =

∑|𝑐𝑜𝑟𝑒𝑠 |
𝑖=1 𝑇

(𝑖 )
𝑏𝑢𝑠𝑦

𝑇𝑡𝑜𝑡𝑎𝑙×|𝑐𝑜𝑟𝑒𝑠 | ×
100%, where𝑇 (𝑖 )

𝑏𝑢𝑠𝑦
denotes the number of busy cycles of core 𝑖 , and

𝑇𝑡𝑜𝑡𝑎𝑙 represents the total cycles of each core. The GPU utilization
𝑈𝐺𝑃𝑈 is defined as the percentage of the elapsed time during a past
sample period in which one or more kernels were executing [31],
i.e.,𝑈𝐺𝑃𝑈 =

𝑇𝑏𝑢𝑠𝑦
𝑇𝑡𝑜𝑡𝑎𝑙

× 100%. Here, 𝑇𝑏𝑢𝑠𝑦 represents the time elapsed
on actual processing, and 𝑇𝑡𝑜𝑡𝑎𝑙 denotes the total elapsed time. In
the implementation, 𝑈𝐶𝑃𝑈 and 𝑈𝐺𝑃𝑈 are measured by reading
the /proc/stat file and executing the nvidia-smi command once
every second, respectively.
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Table 2: The runtime breakdown (in seconds) of sample and
gather steps on DGL with different datasets. The FC and FT
represent the feature collection and feature transfer of the
gather step. GNN: A 3-layer GCN [21].

Dataset Sample Gather (FC) Gather (FT) Total
Reddit 2.7/11% 9.1/38% 6.0/25% 23.7
Lj-large 128.8/14% 384.4/41% 252.5/27% 935.3
Orkut 78.8/10% 384.3/48% 249.1/31% 813.3
Wikipedia 209.4/12% 651.8/40% 570.9/33% 1669.1
Products 9.9/37% 7.2/27% 4.1/15% 26.8
Papers100M 11.5/32% 8.6/24% 6.4/18% 36.84

3 EXISTING SYSTEMS AND THEIR
LIMITATIONS

A key challenge in achieving high-performance sample-based GNN
training is orchestrating tasks on the GPU-CPU heterogeneous en-
vironments. Existing sample-based GNN systems [23, 28, 29, 36, 42,
43, 47, 50, 52] typically separate the training process based on the
operations, i.e., sample, gather, and train, and assign each opera-
tion to the GPU or the CPU. However, they often exhibit suboptimal
performance due to inefficient CPU processing or GPU resource
contention. To illustrate this, we conduct a series of experiments to
analyze the problems of existing task orchestration methods.

3.1 Existing Task Orchestrating Methods
In Figure 1, we classify task orchestrating methods and list represen-
tative systems. Among eight possible methods, CPU-based training
is not utilized if a GPU is available on the platform. Therefore, we
only consider placing sampling and gathering on different devices
in the analysis. Further information regarding the used graphs, test
platforms, and system configurations can be found in Section 5.

Case 1: Placing sampling and gathering on CPUs suffers from
inefficient CPU processing We show an example of this case in
Figure 4 (a). In this case, inefficient sampling and feature gathering
on the CPU block the training pipeline, making data preparation
the main bottleneck for overall performance.

Neighbor sampling traverses the graph to obtain a multi-hop
sampled subgraph for each training vertex. It incurs massive com-
putation and irregular memory access, which makes the limited
computational resources of the CPU hard to accelerate [19]. On the
other hand, deploying the gathering step on the CPU, including
storing vertex features in the host memory and performing feature
collection and transfer, also proves to be inefficient [23]. This ineffi-
ciency arises from two main factors. Firstly, the slow external PCIe
interconnect makes the host-GPU feature transfer much slower
than GPU memory access [29]. Secondly, when loading the features
of neighbors, collecting and organizing the fragmented vertex fea-
ture into contiguous memory before communication (to leverage
the CUDA memory copy engine, cudaMemcpy) also consumes sub-
stantial CPU resources due to massive random memory accesses.
We run this task orchestrating method with a 3-layer GCN on all six
real-world graphs and analyze the time distribution for sampling
and gathering steps. As shown in Table 2, sampling and gathering
steps occupy 19.3% and 61.2% of the total runtime, respectively.
Specifically, the most significant overhead is the feature collection
in the gathering step, which accounts for 36.3% of the total runtime.

Table 3: The runtime breakdown (in seconds) of a training
epoch on DGL with CPU-based or GPU-based sampling. S,
G, and T represent sample, gather, and train steps. GNN: A
3-Layer GCN [21]. Batch size: 10000.

Configuration S G T Total +pipeline
CPU-based sampling 2.28 2.84 2.76 7.88 3.42 (-56.6%)
GPU-based sampling 0.78 2.69 2.75 6.22 3.54 (-43.1%)

On the other hand, the long sampling and gathering time also
causes low GPU utilization. The training step in the GPU needs to
wait for the slow CPU tasks. We can observe from Figure 2 that
merely around 25% of the GPU computational resources are utilized
when the CPU executes both sampling and gathering steps. Even if
only separate sampling or gathering is performed on the CPU, the
overall GPU utilization is still less than 65%.
Case 2: Placing sampling on the GPU suffers from GPU re-
source contention We show an example of this case in Figure 4
(b). In this case, the slow sampling can be accelerated through the
massively parallel processing capability of GPUs. However, the sam-
pling and training operations will compete for the GPU resources,
leading to suboptimal overall performance.

Sample-based GNN training typically employs a pipeline design
that overlaps the different steps to achieve high performance in
heterogeneous systems [23, 42, 43, 52]. Figure 5 (a) depicts an ideal
pipeline implementation where the operations of three batches
(numbered 1, 2, and 3) are fully overlapped. However, this opti-
mization requires different steps to be executed on independent
resources. When placing sampling on the GPU, it competes for
computation resources with the training step, leading to ineffi-
cient pipelining, as shown in Figure 5 (b). To illustrate this, we
evaluate the performance of DGL with pipelined optimization and
non-pipelined under both CPU-based and GPU-based sampling.
We run a 3-layer GCN on the Reddit graph and report the results
in Table 3. The GPU-based sampling with pipeline optimization
reduces the runtime of its non-pipelined version by 43.1%, which
is a lower improvement than the effect of pipeline optimization
on CPU-based sampling. Furthermore, with pipeline optimization,
GPU-based sampling shows inferior overall performance compared
to CPU-based sampling.
Case 3: Placing gathering on the GPU suffers fromGPUmem-
ory contention GPU-based gathering method leverages GPU
memory to cache the vertex features, converting the slow host-
GPU data communication into fast GPU memory access as much
as possible [3, 23, 28, 39, 47, 50, 52, 55]. However, the performance
of GPU data caching is affected by the available GPU memory. We
show an example of this case in Figure 4 (c). In actual training, a
substantial amount of global memory must be allocated for storing
the training data and intermediate results, leaving only a small
portion of memory available for feature caching. If using a large
cache buffer, the memory allocated for training has to be reduced,
resulting in the training with a small batch size. Unfortunately, this
trade-off may lead to inferior performance since the computational
power of GPUs cannot be fully utilized [10, 16]. To illustrate the
impact of batch sizes and the ratio of cached vertices (denoted by
cache ratio) on performance, we conduct experiments on DGL us-
ing the 3-layer GCN model on the Wikipedia. The results in Figure
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6 (a) and (b) demonstrate that training with a larger batch size is
beneficial for GNNs in terms of achieving better GPU utilization.
Although this consumes more GPU memory, it results in faster
execution. The results in Figure 6 (c) reveal that a larger cache ratio
results in a linear transfer reduction of features in the gathering step.
However, when increasing the batch size from 128 to 4096, the ratio
of cached vertices is decreased from 0.37 to 0.05 due to insufficient
GPU memory, which results in numerous cache misses. Moreover,
as the graph topology data and feature dimensions increase, the
benefits brought by caching vertices will further diminish.
Case 4: Placing sampling and gathering on the GPU suffers
from GPU memory and resource contention We show an
example of this case in Figure 4 (d). When all steps of sample-based
GNN training are executed on the GPU, it results in GPU contention
and CPU idle. The reasons for this situation have been discussed
in cases 2 and 3. Firstly, the computation kernels of sampling and
training compete for the limited GPU cores, leading to a slowdown
in both. Secondly, the batch data for training and cache data for

gathering contend with the limited GPU memory. When further
making the GPU responsible for the sampling step, the GPU needs
to additionally hold the graph topology data, which can make the
GPU memory contention worse.

3.2 Summary
We conduct experimental analysis on different task orchestrating
methods in GPU-CPU heterogeneous environments. Our obser-
vations reveal that step-based task orchestrating leads to an im-
balanced allocation of computational and memory resources. As-
signing two or more steps to the GPU may result in memory or
GPU resource contention. On the other hand, assigning one or two
steps to the CPU may cause inefficient CPU processing to become
a bottleneck. A well-designed CPU-GPU heterogeneous system
should ensure adequate and balanced CPU and GPU utilization to
achieve optimal performance. However, the step-based task orches-
trating methods fail to achieve this. This motivates us to design a
resource-balanced task orchestrating method.

4 NEUTRONORCH
We propose NeutronOrch, a sample-based GNN training system
that effectively improves CPU and GPU resource utilization through
two critical techniques.
Hotness-aware layer-based task Orchestrating. Unlike step-
based task orchestratingmethods, NeutronOrch decouples the train-
ing process by layers rather than steps and employs the sample-
gather-train computation of each sub-task to a single device, elimi-
nating the constraint of computing each step entirely on the CPU
or GPU. To prevent CPU computation from becoming a bottleneck,
NeutronOrch allows the CPU to compute embeddings only for the
hot vertices that are frequently accessed. Moreover, NeutronOrch
extends stale synchronous processing [12] to guarantee bounded
staleness of embedding reuse, thereby guaranteeing final accuracy.
Super-batch pipelined training. Concurrently executing sub-
tasks deployed on the GPU and CPU is essential to achieve high
performance. However, it is challenging for layer-based task orches-
trating because of the cross-layer data dependencies between the
CPU and GPU training process. To solve this, we propose a super-
batch pipelined training. In each super-batch, the CPU and GPU
execute sub-tasks concurrently and independently of each other so
that the training process is fully pipelined. In addition, this pipeline
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design ensures that the historical embeddings from the previous
super-batch are only accessible within the current super-batch,
naturally and efficiently enabling strict bounded staleness.

4.1 Hotness-Aware Layer-based Task
Orchestrating

In this section, we give a detailed discussion on the hotness-aware
layer-based task orchestrating. It maximizes CPU-GPU resource
utilization based on two principles. Firstly, partitioning the tasks in
a fine-grained manner to balance the workloads on the CPUs and
GPUs. Secondly, combining CPU and GPU resources to minimize
CPU-GPU communication overhead.

4.1.1 Layer-based Task Orchestrating. Unlike existingmethods that
allocate each step to a single device, we decouple the training task by
layers and employ the computation of each sub-task (sample-gather-
train) to a specific device. This is based on our observation that in
the k-hop sampled subgraph of GNNs, the number of vertices grows
exponentially across layers. The bottom layer, which represents the
outermost layer of the sampled subgraph, constitutes over 50% of
the training workload, so the computation and transfer overhead for
the bottom layer is the most expensive no matter using a large or a
small number of layers. Therefore, offloading the computation of the
bottom layer to the CPU can significantly reduce the computation
and memory requirement of the GPU.

As shown in Figure 4 (e), the CPU is responsible for the bottom
layer computation of GNN training, while the GPU is responsible for
the computation of the other layers. The CPU exhibits an inherent
advantage when executing the bottom layer. Firstly, as the storage
of features, the CPU can directly perform the GNN computation
of the bottom layer without executing the time-consuming feature
collection stage. Secondly, the CPU-GPU communication overhead
will decrease as the transfer objects are changed from the neighbors’
features to the computed embeddings. On the other hand, this
method makes more GPU memory available for training data, as
it maintains the batch data in both CPU and GPUs, resulting in
reduced GPU memory usage.

By employing layer-based task orchestrating, NeutronOrch sig-
nificantly reduces the computational workload and memory foot-
print of GPU training.

4.1.2 Hotness-aware Embedding Reusing. As shown in Figure 7
(a), executing a complete bottom layer in the CPU may cause the
CPU processing a new bottleneck because the computation volume
of the entire layer is high. Previous studies on caching policies
have demonstrated that a subset of vertices is frequently accessed
during sample-based GNN training [23, 28, 52], which is commonly
referred to as the “hot vertices”. By caching the features of these ver-
tices in the GPU, existing works can avoid repeatedly loading them
from the host memory, thereby reducing CPU-GPU communica-
tions. NeutronOrch follows similar ideas to design a hotness-aware
computation offloading method, which computes only the embed-
dings for hot vertices in the CPU and allows the GPU to reuse these
embeddings between batches within bounded staleness [6, 12, 33],
our task orchestrating method can substantially decrease the CPU
workload and CPU-GPU communication.

The main idea of reusing embeddings within bounded staleness
is to maintain the historical embedding ℎ̃ (𝑙 )

𝑖
for exact embedding

ℎ
(𝑙 )
𝑖

as an affordable approximation with a given bound [6, 12, 33].
Bounded staleness expects ℎ̃ (𝑙 )

𝑖
and ℎ (𝑙 )

𝑖
to be similar if the model

weights do not change too fast during the training. In NeutronOrch,
we use the number of model parameter updates, i.e., the number of
batches, as the bound. Specifically, if the bound is 𝑁 , a recently com-
puted embedding can be reused within the subsequent 𝑁 batches.
Using historical embeddings avoids the need for aggregating neigh-
bor features and the associated backward pass. This not only re-
duces the amount of raw features to load but also minimizes the
CPU workload.

Figure 7 (b) illustrates an example of the hotness-aware layer-
based task orchestrating method. During training, for hot vertices,
the CPU samples them in one hop and computes their embeddings,
which will be fetched and reused by the GPU training process
to reduce computation and communication. For the cold vertices
in the bottom layer, the GPU pulls the features of their vertices
and computes them locally. To guarantee model accuracy, it is
essential to control the version of reused embeddings within a
specified range of batches during training, which is known as a
concept of bounded staleness [12]. To achieve this, we propose
a super-batch pipelined training method that achieves bounded
staleness among batches by packing each consecutive 𝑁 batches
into a super-batch and controlling the embedding reusing among
super-batches during computation. In this way, each embedding
of the hot vertex is updated at least once within 𝑁 batches. A
detailed discussion is provided in Section 4.2. Additionally, we offer
theoretical analysis in Section 4.3 to demonstrate the correctness
of our design. By adopting this approach, NeutronOrch effectively
offloads computations to the CPU and prevents CPU computation
from becoming a performance bottleneck.

4.1.3 Hybrid Hot Vertices Processing for high-performance GPU
servers. Orchestrating tasks across CPUs and GPUs balances CPU
and GPU resource utilization and reduces CPU-GPU data com-
munication by offloading the computation of hot vertices to the
CPU. However, in cases where the computing server is equipped
with multiple GPUs but has limited CPU computing power, such
as in a single-CPU-multi-GPU environment, the contribution of
using CPU computation decreases because the improvement may
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not surpass the benefit brought about by the increased GPU re-
sources. To address this problem, we propose a hybrid processing
policy for hot vertices that further balances CPU and GPU uti-
lization by assigning hot vertices to both CPU computation and
GPU feature caching. When GPU resources significantly outnum-
ber CPU resources, NeutronOrch adaptively assigns hot vertices
to the GPU, utilizing feature caching to avoid computing them on
the CPUs. Specifically, during execution, NeutronOrch monitors
the time elapsed on GPU idleness caused by CPU computation and
the remaining available GPU memory. It adjusts the allocation of
hot vertices to GPU and CPU through a worklist, ensuring that
GPU memory does not overly subscribe while minimizing GPU
idle time. Note that NeutronOrch stops assigning hot vertices to
GPU when GPU memory is exhausted or the GPU idle time reaches
zero, as appropriately utilizing CPU computation can effectively
reduce data transfers. Compared to computing embedding of all hot
vertices on the CPU, our hybrid processing optimization can further
improve heterogeneous resource utilization on servers where GPU
resources are significantly powerful than CPU resources.

4.1.4 Discussion of NeutronOrch and other HE-based GNN training
frameworks. Recent studies [6, 9, 14, 33] have shown the benefits of
using historical embedding (HE) for GNN training acceleration. VR-
GCN [6] uses HE in GNN training to reduce the number of vertices
to sample. GNNAutoScale [9] reuses HE for all vertices to reduce
training memory consumption on the GPU. Refresh [14] caches HE
in GPU memory to reduce the CPU-GPU feature communication
and GPU training time. SANCUS [33] reuses HE for boundary ver-
tices to reduce communication in distributed full-graph training.
However, these frameworks focus on scenarios where training is
exclusively deployed on GPUs [6, 9, 14, 33], and either target dif-
ferent training paradigms [33], uniformly reuse HE for all vertices
[6, 9, 14] which does not consider the impact of vertex hotness to
the resource utilization, or do not strictly guarantee bounded stale-
ness [6, 9] among batches, which is not applicable to NeutronOrch
that focuses on balancing GPU-CPU heterogeneous resource uti-
lization and guaranteeing bounded accuracy. To achieve this goal,
NeutronOrch adopts several critical designs. 1) NeutronOrch se-
lectively computes HEs for the frequently accessed vertices and
maximizes CPU-GPU resource utilization by adjusting the propor-
tion of hot vertices assigned to CPU computation and GPU feature
cache (Section 4.1.3). 2) We conduct a theoretical analysis on the
convergence of NeutronOrch’s HE to demonstrate its correctness
(Section 4.3). Furthermore, NeutronOrch provides a super-batch
pipelining method, combining HE version control with pipelined
task scheduling to achieve efficient and strict bounded staleness
(Section 4.2).

4.2 Super-batch Pipelined Training
In this section, we discuss the data dependencies arising from the
integration of CPU and GPU computations and propose a super-
batch pipelined training method to manage them efficiently.

4.2.1 Data Dependencies. Seamlessly overlapping tasks across di-
verse computing resources through pipelining is essential to achieve
high performance on heterogeneous systems [3, 29, 47]. However,
implementing high-performance task pipelining in NeutronOrch is

a non-trivial task because the layer-based task orchestrating creates
cross-layer data dependencies between the CPU and GPU training
process. Figure 8 (a) illustrates data dependencies in NeutronOrch
when setting the stale bound to one epoch [6, 9]. The CPU updates
the embeddings for hot vertices when it reaches the stale bound,
and the training on the GPU must wait for the CPU to complete the
embedding computation for hot vertices. Consequently, the CPU
and GPU need to fall back to sequential computation, resulting in
inefficient resource utilization.

4.2.2 Pipeline Design. To address the above issues, we propose
a super-batch pipelined training method. Firstly, the embeddings
update for hot vertices in the CPU is partitioned into multiple
sub-computing tasks, each of which computes the embeddings for
hot vertices for subsequent multiple batches, which provides more
opportunities for pipelined designs. Secondly, we limit the stale
bound to several batches instead of one epoch because more tightly
controlled bounded staleness can help ensure model accuracy.

Before training starts, NeutronOrch combines 𝑛 batches into a
single super-batch. Then, we select a hot vertices queue for each
super-batch. As shown in Figure 8 (b), this is an illustrative exam-
ple of a super-batch pipelined training when 𝑛 = 4. During the
pipelined training, the CPU computes embeddings for hot vertices
for the next super-batch. In each super-batch, the GPU computes 𝑛
batches of training for a given batch size, sharing the historical em-
beddings provided by the CPU from the last super-batch. Compared
to updating the embedding for all hot vertices, updating the embed-
ding for only the next super-batch has less computation overhead
and reduces the version gap between historical embeddings and
exact embeddings. Our pipeline design consists of four stages, each
serving a specific purpose. We now elaborate on these individual
stages.
Stage 1: Sampling. The sampling tasks are divided between the
CPU and GPU. Firstly, the CPU samples the hot vertices and gener-
ates a one-hop subgraph for bottom-layer training. Next, the GPU
initiates n-hop sampling, and upon reaching the bottom layer, it
skips the vertices previously sampled by the CPU. Meanwhile, the
GPU completes 𝑛 rounds of sampling before 𝑛 training rounds to
mitigate potential resource contention between the sampling and
training kernels.
Stage 2: Embedding computation for hot vertices. The CPU
is responsible for updating the embeddings of the hot vertices in-
tended for the subsequent super-batchwithin each super-batch. The
CPU conducts training based on the hotness order of the vertices
and utilizes the most recent version of parameters.
Stage 3: Feature gathering. During the gathering step, the embed-
dings of hot vertices and the features of cold vertices are transferred.
After being transferred, the embeddings of the hot vertices will be
cached in the GPU for use in other batches within a super-batch.
Stage 4: Training on GPU. The GPU training starts after 𝑛 rounds
of GPU sampling. During the forward pass, the GPU pulls the
historical embeddings of hot vertices in the bottom layer from either
the CPU or the GPU cache. For other layers, the GPU performs
aggregation and updates alternately as normal. In the backward
pass, the GPU updates the parameters of each layer and shares the
parameters of the bottom layer with the CPU.
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Figure 8: An illustrative example of super-batch pipelined training.

Bounded Staleness. Model parameters are updated once within
each batch, so we record the model parameter version by batch
number. The CPU trains hot vertices in order of hotness and utilizes
the latest model parameters. As shown in Figure 8 (b), during the
first super-batch, the embeddings for hot vertices in the CPU may
have versions ranging from 0 to 𝑛 − 1, where 𝑛 is the number of
batches contained within a super-batch. In the second super-batch,
when the GPU pulls embeddings for hot vertices from the CPU, it
may receive historical embeddings with model parameters that are
older than the current version. The CPU must complete the embed-
dings update for hot vertices for the next super-batch within the
current super-batch. This constraint ensures that the version gap
remains within two super-batches, effectively preventing excessive
staleness. Figure 8 (b) illustrates that the most significant version
gap may occur in the last batch of the second super-batch. During
this batch, the model parameter version is (𝑖 + 2) · 𝑛 − 1, and it
may utilize historical embeddings from the previous super-batch
with a model parameter version of 𝑖 · 𝑛. For the other batches, the
version gap between historical embeddings and exact embeddings
is smaller than the upper bound of 2𝑛 − 1.

4.3 Convergence Analysis
In this section, we provide a theoretical analysis of convergence
guarantees for NeutronOrch. Bounded staleness has been widely
used by machine learning systems [6, 12, 30, 33, 52], and we present
the theoretical analysis referring to the SANCUS [33] and VR-GCN
[6]. To ensure bounded staleness, NeutronOrch designs super-batch
pipelined training to limit the version (batch number) bound to 2𝑛,
where 𝑛 is the number of batches in a super-batch. In this process,
we monitor the model weight variation between adjacent super-
batches, and the maximum model weight variation 𝜖 that can be
tolerated be defined as 𝜖 = 𝑚𝑎𝑥 △

𝑊  × 2𝑛, where 𝑚𝑎𝑥 △
𝑊 

denotes the maximum value variation of 𝑊 in a model weight
update. With this staleness bound, we deduce the convergence
guarantee as follows.
• Proposition 1 provides the necessary and fundamental inequal-

ity operations required for the theoretical analysis;
• Lemma 1 states that by imposing bounded staleness on the

weights, the approximations of the embeddings and intermediate
matrix results are close to the exact results;

• Lemma 2 further demonstrates that the approximations of gra-
dients in the training process closely match the exact gradients;

• Theorem 1 concludes that the weight changes during training
occur at a sufficiently slow rate, ensuring that the gradients are
asymptotically unbiased and guaranteeing convergence;
Proposition 1. Let

𝐴∞ =𝑚𝑎𝑥𝑖 𝑗
��𝐴𝑖 𝑗 ��, then we have:𝐴𝐵∞ ≤ 𝑐𝑜𝑙 (𝐴)
𝐴∞ 𝐵∞𝐴 ⊙ 𝐵


∞ ≤

𝐴∞ 𝐵∞𝐴 + 𝐵

∞ ≤

𝐴∞ +
𝐵∞

where, 𝑐𝑜𝑙 (𝐴) denotes the number of columns of the matrix 𝐴, ⊙
denotes the element wise product. This proposition has been proved
by VR-GCN [6], and we omit the proof. We further denote 𝐶 as the
maximum number of columns that exist in our analysis.

Lemma 1, lemma 2, and Theorem 1 have also been proved by
SANCUS [33] and VR-GCN [6], and we omit the proof and give the
necessary and sufficient conditions for their establishment.

lemma 1. Assume all the activations are 𝜌-Lipschitz, the
𝑊𝑖


∞

and
𝐴𝑖∞ are bounded by some constant 𝐵, and the historical weights

�̃�𝑖 are close to the exact weights𝑊𝑖 with the staleness bound 𝜖 where�̃�𝑖 −𝑊𝑖

 ≤ 𝜖 , ∀𝑖 . Then the approximation error of the stale em-
bedding �̃� and stale activation 𝑍 is bounded by some constant 𝐾
that depends on 𝜌,𝐶, 𝐵:

𝐻 𝑙
𝑖
− �̃� 𝑙

𝑖


∞ < 𝜖𝐾 , ∀𝑖 > 𝐼 , 𝑙 = 1, ..., 𝐿 − 1;𝑍 𝑙

𝑖
− 𝑍 𝑙

𝑖


∞ < 𝜖𝐾 , ∀𝑖 > 𝐼 , 𝑙 = 1, ..., 𝐿.

lemma 2. Assume that activation function 𝜎 (·) and the gradient
∇L are 𝜌 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧, the

∇L
∞,

𝐴𝑖∞,
𝑊𝑖


∞, and

𝜎′ (𝑍𝑖 )∞
are bounded by some constant 𝐵, and the historical weights �̃�𝑖 are
close to the exact weights𝑊𝑖 with the staleness bound 𝜖 where

�̃�𝑖 −𝑊𝑖


≤ 𝜖 ,∀𝑖 . Then the approximation error of the gradient 𝑔(𝑊𝑖 ) is bounded
by some contents:

E𝑔(𝑊𝑖 ) − ∇L(𝑊𝑖 )

∞ ≤ 𝜖𝐾 and ∀𝑖 > 𝐼 , where K

depends on 𝜌,𝐶, 𝐵.
Theorem 1. Given the local minimizer 𝑊★. Assume that (1)

the activation 𝜎 (·) is 𝜌-Lipschitz, (2) the gradient of the loss func-
tion ∇L(𝑊𝑖 ) is 𝜌-Lipschitz and bounded, (3) The gradient matrices𝑔(𝑊 )


∞,

𝑔(𝑊 )

∞ and

∇L(𝑊 )

∞ are bounded by some constant

𝐺 > 0. (4) The loss L(𝑊 ) is 𝜌-smooth, i.e.,

| L (𝑊2 ) − L(𝑊1 ) − ⟨∇L(𝑊1 ),𝑊2 −𝑊1 ⟩ | ≤
𝜌

2
𝑊2 −𝑊1

2
𝐹
, ∀𝑊1,𝑊2

, where ⟨𝐴, 𝐵⟩ = 𝑡𝑟 (𝐴𝑇𝐵) is the inner product of matrix𝐴 and matrix
𝐵. Then, there exists 𝐾 > 0, s.t., ∀𝑁 > 𝐼 , if we run SGD for 𝑅 ≤ 𝑁

iterations, where R is chosen uniformly from [𝐼 + 1, ..., 𝑁 ] and the
learning rate 𝜂 =𝑚𝑖𝑛{ 1𝜌 ,

1√
𝑁
}, , we have:

E𝑅 ∥∇L(𝑊𝑅 ) ∥2𝐹 ≤ 2
L(𝑊1 ) − L(𝑊★) + 𝜌𝐾

2√
𝑁

when 𝑁 → ∞ , E𝑅 ∥∇L(𝑊𝑅)∥2𝐹 → 0, the above concludes that the
convergence is guaranteed.

5 EVALUATION
This section evaluates the performance of NeutronOrch using three
representative GNN models and six real-world graph datasets.

5.1 Experimental Setup
Environments. The experiments are conducted on an Aliyun
server equipped with an Intel Xeon Platinum 8163 CPU (96 cores
and 736 GB main memory) and eight NVIDIA V100 (16GB) GPUs.
The eight GPUs are connected to the CPU via four PCIe-3.0 switches
and equipped with NVLink interconnects similar to NVIDIA DGX-
1 [32]. The GPU is enabled with CUDA 11.4 runtime and 418.67
drivers. The serversruns Ubuntu 18.04 with Linux kernel 4.13.0.
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Table 4: Dataset description.

Dataset |V| |E| ftr. dim #L hid. dim
Reddit [11] 232.96K 114.61M 602 41 256
Lj-large [1] 10.69M 224.61M 400 60 256
Orkut [51] 3.1M 117M 600 20 160
Wikipedia [22] 13.6M 437.2M 600 16 128
Products (PR) [13] 2.4M 61.9M 100 47 64
Papers100M (PA) [13] 111M 1.6B 128 172 64

GNNs andmodel configurations. NeutronOrch can support com-
mon message-passing based GNNs (e.g., GCN [21], GraphSAGE
[11], GAT [41], and GIN [49]) without requiring additional tun-
ing on the parameters in the system because we do not change
training semantic. We evaluate NeutronOrch using three represen-
tative GNN models: GCN [21], GraphSAGE [11], and GAT [41]. The
training batch size is set to 1024, the model depth is set to 3.
Sampling algorithm. NeutronOrch provides a set of efficient
sampling algorithm implementations (e.g., k-hop neighbor and
layer-wise) following the DGL [44] framework to leverage the
mature graph sampling optimizations. In the experiments, we use
k-hop neighbor sampling for our evaluated GNNs following the
configuration of DGL. The sampling fan-out is set to [25, 10, 5]
in the first three layer and fixed to 5 in the following layers, i.e.,
[25, 10, 5, 5 · · · ]. In this work, we do not provide an in-depth
discussion of sampling algorithm performance as the sampling
optimization is orthogonal to the layer-based task orchestrating.
Nevertheless, NeutronOrch maintains the flexibility to incorporate
advanced sampling implementations.
Datasets. For evaluation, we utilize six real-world graph datasets,
as listed in Table 4. These include Reddit [11] and Orkut [51], which
are social networks, the Wikipedia (Wiki) network [22] comprising
wikilinks from the English Wikipedia, the LiveJournal communica-
tion network (Lj-large) [1]. The Products (PR) [13] dataset is based
on Amazon’s co-purchasing network. The Papers100M (PA) [13] is
a citation graph, where each vertex represents a paper and the edge
represents the citation relation. The "ftr. dim" column represents
the dimension of vertex features, the "#L" column represents the
number of vertex classes, and the "hid. dim" column represents
the embedding dimension of the hidden layer output. For graphs
without ground-truth properties (Lj-large, Orkut, and Wikipedia),
we use randomly generated features, labels, training (65%), test
(10%), and validation (25%) set division.
Baselines. We compare NeutronOrch with DGL [43], DGL-UVA
[29] , PaGraph [23], GNNLab [52], GNNAutoScale (GAS) [9], and
DSP [3]. All comparison systems use GPUs to conduct training.
DGL and DGL-UVA store both the graph structure and features in
CPU memory. The difference is that DGL conducts sampling using
the CPU, while DGL-UVA conducts sampling using the GPU by uti-
lizing the UVA technique. PaGraph and GNNLab utilize GPU-based
feature caching to reduce CPU-GPU communication. PaGraph con-
ducts the sampling using the CPU, and GNNLab stores the graph
structure in GPU memory and conducts the sampling using the
GPU. GAS conducts feature gathering in the CPU and utilizes his-
torical embedding to accelerate training. DSP is a multi-GPU GNN
training system that uses multi-GPU cooperative sampling. It also
caches the graph topology and popular vertex features in GPU
memory to accelerate the gathering step.
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Figure 9: Overall training performance comparison (“OOM”
denotes out of memory).

5.2 Single GPU Performance
Figure 9 shows the average training time of one epoch for all GNN
systems. Note that GNNLab [52] and PaGraph [23] do not provide
GAT support, and GAS [9] does not provide GraphSAGE support.

(1) Comparison with DGL [43]: NeutronOrch achieves a speed-
up ranging from 2.91× to 11.51× over DGL. DGL exhibits inferior
performance compared to the other systems due to inefficient CPU-
based sampling and gathering steps. NeutronOrch effectively avoids
inefficient CPU processing by selectively computing historical em-
beddings for hot vertices on the CPU.

(2) Comparison with PaGraph [23]: NeutronOrch achieves a
speed-up ranging from 2.68× to 9.72× over PaGraph. The perfor-
mance of PaGraph is limited by slow CPU sampling and GPU mem-
ory contention. NeutronOrch provides more flexible task orches-
tration for accelerating training while avoiding GPU contention.

(3) Comparison with GNNLab [52]: NeutronOrch achieves a
speed-up ranging from 1.52× to 2.43× over GNNLab. NeutronOrch
performs better when trainingwith larger models or datasets.When
the training memory requirement increases, GNNab’s performance
degrades due to a decreased cache hit rate.Moreover, when handling
deeper GNN models, GNNLab encounters out-of-memory (OOM)
issues due to GPU memory exhaustion.

(4) Comparison with DGL-UVA [43]: NeutronOrch achieves a
speed-up ranging from 1.81× to 9.18× over DGL-UVA. DGL-UVA
supports accessing graph topology and features via the zero-copy
transfer engine [29]. Compared to saving the graph topology in the
GPU for sampling, DGL-UVA saves GPUmemory while introducing
access latency betweenCPU andGPU. On the other hand, DGL-UVA
has a larger communication compared to NeutronOrch because it
transfers all features needed for training in every iteration.

(5) Comparison with GAS [9]: NeutronOrch achieves a speed-up
ranging from 7.08× to 11.05× over GAS. GAS computes historical
embeddings for all vertices and transfers them back to the CPU
memory. Although GPU memory is saved, additional overhead
is incurred due to frequent CPU-GPU communication. GAS also
faces CPU memory limitations on graphs with many vertices, as
it needs to store embeddings for all vertices across every layer. In
contrast, NeutronOrch selectively computes historical embeddings
for frequently accessed vertices on the CPU, achieving efficient
historical embedding reuse while reducing memory overhead.
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5.3 Multi-GPU Performance
We conduct a comparative analysis of NeutronOrch, PaGraph [23],
DGL-UVA [29], GNNLab [52], and DSP [3] to evaluate the scalability
by varying the number of GPUs used in training. Figure 10 shows
the results of training GraphSAGE against two real-world datasets
with different numbers of GPUs. NeutronOrch consistently demon-
strates superior performance over the baselines with different batch
sizes and different numbers of GPUs. Compared to DGL-UVA [29]
and PaGraph [23], NeutronOrch achieves on average 6.33× and
5.20× speedups. The performance of DGL-UVA and PaGraph is
limited by extensive CPU-GPU communication and inefficient CPU
sampling. In contrast, NeutronOrch minimizes CPU-GPU communi-
cation by reusing the historical embeddings and adaptively adjust-
ing the workload between CPU and GPUs. Compared to GNNLab
[52] and DSP [3], NeutronOrch achieves on average 2.28× and
1.36× speedups. GNNLab and DSP deploy all steps (sample-gather-
train) on the GPU and leave the CPU idle. When the number of
GPUs decreases, GPU memory contention makes the benefit of
their caching method decrease. In addition, when handling large-
scale graphs (Papers100M), both DSP and GNNLab report memory
errors due to memory exhaustion. NeutronOrch effectively trains
large-scale GNNs by offloading computations to the CPU, reducing
both CPU-GPU communication and GPU memory overhead.

5.4 Performance Analysis of NeutronOrch

Performance gain. We analyze the performance gain of layer-
based task orchestrating (L), hotness-aware embedding reusing
(HE), hybrid hot vertices processing (HH), and super-batch pipelined
training (S) on the GCN model with six datasets. We start from
a baseline with NeutronOrch ’s codebase for a fair comparison
and gradually integrate four optimizations. The baseline employs
GPU-based graph sampling, GPU-based training, and CPU-based
gathering. Figure 11 shows the normalized speedups. The layer-
based task orchestrating aggregates and updates all vertex features
on the CPU and transfers the vertex embedding to the GPU for
computation, significantly reducing CPU-GPU communication. It
can achieve an average speedup of 1.52× compared to the base-
line. The hotness-aware embedding reusing optimizes the layer-
based task orchestrating of NeutronOrch, significantly reducing
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Figure 13: Dynamic adjustment of hot vertex ratio.

CPU computation. It provides an average speedup of 1.96× over
the baseline+L. The hybrid hot vertices processing further reduces
CPU-GPU communication by effectively balancing CPU and GPU
resource utilization. It provides an average speedup of 1.53× over
the baseline+L+HE. Finally, the super-batch pipeline design pro-
vides an average speedup of 1.92× over the baseline+L+HE+HH.
This design enables the overlap of computations between the CPU
and GPU, reducing overall execution time substantially.
Performance breakdown. We further provide a performance
breakdown to analyze the time consumption of different phases,
including the bottom-layer training task on the CPU (CPU work),
data transfer between the CPU and GPU (Transfer), and the training
tasks of other layers on the GPU (GPU work). We first disable the
super-batch pipelining optimization to show the results of sequen-
tial execution of the three phases and then enable the pipelining to
show the results of optimized version. Since different GNN models
exhibit similar patterns on these graphs, we only show the results
of the GCN on the three large datasets. As shown in Figure 12
(a), the time elapsed on both CPU and GPU is roughly the same,
which exceeds the time elapsed on transfer. By overlapping the
three phases through super-batch pipelining, the total runtime can
be significantly reduced (ranging from 2.13× to 2.32×).

5.5 Analysis of Hotness-Aware Layer-Based
Task Orchestrating

Dynamic adjustment of hot vertex ratio. NeutronOrch over-
laps CPU computation and GPU computation through super-batch
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pipelining. The hot vertex ratio influences the time elapsed on CPU
computation and GPU idleness because it determines the computa-
tion volume assigned to GPUs and CPUs. To optimize performance,
NeutronOrch adopts an adaptive hot vertex ratio adjustment ap-
proach to balance the time elapsed on CPU and GPU computation
and minimize device idleness. During execution, NeutronOrch mon-
itors the time elapsed on GPU idleness caused by CPU computation
and adjusts the hot vertex ratio to ensure GPU idle time reaches
zero. We achieve this goal through a binary search method.

We evaluate the dynamic adjustment process of the hot vertex
ratio across two datasets on the GCN model. The hot vertex ratio is
initialized to 0.3 (30%), and the binary search is employed to adjust
the hot vertex ratio of current epochs according to the time elapsed
on GPU idleness caused by CPU computation. The hot vertex ratio
adjustment terminates when the binary search interval reaches less
than 0.01. Figure 13 shows the hotness tuning and runtime among
the first 8 epochs. We can observe that the adaptive adjustment
method can find the optimal hot vertices ratio at the early stages
of training, given that GNN training often requires hundreds to
thousands of epochs. Therefore, the overhead dynamic adjustment
of hot vertex allocation can be amortized.
Data transfer reduction. We implement the degree-based cache
policy (Degree) [23] and the pre-sample-based cache policy (Pre-
Sample) [52] in NeutronOrch and compare them with our method
(NeutronOrch). We conduct experiments using the GCN model on
the Wikipedia dataset. NeutronOrch reduces the data transfer vol-
umes through a combination of CPU computation offloading and
historical embedding reusing. Specifically, NeutronOrch offloads
the computation of the bottom layer to the CPU and transfers
the computed embeddings to the GPU. Since embeddings generally
have smaller dimensions than features, the data transfer volume can
be significantly reduced. Furthermore, the embeddings of frequently
accessed vertices are reused as historical embeddings multiple times
after being transferred to the GPU, further reducing the volume of
data transfers. Figure 14 (a) illustrates that the NeutronOrch leads
to an average reduction of 55.1% in GPU memory consumption for
caching compared to static cache policies because caching histori-
cal embeddings of hot vertices is more memory-efficient. On the
other hand, under different hot vertices ratios, the average transfer
volume of NeutronOrch is 63.2% and 75.8% of the static caching
strategies Degree and PreSample, respectively.

5.6 Analysis of Resource Utilization
We evaluate the resource utilization during the training of GCN on
Lj-large and Orkut. Figure 15 presents a comparison of GPU and
CPU utilization. NeutronOrch exhibits superior utilization of CPU
and GPU resources by scheduling training tasks across CPUs and
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Figure 15: GPU utilization and CPU utilization comparison.
Table 5: Per-epoch runtime of different systems with differ-
ent model depths (GCN).

Systems Products Wiki
3-layer 4-layer 5-layer 3-layer 4-layer 5-layer

DGL 28.1 55.4 114.8 1669.1 OOM OOM
PaGraph 20.1 45.0 78.0 693.2 OOM OOM
DGL-UVA 21.8 41.6 71.3 911.7 1782.3 OOM
GNNLab 5.66 10.7 22.9 384.2 OOM OOM
GAS 26.2 30.9 35.2 OOM OOM OOM

NeutronOrch 2.33 4.58 10.2 221.1 483.4 1852.3

Table 6: Per-epoch runtime of different systems with differ-
ent batch sizes. (3-layer GCN)

Systems
Products Wiki
Batch size Batch size

256 1024 4096 10000 256 1024 4096 10000
DGL 35.1 28.1 11.9 5.24 2104.1 1669.1 861.9 OOM

PaGraph 31.6 20.1 15.5 11.9 1054.6 693.2 OOM OOM
DGL-UVA 30.1 21.8 8.87 4.99 1624.5 911.7 592.4 301.6
GNNLab 12.3 5.65 2.78 1.65 774.8 384.2 OOM OOM
GAS 56.4 26.2 18.1 15.1 OOM OOM OOM OOM

NeutronOrch 4.19 2.33 1.35 0.71 409.2 221.1 129.9 84.6

GPUs, averaging 44.5% and 92.9%, respectively. DGL and PaGraph
have good CPU utilization and poor GPU utilization. This is because
performing a complete sampling or gathering step on the CPU
improves CPU utilization but causes the GPU to wait. DGL-UVA
and GNNLab have poor CPU utilization and good GPU utilization.
They have good performance with sufficient GPU resources, but
exploiting CPU resources can further improve performance.

5.7 Sensitivity Study
Performance with varying model depths. As the model depth
increases, the effectiveness of NeutronOrch will not decrease, al-
though NeutronOrch only offloads the lowest-level calculations to
the CPU. In sample-based GNN training, the number of vertices
exhibits exponential growth across layers [5, 11]. As a result, more
than half of the entire training workload comes from the bottom
layer. For example, on Wiki dataset with a 3-layer model, the bot-
tom layer has 1.94M vertices, occupying 65% of the total workload,
while the other layers only have 1.04M vertices in total. For the
4-layer model and 5-layer model, the bottom layer occupies 61% and
59% of the total workload, respectively. We run a GCN model on all
systems and report the per-epoch runtime in Table 5, with different
model depths. For the 3-layer model, NeutronOrch achieves on
average 6.43× speedup over the baselines. For the 4-layer model
and 5-layer model, the speedups are 5.84× and 6.31×, respectively.
Performance with varying batch sizes. To study the effective-
ness of NeutronOrch under different batch sizes, we run a 3-layer
GCN model on all systems and report the per-epoch runtime in
Table 6, with the batch size ranging from 256 to 10000. For a batch
size of 256, NeutronOrch achieves on average 5.64× speedups over
different systems. For batch sizes of 1024, 4096, and 10000, the
speedups are 6.43×, 9.85×, and 7.25×, respectively. The setting of
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batch size will not affect the effectiveness. Furthermore, on large-
scale graphs, NeutronOrch’s CPU offloading efficiently mitigates
the increasing memory overhead when using large batch sizes.
Performancewith varying degrees of skew. The skewed degree
distribution is expected to have the most significant impact on
performance because it affects the ratio of hot vertices. We employ
synthetic datasets with varying skewed degree distributions to
validate this point. We employ the R-MAT [4] to generate datasets
with the same graph scale but different degree distributions and
randomly generate features and labels. Specifically, we configure the
synthetic datasets to have 5M vertices and 200M edges, with feature
dimensions of 600 and label dimensions of 40. The chosen model is a
3-layer GCN with a hidden layer dimension of 256. We create three
datasets with distinct degree distributions following the guidelines
of [4]. syn-uniform approximates a uniform distribution. syn-skew
follows a skewed degree distribution; and synd-highskew follows a
more pronounced skewed degree distribution. As shown in Figure
12 (b), we compare the performance improvement of NeutronOrch
over NeutronOrch configured using GPU-based graph sampling,
GPU-based training, and CPU-based gathering. On syn-uniform,
NeutronOrch achieves a speedup of 4.05×. On syn-skew and syn-
highskew, NeutronOrch achieves speedups of 10.13× and 16.59×,
respectively. We can observe that increasing the skewness of the
graph distribution leads to enhanced performance improvements.

5.8 Training Convergence
We plot the epoch-to-accuracy curve on different systems for both
GCN and GAT algorithms. Benefiting from the strict version control
based on super-batch pipelining, NeutronOrch accelerates GNN
training while maintaing high accuracy. As shown in Figure 16,
compared to other GNN systems that use historical embeddings
but do not strictly control versions (e.g., GAS[9]), NeutronOrch
achieves higher accuracy due to the ability to achieve smaller cu-
mulative errors across batches. In comparison to systems that do not
use historical embeddings[43], NeutronOrch achieves comparable
convergence with an accuracy loss of no more than 1%.

6 FUTUREWORK
Currently, NeutronOrch operates under the assumption that

all data can fit within the CPU memory. To further , we plan the
following two directions:
Extension to distributed training. Distributed NeutronOrch
would be interesting future work to enhance scalability. We can

achieve this by integrating NeutronOrch into existing distributed
GNN systems, e.g., NeutronStar [45] andDGL [43]. Specifically, Neu-
tronOrch can be deployed on each node to accelerate single-node
training by fully utilizing heterogeneous resources. The communi-
cation and graph partition module of existing systems can be used
to implement efficient data parallelism.

Extension to disk-based training. Implementing SSD-based
NeutronOrch would be another cost-effective solution to enhance
scalability. Such an approach involves storing the graph data in per-
sistence storage and accessing the data on demand at runtime.While
supporting large graphs, such an approach introduces significant
SSD I/O overhead and necessitates effective transfer management
methods to reduce SSD accesses and overlap I/O and computation.

7 RELATEDWORK
Task orchestrating in DNN training. Zero-Infinity DeepSpeed
(ZID) [27] incorporates CPU offload techniques [34, 35, 37] to op-
timize the DNN training under heterogeneous environments. Al-
though ZID and our design share similarities in scheduling training
tasks across CPU and GPUs to improve scalability, their optimiza-
tion objectives are different. ZID primarily focuses on reducing the
memory consumption of model parameters by offloading them to
the CPU. In DNNs, model parameters which consist of dense matri-
ces that can be disjointly partitioned. These slices can be efficiently
communicated between the CPU and GPUs because of their dense
and regular data access patterns. In contrast, NeutronOrch primarily
focuses on the efficiency of sample-based GNN training, minimizing
communication and computation by offloading historical embed-
ding computation to the CPU. Sample-based GNN training involves
multiple data preparation stages (sample and gather). It exhibits
irregular vertex access patterns due to the inherent complexity
of graph structures, which pose new challenges in optimizing the
data I/O between CPU and GPUs. ZID didn’t address these chal-
lenges. However, NeutronOrch effectively resolves these problems
by its task orchestrating method, transferring and reusing historical
embedding for frequently accessed vertices.

8 CONCLUSION
We present NeutronOrch, a scalable and efficient GNN training sys-
tem that fully utilizes CPU and GPUs. NeutronOrch leverages two
key components to achieve its performance, including a hotness-
aware layer-based task orchestrating method that combines CPU
computation offloading with historical embeddings reuse to opti-
mize computation and communication and a super-batch pipeline
training method that utilizes CPU-GPU pipelining to achieve ef-
ficient and staleness-bounded version control. Our experiments
demonstrate that NeutronOrch efficiently accelerates mini-batch
GNN training with an accuracy loss of no more than 1%.
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