
Towards Optimal Transaction Scheduling
Audrey Cheng

UC Berkeley
accheng@berkeley.edu

Aaron Kabcenell
Meta

akabcenell@meta.com

Jason Chan
UC Berkeley

j-chan@berkeley.edu

Xiao Shi
Unaffliated

xiao.shi@aya.yale.edu

Peter Bailis
Google

bailis@google.com

Natacha Crooks
UC Berkeley

ncrooks@berkeley.edu

Ion Stoica
UC Berkeley

istoica@berkeley.edu

ABSTRACT
Maximizing transaction throughput is key to high-performance
database systems, which focus on minimizing data access conflicts
to improve performance. However, finding efficient schedules that
reduce conflicts remains an open problem. For efficiency, previ-
ous scheduling techniques consider only a small subset of possible
schedules. In this work, we propose systematically exploring the
entire schedule space, proactively identifying efficient schedules,
and executing them precisely during execution to improve through-
put. We introduce a greedy scheduling policy, SMF, that efficiently
finds fast schedules and outperforms state-of-the-art search tech-
niques. To realize the benefits of these schedules in practice, we
develop a schedule-first concurrency control protocol, MVSchedO,
that enforces fine-grained operation orders. We implement both in
our system R-SMF, a modified version of RocksDB, to achieve up
to a 3.9× increase in throughput and 3.2× reduction in tail latency
on a range of benchmarks and real-world workloads.

PVLDB Reference Format:
Audrey Cheng, Aaron Kabcenell, Jason Chan, Xiao Shi, Peter Bailis,
Natacha Crooks, Ion Stoica. Towards Optimal Transaction Scheduling.
PVLDB, 17(11): 2694 - 2707, 2024.
doi:10.14778/3681954.3681956

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/audreyccheng/transaction-scheduling.

1 INTRODUCTION
Maximizing transaction throughput is a critical objective for data-
base systems. Inherently, transaction processing is an exercise in
mediating conflicts to shared data. As such, performance differs
significantly depending on how systems schedule transactions (i.e.,
which transactions to give access to contended data first).

Despite the vast amount of work on transaction processing,
finding fast schedules in practical systems remains an open prob-
lem. Searching for the optimal schedule is infeasible in practice—
Papadimitriou [60] proved in the 1970s that optimal scheduling is
NP-Complete. Accordingly, the majority of existing concurrency
control protocols execute requests based on arrival—or first-in,
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681956

first-out (FIFO)—order (e.g., two-phase locking [15], multi-version
concurrency control [14]): these approaches deal with conflicting
operations after they have arrived [81] or executed [54], missing
opportunities to avoid conflicts by planning ahead. To increase
throughput, recent work schedules transactions more intelligently
by leveraging full information about access sets (e.g., deterministic
databases) and/or predicting key accesses. However, for efficiency,
these approaches consider only a small subset of the schedule space
(e.g., partitioning the workload on hot keys [28, 61, 63, 95] or ran-
domly deferring requests [19])). As a result, they make suboptimal
scheduling decisions. Overall, we observe a large performance gap
between the schedules produced by existing methods and the best
ones that can be found within the schedule space (Section 2).

In this work, we show that transaction processing systems can
dramatically improve throughput by systematically exploring the
schedule space, proactively identifying fast schedules, and execut-
ing them at run time. However, achieving this approach in practice
raises two key challenges: (i) how to efficiently find fast schedules
with partial information and (ii) how to enforce schedules during
execution without violating isolation guarantees. We address both
in R-SMF, a new scheduling-first transaction processing system.

Finding fast schedules. To maximize throughput, we want
schedules that execute as fast as possible (e.g., for offline sched-
uling, the schedule that minimizes makespan, or the total time to
execute all transactions). In analyzing real-world workloads, we ob-
serve that execution time between schedules differs due to the cost
of conflicts across transactions—a transaction can incur high conflict
costs if its conflicting operations stall the execution of other opera-
tions, causing delays that increase overall execution time. While
searching for the optimal (i.e., fastest) schedule is computationally
infeasible [60], we propose a greedy algorithm, Shortest Makespan
First (SMF), which reduces conflict costs to find fast schedules. SMF
iteratively constructs schedules by appending the transaction that
leads to the least incremental increase in execution time. Crucially,
SMF makes decisions based on how much each transaction conflicts
with all other requests in the schedule rather than considering only
the characteristics of an individual transaction.

SMF obtains fast schedules without relying on a priori knowledge
of full read-write access sets by leveraging two observations. First,
the small fraction of hot keys present in most workloads has an
outsized impact on execution time (Section 3.2). Second, in practice,
we can often infer such hot key accesses with high accuracy using
the metadata contained in many applications (e.g., transaction type
and initial arguments) [19]. Thus, focusing on minimizing conflicts
for these keys enables SMF to capture most scheduling wins.

2694

https://doi.org/10.14778/3681954.3681956
https://github.com/audreyccheng/transaction-scheduling
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681956
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SMF finds competitive schedules compared to state-of-the-art
search techniques, including those from job-shop scheduling (JSS).
We observe that transaction scheduling can be framed as an in-
stance of the well-known JSS problem [11] and compare SMF
to the best techniques from the enormous corpus of JSS litera-
ture [8, 29, 30, 44, 47, 53, 57, 84, 89]. We find that, while state-of-
the-art JSS methods obtain fast schedules, they have prohibitively
high overheads (e.g., 15 transactions can take up to 30 minutes to
schedule [69]). In contrast, SMF achieves linear time complexity
with respect to the number of in-flight transactions and obtains
schedules with performance within 10% of the best-performing JSS
techniques. Furthermore, we provide statistical bounds on SMF’s
performance with respect to the entire schedule space (Section 3.4).

Executing schedules. Once a low-conflict schedule is selected,
SMF must precisely execute it to realize its benefits—without im-
posing undue overheads (e.g., as a result of dependency tracking
and enforcement). To avoid these overheads, existing concurrency
control protocols do not proactively control the sequence in which
individual operations complete [14, 15]. Systems that do enforce
schedules incur high costs—either by serializing all requests in a
single thread [80] or requiring developers to manually construct
custom rendezvous points to coordinate dependencies [36].

To provide fine-grained control of schedule execution, we de-
velop a new concurrency control protocol, MVSchedO. We adapt
multi-version timestamp ordering (MVTSO) [14], a well known
protocol that enables maximum concurrency (e.g., in contrast to
two-phase locking [15], which pessimistically holds locks until
commit) for this fine-grained regime. Typically, MVTSO assigns
a serial order to transactions, but operations execute in parallel
without restriction. Concurrent conflicting transactions abort if
their timestamps do not match the execution order of their oper-
ations. In MVSchedO, we constrain database execution based on
partial operation orders between transactions. In particular, we
exploit the insight that scheduling hot keys has the biggest impact
on performance: R-SMF leverages expected hot key accesses and
maintains a scheduling queue for each of these keys to ensure that
conflicting operations later in the schedule wait for preceding ones
to complete. As a result, MVSchedO enables R-SMF to extract the
most benefits from fast schedules with low overheads.

Impact of scheduling. We demonstrate that our scheduling
approach leads to significant performance improvements in practice
by evaluating it on a range of standard OLTP benchmarks and real-
world workloads. In R-SMF, we augment RocksDB [32] with the
SMF scheduler and MVSchedO execution mechanism to show up to
a 3.9× increase in throughput over the baseline system. Moreover,
we demonstrate that SMF scheduling is also extensible via a “bolt-
on” approach [13]: we integrate our scheduler on top of the locking
and OCC implementations in RocksDB and achieve up to 3.3×
improvements in throughput, illustrating that existing systems can
easily realize the benefits of SMF. Our system also improves tail
latency by up to 3.2× because it executes transactions following
schedules that reduce contention and thus, the likelihood of aborts.
We further demonstrate that SMF is feasible for production use—
providing up to a 2.5× increase in throughput and 2.1× decrease in
tail latency—on TAO, Meta’s social graph data store [17]. Finally,
our scheduler has minimal overheads and observes a less than 5%
drop in throughput on low contention workloads (Section 5).

To summarize, we make the following contributions in this work:
• We introduce a novel scheduling policy, SMF, that efficiently

finds fast schedules on a range of transactional workloads.
• We propose a schedule-first concurrency control protocol,

MVSchedO, that maximizes the benefits of scheduling by
enforcing fine-grained operation ordering.

• We develop and evaluate R-SMF, which integrates SMF and
MVSchedO in RocksDB to improve throughput by up to
3.9× and reduce tail latency by up to 3.2×.

2 SCHEDULING FOR BETTER PERFORMANCE
While it is obvious that transaction scheduling impacts throughput,
there is no formal framework, to the best of our knowledge, that
quantifies this performance difference. Thus, we present a model
to precisely account for the impact of the schedule on throughput.
Specifically, we apply the makespan metric to capture the effects
of conflicts on execution time. By measuring the degree to which
schedules affect performance, we confirm that different execution
orders can have vastly different throughput.

2.1 Schedule Makespan
In this work, we focus on the impact of logical execution constraints
(i.e., conflicts) on performance since they are the bottleneck in many
transactional workloads [24]; physical resource scheduling has been
addressed in prior work [55, 56, 75]. For a given schedule, transac-
tion execution is constrained by: (i) operation dependencies (i.e.,
partial orders) within a transaction, and (ii) inter-transaction depen-
dencies determined by a concurrency control protocol enforcing a
specified isolation level during run time [9, 14].

To quantify the impact of these constraints, we evaluate schedule
makespan, or the total time required for all transactions to complete.
We focus on this metric because for a finite batch of transactions,
minimizing makespan is equivalent to maximizing throughput.
Thus, the goal of transaction scheduling is to determine execution
orders that lower makespan and increase throughput.

We now describe how we compute makespan. We focus on the
offline setting with the following assumptions for simplicity, but we
find online systems can have even larger performance differences
than what the makespan suggests (Section 5). We assume that
each operation takes the same amount of time, during which any
number of reads or one write can occur on a given key and that
there are no execution errors that lead to aborts. We also assume
“best-case” execution to focus on the minimum possible makespan
of each schedule. While makespan is a simplified metric that does
not exactly correspond to real-time execution (e.g., does not account
for individual system overheads), it captures the effects of execution
constraints within schedules. Accordingly, it enables us to compare
the impact of conflicts on overall execution time, and we leverage
it to develop an effective search policy (Section 3).

2.2 The Impact of Scheduling
In this section, we quantify different schedules to show how execu-
tion order affects throughput. First, we present a simple example
in Figure 1 with a workload consisting of four transactions: 𝑇 1 and
𝑇3 each read 𝑥 and write 𝑧 while 𝑇2 and 𝑇4 read 𝑧 and write 𝑥 .
If we execute in FIFO order (the upper schedule), we would get

2695

r(x) w(z)
T1

Makespan varies
significantly between

different schedules

Time

r(z) w(x)
T2

r(x) w(z)
T3

r(z) w(x)
T4

r(x) w(z)
T1

r(x) w(z)T3
r(z) w(x)T2

r(z) w(x)T4

Figure 1: Two schedules of the same workload under MVTSO.

the worst-case makespan of eight time units since no concurrency
is possible. Instead, if we order 𝑇1 and 𝑇3 together, we observe
more concurrency as shown in the lower schedule, which has a
makespan of six. Among just these four transactions, we observe a
25% decrease in makespan with the better schedule. Furthermore,
this performance improvement is proportional to the number of
transactions as well as the length of these transactions and be-
comes arbitrarily large as the workload increases in complexity. For
instance, with 100 transactions of length 15 (assuming there are
additional non-conflicting operations between the operations to 𝑥

and 𝑧), there would be, between the two types of schedules shown
in Figure 1, over a 11× (1,500 vs. 128) difference in makespan!

This difference persists on real-world benchmarks and work-
loads. Table 1 show that there can be over a 100% increase in
makespan when using FIFO instead of optimized schedules on real-
world workloads. Furthermore, scheduling can have an even bigger
impact in online systems than what makespan suggests because
aborts can be common and hamper system throughput (Section 5).

We observe that these schedules have varying makespan because
they have different cost of conflicts, or how much conflicts delay the
execution of other operations. In the previous example, ordering
𝑇 2 before𝑇 3 results in higher conflict costs due to their contending
operations to 𝑥 . More generally, reducing the cost of conflicts lowers
overall makespan. To maximize throughput, we need a scheduling
policy that decreases these costs of conflicts to minimize makespan.

3 SEARCHING FOR FAST SCHEDULES
To find fast schedules, we introduce a new scheduling policy, Short-
est Makespan First (SMF), that greedily minimizes the impact of
conflicts and thus, total makespan. We provide intuition for how
SMF is able to find schedules with low makespan and argue why
adversarial scenarios for this policy are unlikely on real-world
workloads. Note that in this section, we focus on the offline setting
(where we assume a finite batch of transactions and known access
sets) and extend our work to the online setting in Section 4.

3.1 SMF: An Effective Search Policy
We present our search policy, Shortest Makespan First (SMF), that
greedily finds fast schedules. Since optimal scheduling for trans-
actions is NP-Hard [60], we must rely on heuristics to develop a
practical policy. While there are a plethora of greedy algorithms
in scheduling literature [46, 67, 68, 72], they are not designed for
transactional workloads, which have complex conflict patterns. Our
key intuition in designing our policy is to minimize the cost of con-
flicts as we construct a schedule: SMF places transactions with high
conflict costs far apart. Concretely, we evaluate the incremental
makespan increase when a given transaction is added to the sched-
ule because this metric accounts for the cost of all potential conflicts
that an unscheduled transaction has with the current ordering.

Table 1: Percent increase in makespan between the best
known schedule for each workload and FIFO (avg).
Epinions SmallBank TAOBench TPC-C YCSB

43.2% 8.0% 96.2% 101.6% 99.3%

Policy description. SMF starts the schedule with a random
transaction.1 At each iteration, SMF finds the transaction that in-
creases makespan the least among 𝑘 randomly sampled unsched-
uled requests and appends this transaction to the schedule. In the
case of a tie, SMF randomly chooses one out of the best candidates.
The policy repeats this process until all transactions have been
scheduled and has a linear runtime of 𝑂 (𝑛 × 𝑘) run time, where 𝑛
is the number of transactions to be scheduled and 𝑘 is a constant
representing the sample size. We find in Section 5 that a small sam-
ple size (e.g., 𝑘 = 5) is adequate for finding fast schedules since the
chance of sampling a transaction with low conflict costs is high in
real-world workloads, which have diverse contention patterns.

3.2 Why SMF Finds Fast Schedules
To provide intuition for why SMF is effective, we present a case
study on TPC-C [27], a standard OLTP benchmark, for which our
policy finds close-to-optimal schedules; Section 5.4 provides fur-
ther empirical results. We analyze a workload of 500 New-Order
and Payment transactions (assuming 10 Warehouses) since most
conflicts for this benchmark occur on the Warehouse and District
keys between these two transaction types. SMF (with a sample size
of five and assuming all key accesses are known) finds a schedule
1.7× lower in makespan compared to the average obtained under
FIFO. SMF is able to find fast schedules by minimizing conflict costs:
it places New-Order and Payment transactions that do not conflict
(e.g., access different Warehouse and/or District keys) together, cre-
ating “pockets” of concurrency with low costs of conflicts. As a
result, it finds close-to-optimal schedules by allowing New-Order
and Payment transactions that do not conflict to run in parallel.

Upon further analysis, SMF captures most of its scheduling wins
by making the right ordering decisions for hot keys. Since trans-
actional workloads tend to conflict on a small subset of keys (i.e.,
hot keys), these keys have an outsized impact on makespan. To
demonstrate this, we run a version of SMF that is only aware of
the Warehouse and District keys. The schedule produced by this
version of the policy has almost equal performance (less than 6%
difference in makespan) to the one found by the version of the
policy that knows all key accesses apriori, showing that scheduling
with only knowledge of hot keys is sufficient to find fast schedules.
We find that the importance of hot keys for scheduling persists
across different workloads (Section 5.4).

3.3 Adversarial Cases for SMF
While SMF finds low makespan schedules on most real-world work-
loads, we can construct adversarial scenarios for this algorithm. In
general, greedy policies make “mistakes” by only considering local
options since they do not look ahead when making decisions. In
the case of SMF, it cannot change the position of a scheduled trans-
action. As a concrete example, we consider the following workload:

• Type A transactions (𝑇 1,𝑇 2): {𝑟 (𝑥),𝑤 (𝑥)}
• Type B transactions (𝑇 3,𝑇 4): {𝑟 (𝑥), 𝑟 (𝑧),𝑤 (𝑧)}

1We empirically find that the starting transaction does not significantly impact overall
makespan once the workload is reasonably large (e.g., more than 20 transactions).

2696

Time

r(x) w(x)
T1

r(x)
T3

r(z) w(z)r(x) w(x)
T2

r(x)
T4

r(z) w(z)

r(x) w(x)
T1

r(x)T3 r(z) w(z)
r(x) w(x)T2

r(x)T4 r(z) w(z)

Optimal Makespan: 7

SMF Makespan: 10

Figure 2: SMF can make suboptimal scheduling decisions
under an adversarial workload with few conflict patterns.

Figure 2 shows the schedule obtained by SMF as well as the optimal
schedule under MVTSO. Assuming SMF starts the schedule with
𝑇1 and has a sample size of three, SMF would choose to add 𝑇2,
the other type A transaction, next because 𝑇2 results in the least
increase in makespan (of two units, while either of the type B
transactions would increase makespan by three). 𝑇3 and 𝑇4 are
subsequently added to the schedule, yielding a total makespan of
ten. However, the optimal schedule alternates type A and type B
transactions (e.g., by executing𝑇 3 before𝑇 2). With this ordering, all
operations of𝑇 2 can run in parallel with𝑇 3 because𝑇 3 only reads 𝑥
while𝑇 2 reads and writes to 𝑥 . SMF is not aware that interspersing
type A’s and B’s leads to greater overall concurrency in the long run
since it considers only the next transaction to add to the schedule
(rather than multiple transactions at once).

Adversarial scenarios like the above example are unlikely in
more realistic workloads. In the example, SMF has only two choices:
either mix type A’s and B’s or schedule them separately. Since
our policy makes the same (wrong) decision at each iteration, it
finds a suboptimal schedule. However, real-world workloads have
diverse conflict patterns (e.g., more transaction types, many hot
keys, etc.), so SMF is unlikely to repeatedly make poor choices in
the long run. For instance, on the TPC-C workload from Section 3.2,
it is highly unlikely that SMF encounters only transactions with
high conflict costs among its random samples at each iteration.
We consider New-Order and Payment transactions accessing the
same Warehouse or New-Order transactions accessing the same
Warehouse and District to have high conflict costs since they cannot
proceed in parallel. Among the iterations that SMF performs on
this batch of requests, less than 5% observe all samples having high
conflict costs with respect to the last 20 transactions in the schedule
(we assume these transactions have not yet committed).

3.4 Statistical Performance Bounds
How well does SMF compare to all possible (serializable) schedules
for a given workload? To answer this question, we must analyze
the entire schedule space, which is inherently challenging given the
exponential number of potential schedules. To do so, we uniformly
sample the schedules of a given workload to construct a represen-
tative distribution of schedule performance. This enables us to not
only understand the tradeoffs between different scheduling policies
but also provide statistical bounds on performance with respect to
the entire space (e.g., the 99th percentile “fastest” schedule).

Constructing schedule space distributions. Since exhaus-
tively evaluating all schedules of a space is prohibitively expensive
(e.g., for 20 transactions with one read and one write operation
each, there are 20! = 2.4 × 1018 possible schedules), we consider a
representative subset by sampling different schedules of the same

workload. To provide statistical bounds, we need to sample across
the space of valid (i.e., serializable) schedules uniformly, which re-
quires some care. We focus on serializability since it is widely used
and prevents data anomalies for real-world applications.

For uniform sampling, we represent serializable schedules as
graphs and leverage existing graph sampling techniques. Each
schedule maps to one corresponding acyclic serialization graph [14],
which has nodes representing transactions and directed edges rep-
resenting the order of conflicting operations. For a given work-
load, the serialization graph of every possible schedule has the
same underlying (undirected) graph “structure”—same nodes and
edges—and differs only in the direction of the edges. Thus, these
serialization graphs are acyclic orientations of the undirected graph.

Consequently, sampling over all possible serializable schedules
for a workload is equivalent to sampling over all of its acyclic ori-
entations. We employ an existing algorithm, Interval-Reversal (IR)
Random Walk [43], that uniformly samples over acyclic orienta-
tions of an undirected graph. Specifically, we form a Markov chain
via the IR random walk until the chain converges to its stationary
uniform distribution [43]. Thereafter, we can draw samples by con-
tinuing the random walk. Each step of the IR random walk costs
𝑂 (𝑛 +𝑚), where 𝑛 is the number of nodes (transactions) in the
graph and𝑚 is the number of edges. The random walk takes on the
order of 𝑛 log𝑛 steps to converge [12]. Thus, the overall run time
of this approach is𝑂 (𝑛 log𝑛 ∗ (𝑛 +𝑚) +𝑘 ∗ (𝑛 +𝑚)), where 𝑘 is the
number of uniform samples we want to obtain.

This sampling technique is powerful: we can bound the per-
formance of a given schedule with respect to the entire schedule
space. Specifically, by using nonparametric, one-sided tolerance
intervals [40], we can bound the proportion of schedules that have
lower makespan than our best random sample with a specified
confidence level. These statistical intervals do not make any as-
sumptions about the underlying distribution (nonparametric), and
the number of samples to achieve a desired bound and confidence
level does not grow with the number of possible schedules. For
instance, with 299 samples, we know the makespan of our best
schedule from random sampling is better than 99% of all possible
schedules with 95% confidence.2 Note that these intervals do not
bound the makespan difference of schedules, only the proportion
of the distribution that falls beyond the intervals.

Contextualizing SMF’s performance. We apply our uniform
sampling approach to analyze SMF. While we do not always know
the makespan of the optimal schedule, we can quantify the pro-
portion of schedules that SMF outperforms. For instance, on our
workloads in Section 5, we evaluate 100K random samples, the best
of which is in the 99.999th percentile in terms of makespan and
better than 99.99% of all possible schedules with 99.99% confidence;
the schedule found by SMF has even lower makespan.

Our uniform sampling approach can be applied to provide statis-
tical guarantees on makespan in both offline and online systems.
For systems in which all accesses are known apriori (e.g., determin-
istic DBs), this technique can be used as the default policy to ensure
that the selected schedules have lower makespan than the major-
ity of the entire schedule space. For online systems, this sampling
2For 99% of the distribution and 99% confidence, we need 459 samples; for 99.9% of the
distribution and 99% confidence, we need 4,603 samples [40].

2697

start Ti,
hints Classifier SMF

Scheduler
MVSchedO Storage

Ti started Ti : r(x)

Ti : w(y)

value of x

w(y) completed

1

2

3
S4.2S4.1

Figure 3: R-SMF architecture: we trace a transaction through
its start (1) and several operations (2, 3).

technique can be used to quality check the schedules produced by
SMF. We can periodically compare SMF’s schedule with our best
random sample from a given batch of transactions that has already
executed. This process runs in the background separate from the
main scheduler, so while it consumes CPU resources, it does not
have a noticeable impact on run time performance (Section 5.2).
With this technique, we can avoid worst-case behavior from SMF:
if SMF’s makespan deviates significantly to the right of the mean
of the samples over a period of time, we can fallback to FIFO.

4 AN ONLINE SCHEDULING-FIRST DATABASE
Our analysis in the previous section highlights the potential impact
transaction scheduling can have on performance. To realize these
gains in practice, we need to adapt our scheduling policy to the
online setting. In doing so, there are two main challenges we must
address: (i) making scheduling decisions without full information
and with low overheads and (ii) ensuring correct execution of sched-
ules. We address both with R-SMF, a system that searches for and
executes fast schedules to improve throughput. R-SMF consists of
three main components (Figure 3): (i) a classifier that predicts hot
key conflict patterns, (ii) a SMF scheduler, which determines how
transactions are ordered, and (iii) a schedule-first concurrency con-
trol protocol, MVSchedO, which enforces fine-grained operation
execution. In the rest of this section, we explain each in detail.

4.1 Online Scheduling
While we assume in the offline setting that all key accesses are
known in advance, this information is not available for many work-
loads in online systems. To deal with this, we leverage our obser-
vation that scheduling hot key conflict patterns has an outsized
impact on performance (Section 3.2). Rather than relying on all
operations to make scheduling decisions, we focus on predicting
hot key conflicts using a classifier and small number of application
“hints.” We then apply our predicted hot key access patterns to
approximate makespans and optimize SMF for online scheduling.

4.1.1 Application Hints. We leverage two types of application hints
in our system: transaction type and hot key accesses. Together, this
information enables us to effectively predict hot key conflict pat-
terns, which have the largest impact on schedule makespan. First,
transaction type is readily available: most applications along with
nearly all standard benchmarks [31] execute a pre-defined (and
small) set of transactions, either hand-written or generated through
ORM frameworks [91]. Second, we find that many applications pro-
vide information about hot keys upfront, as input to the transaction
itself. For example, all benchmarks in OLTPBench [31] place hot key
accesses at the beginning of transactions to reduce contention (e.g.,
avoid deadlocks). These keys are known upon transaction instanti-
ation (e.g., the Warehouse and District keys for TPC-C and the user
and item ids for Epinions). Some workloads, such as Meta’s social

1 DepositChecking(cName, amt):
2 START TRANSACTION(type = 0, keys = {cName});
3 id = SELECT cId FROM ACCOUNTS WHERE name = cName;
4 UPDATE CHECKING SET bal = bal + amt WHERE cId = id;
5 COMMIT TRANSACTION;

Listing 1: SmallBank DepositChecking transaction passing
transaction type and hot key information to R-SMF.

Classifier
/* Data structures */
class Op: { op_type: read/write; position_in_txn: int }
class Txn: { txn_type: int; ops: List[Op] }
class MetadataVec: List[int] /* txn_type at vec[0],

/ * hot keys as ints at vec[1:] */
/* Shared function */
txn_to_md_vec(txn: Txn) à MetadataVec

/* Training */
find_clusters(trace: List[Txn]) à List[<MetadataVec, /* cluster_label */ int>],

/* num_clusters */ int
train(txns: List[<MetadataVec, /* cluster_label */ int>], /* num_clusters */ int)

/* Prediction */
predict(md_vec: MetadataVec) à /* cluster_ label */ int
get_hot_key_ops(cluster_label: int) à List[Op]

Figure 4: Our classifier provides a simple API.

graph transactions [23], provide the full read-write set at the start
of each transaction. At scale, application awareness of hot keys is
crucial in preventing one program from affecting the performance
of others that share the same data [10]. We note that this informa-
tion does not have to be provided by the application explicitly—it
can be inferred automatically from other metadata (e.g., application
stack traces, client endpoints, etc.) [63, 74, 78, 85, 91].

Annotating and passing along this information is straightfor-
ward: the only change required in the application code is to assign
a unique value to each transaction type and send it to the database
(e.g., modify the START statement, as shown in the SmallBank
DepositChecking transaction in Listing 1). Consequently, minimal
changes are needed on existing applications and systems.

4.1.2 Classifier. To make good scheduling decisions, we need in-
formation on hot key access patterns, which are used to calculate
conflict costs. R-SMF uses a classifier (Figure 4) to predict these
access patterns. We train our classifier on a trace of transactions for
each workload, and this process involves three parts: (i) mapping
transactions to metadata vectors, (ii) finding the optimal number of
clusters, and (iii) determining a canonical set of hot key operations
for each cluster. First, we take a given trace (which we assume
includes transaction type and known hot keys at transaction in-
stantiation) and map each transaction to a metadata vector that
represents this information as integers. We set aside a portion of
the transactions for validation. Second, we find the optimal num-
ber of clusters (i.e., 𝑘) for these metadata vectors. On the training
dataset, we cluster the metadata vectors based on Euclidean dis-
tance, which is widely applied for clustering and classification [48].
Specifically, we pick the 𝑘 that gives the lowest validation error on
our validation set. Finally, we determine a canonical set of hot key
operations for each cluster. We note that widely differing sets of
hot key operations among transactions in a cluster are rare on most
workloads since many hot keys have correlated accesses (e.g., each
Warehouse and District key pair has its own cluster in the TPC-C
workload). Our classifier chooses the most frequently occurring
set of hot key operations among the transactions in a cluster as

2698

the canonical access set, and we experimentally confirm this is
sufficient for standard workloads (Section 5.3).

At run time, we generate a metadata vector based on the applica-
tion hints. Our classifier then predicts a cluster label for this vector
and gets the canonical set of hot key operations corresponding
to this label. For instance, a Payment transaction in TPC-C sends
along its type as well as its Warehouse and District keys. Our clas-
sifier uses this information to infer a label that corresponds to the
predicted hot key operations (a read and a write to the Warehouse
key followed by a read and a write to the District key).

We find that a KNN-classifier provides high accuracy on a range
of workloads (Section 5.3). Furthermore, the classifier is simple (no
model or parameters), has low overhead, and can easily be updated
with new data. While most workloads are relatively stationary over
time (e.g., most standard benchmarks), we retrain our classifier
periodically (and redetermine the optimal number of clusters) with
recent traces to account for changes in hot key accesses. Classifier
accuracy is dependent on the quality of application hints, and we
view predicting contention as an interesting avenue for future work.

4.1.3 Approximating Makespan. Finally, to adapt our SMF sched-
uler to an online setting, we apply the predicted hot key access
patterns from our classifier to calculate makespans and employ
additional optimizations to make this calculation efficient. With the
predicted hot key operations of each transaction (including read-
/write and position information), we compute how the makespan
changes (via the process described in Section 2.1) assuming this
transaction is added to the schedule. For example, if the last trans-
action in the schedule is a Payment transaction, SMF would find
that adding another Payment transaction that writes to the same
Warehouse leads to a higher total makespan than adding a Payment
transaction that writes to a different Warehouse. To reduce run time
overheads, we only consider in-flight transactions to be a part of
the schedule, and we assume that transactions which do not access
hot keys have no impact on makespan (they execute immediately).
Finally, for each hot key, we consider only the conflicting operation
of the latest transaction that accesses this key. We can ignore earlier
transactions that conflict on the same keys because these conflicts
were already accounted for when the latest transaction was added
to the schedule. SMF uses limited memory by design since we do
not need to store incremental makespan results past an iteration.
As a result, our scheduler has minimal performance and storage
overheads while finding fast schedules (Section 5.2).

4.2 Schedule-First Concurrency Control
Now that we know which hot key conflicts are likely to occur
and how to schedule them with SMF, we turn to the problem of
executing transactions correctly while maximizing the benefits
of fast schedules. Since scheduling and concurrency control are
complementary techniques, we can incorporate SMF directly with-
out changing existing concurrency control protocols by starting
transactions based on the determined schedule, which significantly
improves performance (Section 5.1). While this is useful for ex-
isting systems, most concurrency control mechanisms limit what
schedules are allowed and do not treat the transaction schedule as
a first-class component (i.e., cannot precisely execute operations
according to a predetermined order). To maximize the benefits of

Algorithm 1: MVSchedO
1 Data structures
2 hot_keys: set of high conflict keys
3 𝑝𝑟𝑒𝑑_𝑜𝑝𝑠: set of predicted operations, per hot key
4

5 procedure START_TXN(H : application hints):
6 // Assign unique timestamp to each transaction
*7 ts← SMF_SCHEDULER(H)
*8 𝑝𝑟𝑒𝑑_ℎ𝑜𝑡_𝑘𝑒𝑦_𝑜𝑝𝑠 ← PREDICT_HOT_KEY_OPS(H)
*9 for 𝑜𝑝 ∈ 𝑝𝑟𝑒𝑑_ℎ𝑜𝑡_𝑘𝑒𝑦_𝑜𝑝𝑠 do

*10 𝑝𝑟𝑒𝑑_𝑜𝑝𝑠 [𝑜𝑝.𝑘] .add(𝑜𝑝)
11 return 𝑡𝑠
12

*13 procedure SCHED_KEY(k : key, 𝑡𝑠 : timestamp):
*14 await min(𝑝𝑟𝑒𝑑_𝑜𝑝𝑠 [𝑘] .get_all_ts()) ≥ 𝑡𝑠
15

16 procedure READ_KEY(k : key, 𝑡𝑠 : timestamp):
17 // Delay op until all conflicting ops with lower

timestamps on this key have executed
*18 if k ∈ hot_keys then
*19 SCHED_KEY(k, 𝑡𝑠)
20 𝑣𝑎𝑙 ← MVTSO_READ(𝑘, 𝑡𝑠)
*21 𝑝𝑟𝑒𝑑_𝑜𝑝𝑠 [𝑘] .remove_read(𝑡𝑠)
22 return 𝑣𝑎𝑙
23

24 procedure WRITE_KEY(k : key, 𝑣 : value, 𝑡𝑠 : timestamp):
*25 if k ∈ hot_keys then
*26 SCHED_KEY(k, 𝑡𝑠)
27 MVTSO_WRITE(𝑘, 𝑡𝑠, 𝑣)
*28 𝑝𝑟𝑒𝑑_𝑜𝑝𝑠 [𝑘] .remove_write(𝑡𝑠)
29

*30 procedure FREE_HOT_KEY_DEPS(𝑡𝑠 : timestamp):
*31 𝑝𝑟𝑒𝑑_𝑜𝑝𝑠.remove_ops(𝑡𝑠)
32

33 procedure COMMIT(𝑡𝑠 : timestamp):
*34 FREE_HOT_KEY_DEPS(𝑡𝑠)
35 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← MVTSO_COMMIT(𝑡𝑠)
36 return 𝑠𝑢𝑐𝑐𝑒𝑠𝑠

scheduling, we introduce a novel schedule-centric concurrency con-
trol protocol, MVSchedO, that extracts the most benefits from a fast
schedule. MVSchedO augments MVTSO [14], a well-known and
performant concurrency control protocol, by enforcing fine-grained
control on operation execution with low overheads.

4.2.1 Making MVTSO Schedule-First. We design a schedule-first
concurrency control protocol, MVSchedO, by adapting MVTSO,
which we choose as a starting point for two main reasons. First,
MVTSO enables high performance: it imposes the minimal exe-
cution constraints required to ensure serializability in contrast to
pessimistic protocols like two-phase locking (2PL) [15], which arti-
ficially increase run time by holding locks until transaction commit.
Second, MVTSO assigns a schedule to transactions and enforces se-
rializability based on this schedule. Thus, we can leverage existing
correctness mechanisms with minimal changes while replacing the
schedule with one determined by SMF. We briefly describe MVTSO
and its known flaws before presenting MVSchedO, which over-
comes these issues by following transaction schedules precisely.

MVTSO. MVTSO assigns each transaction a unique timestamp
corresponding to its serialization order. To ensure serializability,
MVTSO records the read and write timestamps of transactions. Any
transaction containing a write operation with a smaller timestamp
than the highest read timestamp on a key is aborted so that no

2699

read ever fails to observe a write from a transaction earlier in the
serialization order. Transactions keep track of any write depen-
dencies (uncommitted writes they observe) and commit once all
such transactions commit or abort if any abort. The key benefit of
MVTSO is that it makes uncommitted writes immediately visible to
simultaneously executing transactions, enabling more concurrency.

While MVTSO offers significant benefits, it has two flaws that
hamper performance: (1) it assigns timestamps in arrival order,
missing opportunities to benefit from faster schedules, and (2) it
does not delay transactions ordered later in the schedule from exe-
cuting before earlier ones, potentially causing unnecessary aborts.
For example, MVTSO does not prevent a transaction with a higher
timestamp𝑇2 from reading a key 𝑥 before a transaction with a lower
timestamp𝑇1 attempts to write to this key. As a result,𝑇1 must abort.
This abort can have cascading effects: if other transactions have
write-read dependencies on 𝑇1, they must also abort.

MVSchedO. Our protocol MVSchedO overcomes these issues
by extending MVTSO in two main ways. Algorithm 1 shows our
protocol, and our changes to MVTSO are marked with asterisks.
First, MVSchedO assigns timestamps using SMF rather than FIFO
(line 7). Second, we proactively enforce this order on hot keys by
ensuring that operations with later timestamps do not execute until
conflicting ones earlier in the schedule have completed. Specifically,
we predict the set of hot keys operations for each transaction at
its start (lines 8–10) and use this information to decide whether to
delay an operation before its execution (lines 13–14, 18–19, 25–26).
Since we only maintain this information per hot key, the overheads
of our approach remain low (Section 5.2). If an expected hot key
access never occurs (i.e., the prediction was wrong), any queued
transactions will be able to proceed once the transactions they are
waiting on commit or abort (line 34). Reads, writes, and commit
validation (which checks the write dependencies of a transaction)
otherwise execute identically to MVTSO (lines 20, 27, 35).

Correctness and optimality. MVSchedO ensures serializability
because all executions it permits are also possible under MVTSO
(albeit under a different arrival order). Since timestamp assignment
in MVTSO is arbitrary, the schedule chosen by SMF does not af-
fect serializability guarantees. For reads and writes to hot keys,
MVSchedO physically delays operations that are free to execute in
any order under MVTSO (subject to versioning constraints, which
apply for both protocols). Otherwise, MVSchedO uses the same
validation mechanisms as MVTSO, so it provides serializability.

Furthermore, MVSchedO executes a given schedule with the
maximum allowable concurrency under serializability.3 That is, in
the absence of resource constraints and aborts, it is impossible for
another serializable protocol to extract more concurrency from the
execution of the schedule. This property holds with early write
visibility [36], which is enabled by both MVTSO and MVSchedO.

5 EVALUATION
In this section, we evaluate R-SMF on a range of different workloads.
Specifically, we aim to answer the following questions:

• What are the benefits of scheduling in a real-world system?
• What are the overheads of our approach?
• How does SMF compare to alternative search techniques?

3MVSchedO ensures optimality of schedule execution, not the optimality of the schedule.

5.1 Scheduling in Practice
Our first set of experiments focuses on evaluating R-SMF on RocksDB,
Meta’s transactional key-value store [32]. We compare against a
state-of-the-art scheduling policy that probabilistically defers trans-
actions [19] as well as several standard concurrency control proto-
cols. We find that R-SMF increases throughput by up to 3.9× and
also decreases tail latency by up to 3.2×.

Experimental setup. We implement R-SMF and various base-
lines in RocksDB (8.5) [34]. We run our database and clients on
separate c5ad.16xlarge EC2 instances with 64 vCPUs, 128GB RAM,
and local NVMe-based SSDs in the same region. Clients run in a
closed-loop fashion with exponential backoff (we account for aborts
and retries when measuring latency), and we report the average of
three 60 second runs with 30 seconds of warm-up each. For each
workload, we tune the number of client and worker threads to
ensure system saturation. We follow the standard tuning guide [5]
for RocksDB. We compare R-SMF to the following baselines:
1. RocksDBOptimistic ConcurrencyControl (OCC).RocksDB’s

Optimistic transactions [34] provide up to Snapshot Isolation
(SI) using Optimistic Concurrency Control.

2. RocksDB Locking (Lock). RocksDB’s Pessimistic transactions
use a locking protocol [34] that holds only write locks and reads
from snapshots to provide SI.

3. RocksDB Multi-Version Timestamp Ordering (MVTSO).
We implement MVTSO [14] in RocksDB to provide serializability.

4. Aria. We implement Aria [54], which includes a reordering
mechanism that reduces conflicts, in RocksDB.

5. TsDEFER (Defer). This protocol checks for conflicts on two keys
from the predicted access set of each transaction. If there are
in-flight requests already operating on these keys, Defer chooses
to queue the transaction with a probability of 60% [19].

6. TsDEFER-MVTSO (Defer-MVTSO). We extend Defer to delay
timestamp assignment for MVTSO when queuing a transaction.
R-SMF. We implement R-SMF in RocksDB, making several modi-

fications to the transaction manager to support SMF and MVSchedO.
First, we modify the transaction START function to take in applica-
tion hints, which are passed into our classifier to predict hot key
access patterns. Second, we allow SMF to queue transactions at
their start until it schedules them. We use a sample size of five
transactions at each iteration (we find more samples do not sub-
stantially improve performance). Once a transaction is scheduled,
we add its predicted hot keys accesses to MVSchedO’s scheduling
queues. We also measure the performance of MVSchedO as a base-
line: we queue transactions based on predicted hot key accesses
without using SMF (transactions execute in FIFO order). To prevent
starvation, we place barriers in the scheduling queue that ensure
requests in front of the barrier will execute before those after it.

Bolt-on schedulers. Since scheduling is complementary to con-
currency control, we can combine our scheduling policy, SMF, with
existing concurrency control protocols, though the benefits will
naturally be smaller than using MVSchedO. However, this enables
existing systems to easily realize the benefits of scheduling. We
add SMF as a layer above RocksDB’s OCC and Lock protocols [34].
Our implementations, SMF-OCC and SMF-Lock, queue transactions
at their start until they are scheduled. Once a transaction begins

2700

Epinions SmallBank TAOBench TPC-C YCSB0

4K

8K

12K
�

ro
ug

hp
ut

(tx
ns

/s
)

Epinions SmallBank TAOBench TPC-C YCSB0

4K

8K

12K
�

ro
ug

hp
ut

(tx
ns

/s
)

OCC Aria Defer MVTSO MVSchedO DariusDB

4 10 20 400

3K

6K

9K

�
ro

ug
hp

ut
(tx

ns
/s

)

OCC Defer SMF-OCC MVTSO R-SMF

Figure 5: R-SMF performance on application benchmarks.

to execute, it runs under the original concurrency control proto-
col without fine-grained operation scheduling. Even with limited
control over execution, these implementations are able to achieve
significant performance improvements (Section 5.1.2).

TAO prototype. We also implement a SMF prototype on TAO,
Meta’s social graph data store [17]. Our prototype applies the bolt-
on approach, similar to the RocksDB bolt-on schedulers, by queuing
transactions at their start (TAO implements a variant of 2PL for
concurrency control [24]). The prototype is implemented as an
adapter layer in C++ that sends requests to a TAO (cache and data-
base) deployment in a testing environment. Our experimental setup
imitates that of production: each thread acts as an individual TAO
client, mirroring how Meta’s applications access this system [24].

Benchmarks. We evaluate the performance of our schedulers
on a range of different standard benchmarks and real-world work-
loads. Epinions [31] consists of nine transaction types that repre-
sent behavior observed on a consumer reviews website. We run the
benchmark with 2M users and 1M items (total data size of 50GB).
SmallBank [79] contains six types of transactions that model a
simple banking application. We run the benchmark with 1M ac-
counts (total data size of 50GB). TPC-C [27], a standard OLTP
benchmark, simulates the business logic of e-commerce suppliers
with five types of transactions. We use a separate table as a sec-
ondary index on the Order table to locate a customer’s latest order
in the Order-Status transaction and on the Customer table to look
up customers by last names (for the Order-Status and Payment
transactions) [22]. We run the workload with 10 Warehouses (total
data size of 2GB). TAOBench [23] is a social network benchmark
based on Meta’s production traces. We run Workload T, which cap-
tures the full transactional workload on TAO, Meta’s social graph
database. We run the benchmark with 10M objects (total data size
of 100GB). YCSB is a microbenchmarking suite that generates read
and write operations, which we place into groups of 16 [19]. We
use Workload B (95% reads, 5% writes) with a Zipfian distribution
and load 1M objects (total data size of 10GB).

5.1.1 R-SMF Results. R-SMF outperforms all baselines on the five
application benchmarks since it executes transactions following
schedules that minimize conflict costs (Figure 5).

Epinions. R-SMF improves throughput by 3.1× compared to
OCC (Figure 5). This workload centers around user interactions
and item reviews, containing five read-only transactions and four
read-write transactions. Given the skewed access to popular users
and items, scheduling prevents many aborts that arise under the
baselines. Since most transactions are short, reducing wasted work
caused by aborts has an outsized impact on throughput. This is
further confirmed by the fact that there is only a 24% difference in
throughput between MVSchedO and R-SMF. These results demon-
strate that executing schedules precisely with MVSchedO can sig-
nificantly improve throughput, even under FIFO (which can be an

Table 2: Defer (D) and R-SMF (R) latency compared to OCC.

Workload Var. (D) P99
Latency (D) Var. (R) P99

Latency (R)
Epinions 11% 23% 14% 29%

SmallBank 13% 27% 19% 35%
TAOBench 43% 107% 65% 323%

TPC-C 10% 28% 20% 47%
YCSB 33% 81% 45% 101%

effective fallback strategy). We observe a 2.0× throughput improve-
ment compared to MVTSO; this baseline has higher throughput
compared to OCC since it exposes uncommitted writes. Aria also
has higher throughput than OCC since its reordering mechanism
reduces some aborts. [54] However, since this protocol is single-
versioned, it produces more conservative schedules than those
allowed by MVTSO and results in more aborts. Defer avoids some
conflicts by delaying requests but not as many as R-SMF, which
achieves 2.0× higher throughput. On the other hand, Defer-MVTSO
(omitted from the graph due to space constraints) has nearly equal
performance to MVTSO because delaying timestamp assignment
does not address potential race conditions during execution (i.e.,
after the timestamp has been assigned). R-SMF improves tail latency
by 29% and reduces latency variance by 14% compared to 23% and
11% for Defer, respectively (Table 2). Request times do not vary
significantly in this workload since most transactions are short.
With scheduling, we also observe lower abort rates: OCC aborts
6.0% of transactions while R-SMF has a 0.2% abort rate.

SmallBank. We observe a 2.7× increase throughput comparing
R-SMF to OCC (Figure 5). This workload consists mainly of short
read-write transactions, and R-SMF is able to prevent conflicts
between transactions accessing the same user accounts. Reducing
aborts on this workload has a large impact since most transactions
are short (aborts and restarts take comparatively longer). R-SMF has
a smaller improvement in throughput of 1.9× compared to MVTSO
since this baseline enables more concurrency. However, R-SMF
still achieves better performance because it executes based on fast
schedules and reduces aborts that are caused by race conditions
during MVTSO’s timestamp assignment. MVSchedO achieves 28%
lower throughput compared to R-SMF. Against Defer, R-SMF has
2.0× higher throughput, since the former delays transactions with a
fixed probability (missing some conflicts). Defer-MVTSO has similar
performance to MVTSO since both observe race conditions after
timestamp assignment. For latency, R-SMF improves tail latency
by 35% and reduces latency variance by 19% compared to 27% and
13% by Defer (Table 2), respectively. Both policies are able to avoid
repeated aborts though SMF attains better schedules by intelligently
scheduling requests rather than randomly deferring them. R-SMF
has a 0.2% abort rate compared to 5.7% under OCC.

TAOBench. We observe a 3.9× throughput increase with R-SMF
compared to OCC and a 2.6× increase compared to MVTSO. This
workload is read-heavy and skewed, typical of most social networks.
There are many short read transactions, some shorter read-write
transactions (under 10 operations), and a small portion of longer
read-write transactions (up to 60 operations). Since key accesses are
drawn from probability distributions in this workload, hot keys are
not requested in a fixed order, as in many of the other benchmarks.
Consequently, naively ordering requests in FIFO order results in
slow schedules and many aborts. This is further evidenced by the
fact that MVSchedO has 87% lower throughput than R-SMF. Our
system is able to avoid placing long transactions accessing many

2701

Epinions SmallBank TAOBench TPC-C YCSB0

4K

8K
�

ro
ug

hp
ut

(tx
ns

/s
)

0.10 0.50 0.90 0.10 0.50 0.900

5K

10K

15K

�
ro

ug
hp

ut
(tx

ns
/s

)

OCC Lock Defer SMF-OCC SMF-Lock

Epinions SmallBank TAOBench TPC-C YCSB0

4K

8K
�

ro
ug

hp
ut

(tx
ns

/s
)

Figure 6: Bolt-on performance on application benchmarks.

hot keys together with conflicting requests. By reducing aborts
(from 12.0% under OCC to 0.5% under R-SMF), R-SMF is also able to
reduce tail latency by 323% and latency variance by 65% (Table 2).
Defer has moderate success in avoiding aborts (R-SMF has 2.6×
higher throughput); since the access sets of these transactions are
larger, Defer has lower probability of detecting potential conflicts.

TPC-C. R-SMF improves throughput on TPC-C by 1.8× com-
pared to OCC and 1.3× compared to MVTSO. The latter has no-
ticeably higher performance than the other baselines because this
protocol allows writes to be pipelined (New-Order and Payment
transactions can access Warehouse and District keys prior to the
commit of preceding requests). However, since MVTSO schedules
transactions in arrival order and there are race conditions between
operations after timestamp assignment, New-Order and Payment
transactions can execute out of order, leading to aborts. In contrast,
R-SMF ensures that transactions with later timestamps will wait
for conflicting requests with earlier timestamps to complete. R-SMF
also schedules transactions with lower conflict costs together, re-
sulting in 31% higher throughput compared to MVSchedO. Our
system improves tail latency by 47% and reduces latency variance
by 20% (Table 2). Compared to Defer, R-SMF achieves a 1.2× im-
provement in throughput; since the Warehouse and District keys
(hot keys) are known upon transaction instantiation, Defer has a
high likelihood of delaying conflicting requests. R-SMF reduces the
abort rate to 2.2% compared to OCC, which has a 10.1% abort rate.

YCSB. R-SMF improves throughput by 2.0× compared to OCC
and 1.4× compared to MVTSO (Figure 5). R-SMF also has 35% higher
throughput compared to MVSchedO, demonstrating the impact of
SMF. YCSB has a large pool of warm keys and higher variance in
accesses since keys are chosen from a Zipfian distribution (𝜃 = 0.90).
Since there are diverse contention patterns, there are also more
schedules with low makespan (which SMF identifies). Defer per-
forms well on this workload, showing a 1.4× increase compared to
OCC, since it finds and delays conflicting transactions with high
probability (due to the skewed access patterns). On the other hand,
Defer-MVTSO and MVTSO have similar performance since both
observe aborts from concurrent conflicting transactions that have
already been assigned timestamps. R-SMF is able to decrease tail la-
tency by 101% and reduce latency variance by 45% (Table 2) because
it prevents transactions accessing hot keys from repeatedly abort-
ing (as does Defer by 81% and 33%, respectively). R-SMF reduces
the abort rate to 2.0% compared to 7.7% under OCC.

5.1.2 Bolt-On Results. We also evaluate SMF layered on top of OCC
(SMF-OCC) and Lock (SMF-Lock), showing that we can achieve
significant scheduling wins with minimal changes to the existing
concurrency control implementations. Across the five benchmarks,
OCC and Lock have similar performance because they encounter
similar conflicts when processing requests in FIFO order and abort
at nearly equal rates. SMF-OCC and SMF-Lock are able to prevent

Epinions SmallBank TAOBench TPC-C YCSB0

4K

8K

12K

�
ro

ug
hp

ut
(tx

ns
/s

)

Epinions SmallBank TAOBench TPC-C YCSB0

4K

8K

12K

�
ro

ug
hp

ut
(tx

ns
/s

)

OCC SMF-OCC RC SMF-RC

Figure 7: Performance under varying isolation levels.

Table 3: Performance difference from TAO baseline.
Workload Throughput P99 Latency
TAOBench 252% -208%

many of these conflicts and have comparable performance (Fig-
ure 6). On Epinions, we observe a 2.4× increase in throughput,
comparing SMF-OCC to OCC and SMF-Lock to Lock. For Small-
Bank, these schedulers improve throughput by 2.0× compared to
their respective baselines. We see an even larger improvement of
3.3× on TAOBench. We note that the relative increase by SMF-OCC
and SMF-Lock over their respective baselines is larger than that
between R-SMF and MVTSO (2.0×, 1.9×, and 2.6× for these three
workloads) since MVTSO enables greater concurrency and achieves
higher throughput. On the other hand, the improvements of the
schedulers compared to their respective baselines are smaller than
R-SMF compared to OCC/Lock because SMF-OCC and SMF-Lock
can only delay the transaction start (they do not impact opera-
tion execution once a transaction begins) while R-SMF utilizes
fine-grained operation scheduling to extract bigger wins.

5.1.3 Weaker Isolation Levels. Scheduling provides benefits across
isolation levels. We implement SMF on top of the default concur-
rency control protocols in RocksDB that provide SI (SMF-OCC) and
RC (SMF-RC). Figure 7 shows that scheduling improves throughput
across all workloads under RC (up to 2.5x), though the relative im-
provement is less than that under SI (between OCC and SMF-OCC);
this is because fewer conflicts occur under RC compared to SI.

5.1.4 TAO Prototype Results. SMF achieves up to 252% higher
throughput and 208% lower tail latency on the TAOBench workload
(Table 3) by intelligently ordering transactions to reduce the cost
of conflicts. Furthermore, we find that SMF has minimal overheads
on TAO, demonstrating that our policy can be feasibly applied in
production to realize the benefits of transaction scheduling.

5.2 Scheduling Overheads
To quantify the overheads of scheduling, we measure performance
under low (𝜃 = 0.10) and medium (𝜃 = 0.50) contention with the
YCSB workload (Figure 8). We compare a read-dominant work-
load (95% reads) as well as a write-intensive workload (80% writes).
Throughput is higher in general on the read-dominant workload
though scheduling has a bigger impact on the write-intensive one
since its operations are more likely to conflict. Under low con-
tention, our scheduler imposes minimal overhead. R-SMF and SMF-
OCC throughput are within 5% of that of MVTSO and OCC, respec-
tively, for both workloads. Since transactions that do not access hot
keys are allowed to execute immediately, the only overheads we im-
pose are the classification step and makespan calculations. SMF has
linear time complexity with respect to the number of in-flight trans-
actions (which is typically bounded), and makespan calculations
depend on the number of hot keys (which is also bounded). Once

2702

0.10 0.50 0.90 0.10 0.50 0.90
Skew (µ)

0

5K

10K

15K
�

ro
ug

hp
ut

(tx
ns

/s
)

Read-heavy Write-heavy

4 10 20 400

3K

6K

9K

�
ro

ug
hp

ut
(tx

ns
/s

)

OCC Defer SMF-OCC MVTSO R-SMF

Figure 8: Performance under varying contention.

there is some contention (𝜃 = 0.5), our schedulers show improve-
ments in throughput compared to the baselines (1.4× improvement
comparing R-SMF to OCC for the read-dominant workload and
1.6× improvement for the write-dominant workload). Figure 9b
shows the latency breakdown for the TPC-C workload: scheduling
has limited impact on overall execution time.

Furthermore, we find R-SMF scales effectively: as we increase
the number of Warehouses in the TPC-C workload, contention
decreases, and throughput grows linearly (Figure 9a). By 40 Ware-
houses, low contention causes scheduling to have minimal impact.
However, both R-SMF and SMF-OCC do not impose undue over-
heads and have nearly equal performance with the other baselines.

5.3 Classifier Accuracy
We run a series of additional experiments to understand the effects
of classifier error, and we find that, as expected, prediction accu-
racy directly impacts throughput. For our application benchmarks,
which include a representative subset of OLTP workloads [31], our
classifier has high accuracy since hot keys are easily predictable
with application hints. For instance, prediction on TPC-C is always
correct since the transaction type and hot keys (Warehouse and Dis-
trict keys) are provided. This information is sufficient to determine
hot key access patterns (e.g., Payment always reads and writes to
both Warehouse and District keys). Accordingly, we use this work-
load to construct several scenarios in which we deterministically
set classifier accuracy and measure its impact (Table 4) .

Decreasing classifier accuracy detrimentally impacts throughput.
At one extreme, we assume no application hints are available: the
classifier cannot make predictions, so R-SMF is unable to provide
any performance benefits and suffers from a small throughput drop
(2%) as a result of scheduling overhead. When the hints are wrong
10% of the time (i.e., incorrect Warehouse/District keys), throughput
decreases, but we still observe benefits from scheduling (25% im-
provement in throughput and 29% reduction in tail latency), though
this is lower than when all hints are provided (33% improvement in
throughput and 35% reduction in tail latency). However, when clas-
sifier accuracy drops significantly (50% of hints are wrong), we find
that scheduling harms performance because it leads to false posi-
tives (delaying transactions that do not conflict) and false negatives
(missing potential conflicts). To avoid this, users can choose to forgo
scheduling if classifier accuracy drops below a given threshold (e.g.
via post-execution sampling analysis, as described in Section 3.4).

Finally, we consider the scenario in which we have partial infor-
mation for prediction—only transaction type is known. We know
the probability of conflict between requests (10% between Payment
transactions, 1% between New-Order transactions, and 10% between
New-Order and Payment), but we do not know exactly which re-
quests will contend since we lack hot key information. As a result,

Figure 9: R-SMF scalability and overheads on TPC-C.

Table 4: Performance difference from MVTSO on TPC-C.
Policy Throughput P99 Latency

No Hints -2% -2%
10% Wrong 25% 29%
50% Wrong -11% -5%
Only Types -5% -3%

R-SMF (All Hints) 33% 35%

we have R-SMF probabilistically delay requests based on the likeli-
hood of conflict from their type (assuming an equal proportion of
each type, we have a 10% chance of conflict for Payment and 5.5%
for New-Order). This approach leads to slightly lower performance
compared to MVTSO. Since the conflict rate is low (≤10%) and
R-SMF also delays requests at a low rate (≤10%), the probability
that R-SMF correctly delays a transaction to prevent a conflict is
even lower (≤10% × ≤10% = ≤1%). Thus, most of the scheduling
delays imposed by R-SMF are false positives and harm throughput.
These results demonstrate a fundamental requirement of schedul-
ing: sufficient information about access patterns (especially hot key
accesses) must be available to find fast schedules.

5.4 Evaluating SMF’s Search Quality
To evaluate SMF’s effectiveness, we compare SMF to state-of-the-
art JSS search techniques as well as scheduling policies developed
for transactional databases. SMF’s schedule makespan is within 10%
of that of the best-performing JSS policy, which has much higher
overheads. Against transactional policies, SMF provides up to 55%
lower makespan and 164% lower variance. We also analyze the
impact of our SMF optimizations, which reduce run time overheads
but have minimal detrimental impact on search results.

5.4.1 Comparison with Search Policies. We compare SMF to a range
of search techniques developed for job-shop scheduling (JSS), which
can be used to model transaction scheduling. JSS techniques are
designed to navigate complex schedule spaces and consequently,
are able to find good schedules on transactional workloads in the
offline setting. However, the overheads of these techniques are too
high (e.g., in the order of seconds for each scheduling decision [69])
for us to obtain meaningful results in a real system, so we evaluate
these policies in our makespan simulator.

Job-Shop Scheduling (JSS). Transaction scheduling can be
framed as an instance of the well-studied JSS problem. JSS is a classic
scheduling problem that focuses on assigning jobs to machines
to minimize makespan [45]: each job consists of multiple tasks
that must be executed in a given order on specific machines. We
model the offline transaction scheduling problem (known batch
of transactions and access sets) as a variation of JSS in which jobs
are transactions, tasks are operations, and machines are data items.
Transactions require two additional classes of constraints. First,
there are different operation types (namely, read and write) for

2703

0 500 1000
Makespan

50

100

Fr
eq

ue
nc

y

NEH=449
SMF=495
TS=551
GA=558
MCTS=569
SA=763

(a) SmallBank Makespan

(b) TPC-C Makespan

1100 1300 1500
Makespan

200

400
Fr

eq
ue

nc
y

NEH=1,282
SMF=1,296
TS=1,332
GA=1,333
MCTS=1,351
SA=1,377

Figure 10: NEH and SMF outperform other JSS search tech-
niques on SmallBank and TPC-C (500 transactions each).

each key, which can be modeled via parallel machines [69]. Second,
to account for isolation guarantees, we adapt sequence-dependent
execution requirements used by some JSS problems [73]. Interested
readers can find the formal optimization problem in the extended
version of our paper [2] and further discussion of JSS in Section 6.

With this framework in hand, we now apply JSS search tech-
niques to transaction scheduling. Many JSS techniques have been
developed to obtain fast schedules, and we evaluate a range of
representative techniques on our application benchmarks.

Algorithms for comparison. We focus on JSS approxima-
tion techniques since they are suited for larger workloads (e.g.,
more than 20 transactions). These strategies are can be categorized
as either iterative approaches, which randomly perturb a sched-
ule to find faster ones, or constructive approaches, which build
up a schedule from scratch by leveraging workload features [45].
From iterative approaches, we evaluate the performance of tech-
niques from the three most popular categories: genetic algorithms
(GA) [25, 29], simulated annealing (SA) [20, 84], and tabu search
(TS) [16, 30, 42, 69]. Among construction heuristics, we focus on
the Nawaz–Enscore–Ham (NEH) algorithm [57], which is known
to be high performing [44, 53]. This algorithm first sorts transac-
tions based on expected execution time and then iterates through
all unscheduled transactions, adding each to the position in the
partial schedule that minimizes makespan. Note that NEH inserts
transactions (following a fixed order) into various positions of the
schedule while SMF appends a transaction (chosen among a sample
of candidates) to the end of a schedule and does not sort requests.

There also has been recent work applying reinforcement learn-
ing (RL) to scheduling problems. We consider Monte Carlo Tree
Search (MCTS), a popular algorithm that expands a search tree
using random sampling, since it has been applied to JSS [50, 70].

Results.We evaluate JSS policies assuming MVTSO on 500 trans-
actions of each of our benchmarks. Table 5 shows the makespan
obtained by SMF and the best-performing JSS policy. Figures 10a
and 10b show the makespan of all policies on the SmallBank and
TPC-C workloads, respectively. SMF uses a sample size of five and
considers only hot keys for makespan calculations.

SMF has robust performance on all workloads, finding schedules
with less than 10% difference compared to the best JSS techniques.
In general, JSS policies are able to find fast schedules: NEH is the
highest-performing JSS method on all workloads except Epinions

Table 5: Makespan distribution statistics (100K samples) and
schedule makespans under MVTSO.
Workload Mean Var. SMF Best JSS Policy
Epinions 106 27 74 74 (All)

SmallBank 1,385 131 1,296 1,282 (NEH)
TAOBench 1,703 22,419 959 868 (NEH)

TPC-C 905 12,290 495 449 (NEH)
YCSB 2,587 3,150 1,434 1,298 (NEH)

(for which all the techniques find schedules with the same makespan
since this workload has many read-only transactions). This is be-
cause NEH’s strategy of inserting requests at positions that reduce
makespan leads to fast schedules. SMF follows a similar intuition
by appending transactions that minimize overall makespan. We
note that both policies perform better than the best random sample
among 100K samples, achieving makespans in the 99.999th per-
centile. Furthermore, the best random sample among 100K samples
(and consequently, the schedules found by SMF) is better than
99.99% of all possible schedules with 99.99% confidence.

The other JSS techniques have moderate success in scheduling
transactions. These strategies are iterative, searching in the local
neighborhood of a starting schedule by randomly swapping trans-
actions. However, since hot key conflict patterns impact makespan
the most (Section 3.2), arbitrarily reordering transactions usually
takes longer to find a fast schedule. Similarly, since MCTS relies
heavily on random search, it does not converge quickly.

We find that all JSS techniques have higher overheads than SMF.
We measure the latency of each technique in our offline Python
simulator to provide a rough estimate of how expensive JSS policies
are since they cannot be feasibly implemented in a real database.
For a batch of 500 transactions, our single-threaded, unoptimized
implementation of SMF finds a schedule in less than five seconds. In
contrast, NEH takes 50 seconds, and the other policies take over 500
seconds to run. Furthermore, JSS methods are not compatible with
interactive systems (e.g., NEH inserts transactions into arbitrary
positions of the schedule, which can violate serializability).

5.4.2 Comparison with Scheduling Policies. We also compare SMF
against scheduling policies designed for transactional databases.
Specifically, we evaluate three state-of-the-art policies from re-
cent work. Largest-Dependency-Set-First (LDSF) [81] is an online
lock scheduling algorithm that gives priority to transactions that
block more requests; we follow the order determined by LDSF but
evaluate makespan under MVTSO (rather than Lock) for a fair com-
parison. We also evaluate Defer and TSKD[C], which partitions the
workload based on key accesses and is the best-performing sched-
uler for deterministic databases [19]. For each policy, we measure
the makespan and variance of the best schedule over 100 random
arrival orders of 500 transactions from each of our benchmarks.

Compared to SMF, these policies find slower schedules (up to
55% higher makespan) and are more sensitive to arrival order (up
to 164% higher variance). As Table 6 shows, makespan differences
are smaller on Epinions and SmallBank, which contain many short,
read-only transactions. TSKD[C] has the best performance out of
the three policies, which is expected since it is designed for the
offline setting (i.e., deterministic DBs) and uses key access infor-
mation to lower conflict costs. However, it schedules requests with
coarse granularity: a transaction must fit cleanly into a concurrently
executing partition or it must run sequentially with other “resid-
ual” transactions after all partitions have committed. In contrast,

2704

Table 6: Increase in makespan between best schedule from
Defer (D), LDSF (L), and TSKD[C] (T) compared to SMF. In-
crease in variance compared to SMF (D-V, L-V, T-V).
Workload D L T D-V L-V T-V
Epinions 0% 0% 0% 109% 52% 41%

SmallBank 6.6% 5.8% 4.4% 121% 96% 61%
TAOBench 55% 47% 31% 153% 147% 103%

TPC-C 49% 37% 18% 164% 159% 42%
YCSB 52% 39% 28% 129% 87% 67%

SMF determines schedules on a per-transaction basis. LDSF shows
some improvements, but it is highly dependent on arrival order
as evidenced by its high variance. Finally, Defer returns schedules
of similar makespan to random sampling since Defer essentially
follows arrival order in our simulator, which calculates best-case
makespans and assumes no aborts.

These results illustrate that existing policies are highly depen-
dent on arrival order. As a comparison, on a small workload (e.g.,
20 TAOBench transactions), the makespan and variance differences
between the three policies and SMF are less than 25% and 40%, re-
spectively. In real-world workloads that have more conflict patterns
and possible schedules, these policies are less likely to encounter
arrival orders that lead to fast schedules.

5.4.3 SMF Optimizations. Finally, we investigate the impact of
SMF’s optimizations (random sampling and using only hot key in-
formation), which reduce run time overheads, on schedule makespan.
The default policy uses a sample size of five and considers only hot
keys. We evaluate a no sampling variant (NS), an all keys variant
(AK) that has information about all key accesses, and a combination
of these two policies (NS + AK). We measure the makespan decrease
(i.e., performance improvement) compared to default SMF on 500
transactions of our benchmarks assuming MVTSO (Table 7).

SMF’s run time optimizations have limited impact on makespan.
For instance, there is only a 6.2% difference between the schedules
produced by default SMF and SMF with no sampling and all key
access information (NS + AK) on TPC-C. Makespan differences are
minimal on Epinions and SmallBank because many schedules share
the same conflict patterns. On TAOBench, all key access informa-
tion is available upfront, so there is no difference between default
SMF and AK. In contrast, AK has better performance on YCSB
because there is a long tail of cold key accesses. Since most trans-
actional workloads have diverse access patterns, a small sample
size is sufficient to encounter a transaction with low conflict costs.
Furthermore, these findings confirm our observation in Section 3.2
that hot key conflicts have the greatest impact on makespan.

6 RELATEDWORK
Transaction scheduling. Kung and Papadimitriou proved early on
that transaction scheduling is NP-Hard [60]. Subsequent research
has mainly centered around concurrency control mechanisms, such
as locking [15], to improve performance. Most of these techniques
operate within the implicit constraint of arrival (FIFO) order and
deal with conflicts as they appear [1, 3, 4, 39, 51, 58, 62, 77, 82,
85, 87, 88, 94]. Other techniques address the transaction schedule
more explicitly by assigning a schedule based on arrival order [14]
or reordering the schedule after transaction commit [54] and/or
abort [18, 33]. Deterministic databases, which assume apriori ac-
cess to read-write sets, also schedule batches of requests explicitly.
While many use FIFO order [35–37, 80], some approaches find better

Table 7: Decrease in makespan of variants of SMF.
Workload NS AK NS + AK
Epinions 0% 0% 0%

SmallBank 2.6% 3.0% 5.1%
TAOBench 7.0% 0% 7.0%

TPC-C 5.3% 1.2% 6.2%
YCSB 3.0% 5.8% 8.4%

schedules by partitioning workloads based on hot keys [28, 61, 63–
65, 95]. Recent research proposes scheduling transactions without
assuming full knowledge of key accesses by predicting hot keys
and probabilistically delaying requests [19] or by learning abort
patterns between pairs of transactions [74]. Most techniques fo-
cus on improving throughput, though there is a line of work that
reduces latency by scheduling transactions based on dependency
set sizes [41, 81] or assigned priorities [21, 92, 93]. Overall, these
approaches consider only a small subset of the schedule space for
efficiency. In contrast, we systematically study the entire schedule
space to develop SMF, which efficiently finds fast schedules. R-SMF
applies SMF with predicted hot key accesses and a schedule-centric
concurrency control protocol, MVSchedO, to improve throughput.

Real-time databases (RTDB). There is some work on transac-
tion scheduling for RTDBs, which assume each transaction comes
with a pre-specified deadline [6, 7, 52, 59, 66, 76, 83, 90]. These
scheduling algorithms (e.g., Earliest-Deadline-First [52, 76, 90]) typ-
ically focus on minimizing the number of missed deadlines and are
not applicable to general DBMSs, which do not have workloads
with deadlines and focus mainly on maximizing throughput.

Job-shop scheduling (JSS). We observe that transaction sched-
uling can be framed as an instance of JSS [11]. JSS optimization
methods provide exact solutions through full enumeration [49] but
can only be applied to small problems. On the other hand, approxi-
mation methods are used for larger problems [8, 44, 47, 53, 57, 89],
and a range of policies have been developed to find low makespan
schedules, including genetic algorithms [25, 29], simulated anneal-
ing [20, 84], tabu search [16, 30, 42, 69], and hybrids of different
approaches [26, 38, 71, 86, 96]. While these methods find fast sched-
ules, their overheads are too high for them to be applied directly
to DBMSs. SMF is able to match the makespan of the best JSS
techniques while having much lower run time overheads.

7 CONCLUSION
In this work, we demonstrate the power of searching through the
schedule space for fast schedules and precisely executing them.
R-SMF leverages a greedy policy, SMF, and a schedule-first con-
currency control protocol, MVSchedO, to significantly improve
performance. The benefits of our approach provide compelling ev-
idence that search-based scheduling is a promising direction for
extracting higher throughput from database systems.

ACKNOWLEDGMENTS
We thank Dave Cecere, Shilpa Lawande, John Hugg, Nathan Bron-
son, and the VLDB anonymous reviewers for their insightful feed-
back. This work is supported by a Meta Next-Generation Infras-
tructure award, and gifts from Accenture, AMD, Anyscale, Google,
IBM, Intel, Mohamed Bin Zayed University of Artificial Intelligence,
Samsung SDS, SAP, and VMware.

2705

REFERENCES
[1] 2020. MySQL Transactional and Locking Statements. https://dev.mysql.com/

doc/refman/8.0/en/sql-transactional-statements.html
[2] 2023. DariusDB. https://github.com/audreyccheng/DariusDB
[3] 2024. CockroachDB Transaction Layer. https://www.cockroachlabs.com/docs/

stable/architecture/transaction-layer
[4] 2024. PostgreSQL. https://www.postgresql.org/
[5] 2024. RocksDB Tuning Guide. https://github.com/facebook/rocksdb/wiki/

RocksDB-Tuning-Guide
[6] Robert Abbott and Hector Garcia-Molina. 1988. Scheduling Real-Time Transac-

tions. Acm Sigmod Record 17, 1 (1988), 71–81.
[7] Robert K Abbott and Hector Garcia-Molina. 1992. Scheduling Real-Time Transac-

tions: A Performance Evaluation. ACM Transactions on Database Systems (TODS)
17, 3 (1992), 513–560.

[8] Joseph Adams, Egon Balas, and Daniel Zawack. 1988. The Shifting Bottleneck
Procedure for Job Shop Scheduling. Management Science 34, 3 (1988), 391–401.

[9] Atul Adya, Barbara Liskov, and Patrick O’Neil. 2000. Generalized Isolation Level
Definitions. (2000), 67–78.

[10] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik Veer-
araghavan. 2015. Challenges to Adopting Stronger Consistency at Scale. In 15th
Workshop on Hot Topics in Operating Systems (HotOS XV). USENIX Association,
Kartause Ittingen, Switzerland. https://www.usenix.org/conference/hotos15/
workshop-program/presentation/ajoux

[11] Sheldon B. Akers, Jr. and Joyce Friedman. 1955. A Non-Numerical Approach to
Production Scheduling Problems. Journal of the Operations Research Society of
America 3, 4 (1955), 429–442.

[12] Christos A Athanasiadis and Persi Diaconis. 2010. Functions of random walks
on hyperplane arrangements. Advances in Applied Mathematics 45, 3 (2010),
410–437.

[13] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion Stoica. 2014.
Scalable Atomic Visibility with RAMP Transactions. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,
27–38.

[14] Philip A Bernstein and Nathan Goodman. 1983. Multiversion Concurrency
Control—Theory and Algorithms. ACM Transactions on Database Systems (TODS)
8, 4 (1983), 465–483.

[15] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[16] Paolo Brandimarte. 1993. Routing and scheduling in a flexible job shop by tabu
search. Annals of Operations research 41, 3 (1993), 157–183.

[17] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013.
TAO: Facebook’s Distributed Data Store for the Social Graph. In 2013 USENIX
Annual Technical Conference (USENIX ATC ’13). 49–60.

[18] Matthew Burke, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi, and Natacha
Crooks. 2023. Morty: Scaling Concurrency Control with Re-Execution. In Pro-
ceedings of the Eighteenth European Conference on Computer Systems (Rome,
Italy) (EuroSys ’23). Association for Computing Machinery, New York, NY, USA,
687–702.

[19] Yang Cao, Wenfei Fan, Weijie Ou, Rui Xie, and Wenyue Zhao. 2023. Transaction
Scheduling: From Conflicts to Runtime Conflicts. Proc. ACM Manag. Data 1, 1,
Article 26 (may 2023), 26 pages.

[20] Shouvik Chakraborty and Sandeep Bhowmik. 2015. An Efficient Approach to
Job Shop Scheduling Problem Using Simulated Annealing. International Journal
of Hybrid Information Technology 8, 11 (2015), 273–284.

[21] Youmin Chen, Xiangyao Yu, Paraschos Koutris, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Jiwu Shu. 2022. Plor: General Transactions with
Predictable, Low Tail Latency. In Proceedings of the 2022 International Conference
on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for
Computing Machinery, New York, NY, USA, 19–33.

[22] Audrey Cheng, David Chu, Terrance Li, Jason Chan, Natacha Crooks, Joseph M.
Hellerstein, Ion Stoica, and Xiangyao Yu. 2023. Take Out the TraChe: Maximizing
(Tra)nsactional Ca(che) Hit Rate. In 17th USENIX Symposium onOperating Systems
Design and Implementation (OSDI 23). USENIX Association, Boston, MA, 419–439.

[23] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Jason
Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan
Bronson, Natacha Crooks, and Ion Stoica. 2022. TAOBench: An End-to-End
Benchmark for Social Network Workloads. Proc. VLDB Endow. 15, 9 (may 2022),
1965–1977.

[24] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa
Lawande, Nathan Bronson, Peter Bailis, Natacha Crooks, and Ion Stoica. 2021.
RAMP-TAO: Layering Atomic Transactions on Facebook’s Online TAO Data
Store. Proceedings of the VLDB Endowment 14, 12 (2021), 3014–3027.

[25] Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. 1996. A tutorial survey
of job-shop scheduling problems using genetic algorithms—I. Representation.
Computers & industrial engineering 30, 4 (1996), 983–997.

[26] Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. 1999. A tutorial survey of
job-shop scheduling problems using genetic algorithms, part II: hybrid genetic
search strategies. Computers & Industrial Engineering 36, 2 (1999), 343–364.

[27] The Transaction Processing Performance Council. 2021. TPC-C. http://www.
tpc.org/tpcc/

[28] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-Driven Approach to Database Replication and Partitioning. Proc.
VLDB Endow. 3, 1–2 (sep 2010), 48–57.

[29] Lawrence Davis. 2014. Job Shop Scheduling with Genetic Algorithms. In Pro-
ceedings of the first International Conference on Genetic Algorithms and their
Applications. Psychology Press, 136–140.

[30] Mauro Dell’Amico and Marco Trubian. 1993. Applying tabu search to the job-
shop scheduling problem. Annals of Operations research 41, 3 (1993), 231–252.

[31] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. Proceedings of the VLDB Endowment 7, 4, 277–288.

[32] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,
and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.. In CIDR,
Vol. 3. 3.

[33] Zhiyuan Dong, Zhaoguo Wang, Xiaodong Zhang, Xian Xu, Changgeng Zhao,
Haibo Chen, Aurojit Panda, and Jinyang Li. 2023. Fine-Grained Re-Execution
for Efficient Batched Commit of Distributed Transactions. Proc. VLDB Endow. 16,
8 (apr 2023), 1930–1943.

[34] Facebook. 2023. RocksDB Github. https://github.com/facebook/rocksdb
[35] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion

Concurrency Control. Proc. VLDB Endow. 8, 11 (jul 2015), 1190–1201.
[36] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. 2017. High Performance

Transactions via Early Write Visibility. Proceedings of the VLDB Endowment 10,
5 (2017).

[37] Jose M Faleiro, Alexander Thomson, and Daniel J Abadi. 2014. Lazy Evaluation
of Transactions in Database Systems. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. 15–26.

[38] José Fernando Gonçalves, Jorge José de Magalhães Mendes, and Maurıcio GC
Resende. 2005. A Hybrid Genetic Algorithm for the Job Shop Scheduling Problem.
European journal of operational research 167, 1 (2005), 77–95.

[39] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing locks as early
as you can: Reducing contention of hotspots by violating two-phase locking. In
Proceedings of the 2021 International Conference on Management of Data. 658–670.

[40] G.J. Hahn and W.Q. Meeker. 1991. Statistical Intervals. Wiley & Sons, Inc, New
York, NY.

[41] Jiamin Huang, Barzan Mozafari, Grant Schoenebeck, and Thomas F Wenisch.
2017. A Top-Down Approach to Achieving Performance Predictability in Data-
base Systems. In Proceedings of the 2017 ACM International Conference on Man-
agement of Data. 745–758.

[42] Johann Hurink, Bernd Jurisch, and Monika Thole. 1994. Tabu search for the
job-shop scheduling problem with multi-purpose machines. Operations-Research-
Spektrum 15 (1994), 205–215.

[43] Benjamin Iriarte Giraldo. 2015. Combinatorics of acyclic orientations of graphs:
algebra, geometry and probability. Ph. D. Dissertation. Massachusetts Institute of
Technology.

[44] R. Leisten J. M. Framinan and C. Rajendran. 2003. Different initial sequences for
the heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or
flowtime in the static permutation flowshop sequencing problem. International
Journal of Production Research 41, 1 (2003), 121–148.

[45] A.S. Jain and S. Meeran. 1999. Deterministic job-shop scheduling: Past, present
and future. European Journal of Operational Research 113, 2 (1999), 390–434.

[46] E Douglas Jensen, C Douglass Locke, and Hideyuki Tokuda. 1985. A Time-Driven
Scheduling Model for Real-Time Operating Systems. In Rtss, Vol. 85. 112–122.

[47] John J Kanet and Jack C Hayya. 1982. Priority dispatching with operation due
dates in a job shop. Journal of operations Management 2, 3 (1982), 167–175.

[48] Aman Kataria and MD Singh. 2013. A Review of Data Classification Using K-
Nearest Neighbour Algorithm. International Journal of Emerging Technology and
Advanced Engineering 3, 6 (2013), 354–360.

[49] Eugene L Lawler, Jan Karel Lenstra, Alexander HG Rinnooy Kan, and David B
Shmoys. 1993. Sequencing and scheduling: Algorithms and complexity. Hand-
books in operations research and management science 4 (1993), 445–522.

[50] Kexin Li, Qianwang Deng, Like Zhang, Qing Fan, Guiliang Gong, and Sun Ding.
2021. An effective MCTS-based algorithm for minimizing makespan in dynamic
flexible job shop scheduling problem. Computers & Industrial Engineering 155
(2021), 107211.

[51] Hyeontaek Lim, Michael Kaminsky, and David G Andersen. 2017. Cicada: De-
pendably Fast Multi-Core In-Memory Transactions. In Proceedings of the 2017
ACM International Conference on Management of Data. 21–35.

[52] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. J. ACM 20, 1 (jan 1973), 46–61.

[53] Weibo Liu, Yan Jin, and Mark Price. 2017. A new improved NEH heuristic for
permutation flowshop scheduling problems. International Journal of Production
Economics 193 (2017), 21–30.

2706

https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://github.com/audreyccheng/DariusDB
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer
https://www.cockroachlabs.com/docs/stable/architecture/transaction-layer
https://www.postgresql.org/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://www.usenix.org/conference/hotos15/workshop-program/presentation/ajoux
https://www.usenix.org/conference/hotos15/workshop-program/presentation/ajoux
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
https://github.com/facebook/rocksdb

[54] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical
Deterministic OLTP Database. Proc. VLDB Endow. 13, 12 (jul 2020), 2047–2060.

[55] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. 2015.
Retro: Targeted Resource Management in Multi-Tenant Distributed Systems. In
Proceedings of the 12th USENIX Conference on Networked Systems Design and
Implementation (Oakland, CA) (NSDI’15). USENIX Association, USA, 589–603.

[56] Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and Sura-
jit Chaudhuri. 2013. SQLVM: Performance Isolation in Multi-Tenant Relational
Database-as-a-Service. In CIDR 2013 (cidr 2013 ed.). 6th Biennial Conference on
Innovative Data Systems Research.

[57] Muhammad Nawaz, E Emory Enscore Jr, and Inyong Ham. 1983. A heuristic
algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11, 1
(1983), 91–95.

[58] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. 677–689.

[59] Gultekin Ozsoyoglu and Richard T Snodgrass. 1995. Temporal and real-time
databases: A survey. IEEE Transactions on Knowledge and Data Engineering 7, 4
(1995), 513–532.

[60] Christos H. Papadimitriou. 1979. The Serializability of Concurrent Database
Updates. J. ACM 26, 4, 631–653. https://doi.org/10.1145/322154.322158

[61] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP systems. In Proceedings of
the 2012 ACM SIGMOD International Conference on Management of Data. 61–72.

[62] Dan R. K. Ports and Kevin Grittner. 2012. Serializable Snapshot Isolation in
PostgreSQL. Proc. VLDB Endow. 5, 12 (aug 2012), 1850–1861.

[63] Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly Contended
OLTP Workloads Using Fast Dynamic Partitioning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 527–542.

[64] Thamir M Qadah and Mohammad Sadoghi. 2018. QueCC: A Queue-oriented,
Control-free Concurrency Architecture. In Proceedings of the 19th International
Middleware Conference. 13–25.

[65] Dai Qin, Angela Demke Brown, and Ashvin Goel. 2021. Caracal: Contention
Management with Deterministic Concurrency Control. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles. 180–194.

[66] Krithi Ramamritham. 1993. Real-time databases. Distributed and parallel
databases 1 (1993), 199–226.

[67] Rubén Ruiz, Quan-Ke Pan, and Bahman Naderi. 2019. Iterated Greedy methods
for the distributed permutation flowshop scheduling problem. Omega 83 (2019),
213–222.

[68] Rubén Ruiz and Thomas Stützle. 2007. A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem. European journal
of operational research 177, 3 (2007), 2033–2049.

[69] Mohammad Saidi-Mehrabad and Parviz Fattahi. 2007. Flexible job shop schedul-
ing with tabu search algorithms. International Journal of AdvancedManufacturing
Technology 32, 5-6 (2007), 563–570.

[70] M Saqlain, S Ali, and JY Lee. 2023. A Monte-Carlo tree search algorithm for the
flexible job-shop scheduling in manufacturing systems. Flexible Services and
Manufacturing Journal 35, 2 (2023), 548–571.

[71] DY Sha and Cheng-Yu Hsu. 2006. A hybrid particle swarm optimization for
job shop scheduling problem. Computers & Industrial Engineering 51, 4 (2006),
791–808.

[72] Gaurav Sharma, Ravi R Mazumdar, and Ness B Shroff. 2006. On the complexity of
scheduling in wireless networks. In Proceedings of the 12th annual international
conference on Mobile computing and networking. 227–238.

[73] Liji Shen, Stéphane Dauzère-Pérès, and Janis S Neufeld. 2018. Solving the flexible
job shop scheduling problem with sequence-dependent setup times. European
journal of operational research 265, 2 (2018), 503–516.

[74] Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and Andrew Pavlo. 2019.
Scheduling OLTP Transactions via Learned Abort Prediction. In Proceedings of
the Second International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management (Amsterdam, Netherlands) (aiDM ’19). Association for
Computing Machinery, New York, NY, USA, Article 1, 8 pages.

[75] David Shue, Michael J. Freedman, and Anees Shaikh. 2012. Performance Isolation
and Fairness for Multi-Tenant Cloud Storage. In 10th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 12). USENIX Association,
Hollywood, CA, 349–362.

[76] John A Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio Buttazzo. 1998.
Deadline Scheduling for Real-Time Systems: EDF and Related Algorithms. Vol. 460.
Springer Science & Business Media.

[77] Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo Alvisi, and Chao Xie. 2017.
Bringing Modular Concurrency Control to the Next Level. In Proceedings of the
2017 ACM International Conference on Management of Data. 283–297.

[78] Dixin Tang, Hao Jiang, and Aaron J. Elmore. 2017. Adaptive Concurrency Control:
Despite the Looking Glass, One Concurrency Control Does Not Fit All. In CIDR,
Vol. 2.

[79] The H-Store team. 2013. SmallBank Benchmark. http://hstore.cs.brown.edu/
documentation/deployment/benchmarks/smallbank/

[80] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems (SIGMOD ’12). Association for Computing Machinery, New
York, NY, USA, 1–12.

[81] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant Schoenebeck. 2018.
Contention-Aware Lock Scheduling for Transactional Databases. Proceedings of
the VLDB Endowment 11, 5 (2018), 648–662.

[82] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-Memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles. 18–32.

[83] Özgür Ulusoy and Geneva G Belford. 1993. Real-time transaction scheduling in
database systems. Information Systems 18, 8 (1993), 559–580.

[84] Peter JM Van Laarhoven, Emile HL Aarts, and Jan Karel Lenstra. 1992. Job Shop
Scheduling by Simulated Annealing. Operations research 40, 1 (1992), 113–125.

[85] Jia-Chen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,
Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance Transactions
via Learned Concurrency Control. In OSDI. 198–216.

[86] Ling Wang and Da-Zhong Zheng. 2001. An effective hybrid optimization strategy
for job-shop scheduling problems. Computers & Operations Research 28, 6 (2001),
585–596.

[87] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li. 2016.
Scaling Multicore Databases via Constrained Parallel Execution. In Proceedings
of the 2016 International Conference on Management of Data. 1643–1658.

[88] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos, and Yang
Wang. 2015. High-Performance ACID via Modular Concurrency Control. In
Proceedings of the 25th Symposium on Operating Systems Principles (Monterey,
California) (SOSP ’15). Association for Computing Machinery, New York, NY,
USA, 279–294.

[89] Jin Xie, Liang Gao, Kunkun Peng, Xinyu Li, and Haoran Li. 2019. Review on
flexible job shop scheduling. IET collaborative intelligent manufacturing 1, 3
(2019), 67–77.

[90] Ming Xiong, Qiong Wang, and Krithi Ramamritham. 2008. On earliest deadline
first scheduling for temporal consistency maintenance. Real-Time Systems 40
(2008), 208–237.

[91] Cong Yan and Alvin Cheung. 2016. Leveraging Lock Contention to Improve
OLTP Application Performance. Proc. VLDB Endow. 9, 5 (jan 2016), 444–455.

[92] Linguan Yang, Xinan Yan, and Bernard Wong. 2022. Natto: Providing Distributed
Transaction Prioritization for High-Contention Workloads. In Proceedings of
the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
715–729.

[93] Chenhao Ye, Wuh-Chwen Hwang, Keren Chen, and Xiangyao Yu. 2023. Polaris:
Enabling Transaction Priority in Optimistic Concurrency Control. Proc. ACM
Manag. Data 1, 1, Article 44 (may 2023), 24 pages.

[94] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016
International Conference on Management of Data. 1629–1642.

[95] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. 2020. Chiller:
Contention-centric Transaction Execution and Data Partitioning for Modern
Networks. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 511–526.

[96] Rui Zhang and Cheng Wu. 2010. A hybrid immune simulated annealing algorithm
for the job shop scheduling problem. Applied Soft Computing 10, 1 (2010), 79–89.

2707

https://doi.org/10.1145/322154.322158
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/

	Abstract
	1 Introduction
	2 Scheduling For Better Performance
	2.1 Schedule Makespan
	2.2 The Impact of Scheduling

	3 Searching for Fast Schedules
	3.1 SMF: An Effective Search Policy
	3.2 Why SMF Finds Fast Schedules
	3.3 Adversarial Cases for SMF
	3.4 Statistical Performance Bounds

	4 An Online Scheduling-First Database
	4.1 Online Scheduling
	4.2 Schedule-First Concurrency Control

	5 Evaluation
	5.1 Scheduling in Practice
	5.2 Scheduling Overheads
	5.3 Classifier Accuracy
	5.4 Evaluating SMF's Search Quality

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

