
Bf-Tree: A Modern Read-Write-Optimized Concurrent
Larger-Than-Memory Range Index

Xiangpeng Hao∗
University of Wisconsin-Madison

xiangpeng.hao@wisc.edu

Badrish Chandramouli
Microsoft Research

badrishc@microsoft.com

ABSTRACT
A B-Tree is the most widely used range index for larger-than-
memory data systems. It organizes data in pages (usually 4 KB)
that efficiently align with disk IO operations, fully utilizing each
IO operation to narrow down the search space. On the other hand,
a B-Tree’s page-based organization leads to inefficient caching and
high write amplification, as it needs to cache the entire page as
a whole while often only a small subset of records are hot, and it
needs to write the entire page for a single record update.

The key insight of this paper is to separate cache pages from
disk pages, i.e., a cache page is no longer a pure mirror of its disk
content, but instead, it forms a judiciously chosen subset of the
disk page that is worth caching, and can absorb both read and
write operations in a consistent manner. Based on this insight, we
propose Bf-Tree, a modern B-Tree that is read-write-optimized by
building a new variable-length buffer pool to manage such cache
pages, called mini-pages. Bf-Tree uses this in-memory buffer pool
to support efficient record-level caching, buffering recent updates,
caching range gaps, as well as mirrors of disk pages when needed.
We implement a fully featured and modern Bf-Tree in Rust with 13k
lines of code, and show that Bf-Tree is 2.5× faster than RocksDB
(LSM-Tree) for scan operations, 6× faster than a B-Tree for write
operations, and 2× faster than both B-Trees and LSM-Trees for point
lookups. We believe these results firmly establish a new standard
for database storage engines of the future.
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1 INTRODUCTION
A B-Tree is the most important range index for larger-than-memory
data processing systems. It organizes data in pages that align well
with block devices such as SSDs. This allows each disk IO (usually
4KB) to load exactly one page of the B-Tree from the disk, and the
entire page is used to narrow down the search space.

However, a B-Tree is not a silver bullet for all workloads, as it
faces two key challenges: (1) it incurs high write amplification: a
small modification to a page requires us towrite the entire page back
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Figure 1: Throughput (log-scale) along three dimensions –
point lookup, scan, and update. Each triangle is a different sys-
tem; larger the better. Bf-Tree covers B-Tree and LSM-Tree along
all three dimensions. Section 6.3 covers this experiment in detail.

to disk and (2) its native caching strategy is inefficient, as it caches
data in memory at a page granularity, even if only a small subset of
records on the page are hot. These problems are exacerbated when
a B-Tree is used as a secondary index with small keys and values.

Many solutions have been proposed to mitigate these problems.
LSM-Trees [10, 13, 16, 31, 37, 48] are the most notable alternative;
they use log-structured writes (appends) to mitigate write amplifica-
tion problem but incur a higher cost for read and compaction. Many
studies have proposed to enhance the B-Tree itself [24], e.g., Bw-
Tree [43, 61] and B𝜖-Tree [3, 11] employ delta records to reduce write
amplification by chaining updates and batch writing them. Two-
Tree [27, 69], Anti-Caching [15], Siberia [18], and Tree-line [65]
employ a separate record cache to improve caching efficiency.

These enhancements, however, are complex and introduce new
challenges. For example, delta records improve write amplification
but slow down read and scan operations: as a page’s chain gets
longer, it incurs excessive random memory access. A record-cache
allows efficient point lookup but does not apply to range scans,
leaving a smaller memory budget for caching scan records. They
are also hard to maintain consistently and tune for memory usage
relative to the page cache. Overall, modern B-Trees require a holis-
tic re-design to address the aforementioned challenges and better
optimize for both read and write operations.

Interestingly, the root cause of both problems comes from the
core B-Tree design principle of page-based data organization: records
of a page are coupled together and are transferred between memory
and disk as a whole. The fundamental tension is that the disk page
size is much larger than the record size, and such coarse-grained

3442

https://doi.org/10.14778/3681954.3682012
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682012


data management limits performance. As a thought experiment,
for example, note that if the disk page size equaled the record size,
both problems would disappear.

The key insight of this paper is that we can separate cache pages
from disk pages, i.e., the cache pages are no longer a mirror of their
disk content. Instead, they contain a judiciously chosen subset of
the disk page that is worth caching. Calledmini-pages, these cached
pages are a native part of the tree’s memory component and can
be both read from and written to consistently. Mini-pages have the
freedom to cache individual hot records, a key range, the original
page, and/or serve as a succinct buffer for recent updates. This
design leads to more efficient point lookup, range scan, and write
operations.

We crystallize this insight into a new data structure called the
Bf-Tree1. Bf-Tree is a modern B-Tree built from the ground up using
Rust, characterized by a new variable-length in-memory buffer pool
to store mini-pages. Mini-pages serve three purposes: (1) cache
frequently accessed records, (2) buffer recent updates, and (3) cache
a range gap [24] (a range between two keys). This is made possible
by changing the mini-page size dynamically: it can grow larger to
accommodate more updates and cache more records. It may even
grow to the full page size (4 KB) to allow efficient cross-node range
scans. It can also shrink to allow other mini-pages to grow.

Variable-length mini-pages are ideal for addressing the above
problems, but memory management of mini-pages faces challenges
ofmemory alignment, fragmentation, and resource utilization. Specif-
ically, the variable-length buffer pool that serves mini-pages must
satisfy the following four requirements: (1) constrain the mem-
ory consumption of mini-pages to a configured value; (2) manage
and track used/unused memory, i.e., allocate and de-allocate mini-
pages; (3) identify hot and cold mini-pages: grow hot mini-pages
while shrink or evict cold mini-pages. (4) interact with the on-disk
leaf pages to ensure consistency and data integrity. Further, all
these requirements must be handled efficiently in a multi-threaded
(concurrent) setting.

To this end, we propose a novel variable-length buffer pool built
upon a circular buffer. The circular buffer has a fixed total size,
and all mini-pages are stored in the circular buffer. Allocation of
mini-pages is done by advancing the tail pointer of the circular
buffer, while deallocation is done by adding the memory region
to a free list, which will be reused for future allocation. Growing
and shrinking mini-pages is done by allocating a new mini-page
and copying the content of the old mini-page to the new one as a
read-copy-update. When the circular buffer is full, the mini-pages
close to the head pointer will be evicted to disk, making room for
new mini-page allocation.

Evaluations (Figure 1, Section 6) show that Bf-Tree with mini-
pages has high cache-efficiency and low write-amplification in a
YCSB-like benchmark for all point lookup, scan, and write opera-
tions. Specifically, Bf-Tree has 2.5× higher throughput than
RocksDB (LSM-Tree) for scan operations, 6× faster than a
B-Tree for write operations, and 2× faster than both B-Trees
and LSM-Trees for point lookup.We believe these results firmly
establish a new standard for database storage engines of the future.

The contributions of this paper are summarized below:

1The ‘f’ in Bf-Tree stands for “faster”.

• We propose Bf-Tree, a new concurrent larger-than-memory
range index that outperforms B-Trees and LSM-Trees on all
measured aspects for larger-than-memory workloads and is
on par with in-memory B-Trees for main-memory workloads.

• We design a new mini-page abstraction along with the first-of-
its-kind practical variable-length buffer pool for mini-pages.

• We implement Bf-Tree as a fully featured index from scratch
using modern Rust with strong correctness guarantees.

• We experimentally analyze the performance of Bf-Tree us-
ing a comprehensive set of workloads and show that Bf-Tree
outperforms state-of-the-art B-Trees and LSM-Trees.

2 BACKGROUND
We start by discussing recent advancements in the design of B-Trees
and LSM-Trees, the two most important data structures for larger-
than-memory data systems. Although B-Trees and LSM-Trees are
traditionally optimized for read and write-intensive workloads re-
spectively, practical use cases must handle both workloads simulta-
neously. Therefore, they have each been extended to manage the
opposing workload type efficiently.

2.1 B-Tree
A larger-than-memory B-Tree organizes data in pages and places
hot pages in memory while cold pages reside on disk. It assigns
each page with a unique ID and maintains a mapping from the
page ID to the physical location of the page (on disk or in memory).
This allows a B-Tree to grow larger than memory (by evicting cold
pages to disk) but still allows efficient access to data on disk.
Point lookup.A B-Tree excels in efficient point lookups by travers-
ing the tree from the root to the leaf node and then binary searching
the leaf node for the target key-value pair. By caching inner nodes
in memory [15], a B-Tree can complete a point query with a single
IO operation involving a leaf node retrieval from disk. This design
significantly enhances lookup speed for larger-than-memory data.

Despite their efficiency in disk lookups, B-Trees face challenges
in caching hot records, especially when they are interspersed with
cold ones on the same page. B-Tree’s page-based caching brings the
entire page in memory – caching hot records along with cold ones
– leading to low cache efficiency. To mitigate this problem, multiple
systems – such as Two-Tree [69], Siberia [18], Anti-caching [15],
and Tree-line [65] – have incorporated record-level caching (i.e.,
cache individual records rather than entire pages) in their system
to improve caching efficiency. While effective for point lookups,
record-level caching cannot operate alone, as it does not benefit
range scans, necessitating page-level caching just for range queries.
Further, as a separate component, record caches are not helpful for
writes. With two caching components, the system needs a delicate
balance in memory allocation between the two types of caches.
Write. A write operation in a B-Tree often faces significant write
amplification: a single update to a key-value pair requires a write
to the entire page. This is because the record size (often less than
100 bytes [6]) is much smaller than the page size (ranging from
4KB to 64KB). A typical write operation on a B-Tree leaf page often
involves reading the entire page from disk, modifying the page in
memory, and writing the entire page back to disk. Such inefficiency
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is problematic in write-intensiveworkloads, prompting a preference
for LSM-Trees, which are better suited to these scenarios.

To mitigate write amplification, researchers have proposed vari-
ous modifications [3, 11, 43, 61] to a conventional B-Tree. Among
these, the Bw-Tree’s [43] delta chain approach represents a notable
advancement. A write to a leaf page is “blindly” appended to an
in-memory delta chain without touching the leaf page. As the delta
chains grow, they eventually merge to the leaf page in a batched
manner, thereby reducing write amplification. However, long delta
chains slow down search during both read and write operations,
as they need to pointer-chase the delta chain to find the target
key-value pair.
Range scan. B-Trees support efficient range scans by chaining the
leaf nodes for efficient forward and backward scans. Moreover, a B-
Tree’s page-based caching is ideal for range scans, as the entire page
is cached in memory, preserving spatial localities of neighboring
records.

2.2 LSM-Tree
The Log-Structured Merge-Tree (LSM-Tree [16, 23, 53]) comple-
ments the B-Tree, especially for write-intensive workloads. LSM-
Trees allow efficient data ingestion but incur higher costs for the
read workloads. Despite this trade-off, LSM-Trees are widely used
in industry, e.g., RocksDB [16], TiDB [31], and Bigtable [10].
Write. LSM-Trees append incoming writes to an in-memory buffer
and periodically flush the buffer to disk. When writing to disk,
records are sorted and merged with existing data, a process known
as compaction. LSM-Trees employ a multi-level file organization
to manage compaction efficiently. Despite the optimizations, com-
paction remains resource-intensive, often leading to IO amplifica-
tion and significant read latencies at the higher percentiles. Recent
works have proposed to mitigate compaction overheads by offload-
ing it from the critical path [68] and reducing data writes [48].
Point lookup.During a point lookup, an LSM-Tree needs to binary-
search multiple levels of potentially large files. LSM-Trees employ
many techniques to accelerate point lookups. Bloom filters [14, 20]
serve as file-level filters that can terminate unnecessary file searches.
A block cache [21, 49] caches data blocks from the SST file, reducing
the number of disk IOs. A row cache[55] is a record-level cache
that caches individual records in memory; it is more fine-grained
than a block cache but does not apply to range scans.
Range scan. LSM-Trees are inefficient at range scans, as they need
to search all levels of the tree to find all records in the given range
and merge them to get the final result. Moreover, an LSM-Tree’s row
cache does not apply to range scans, leading to low cache efficiency
for scan-intensive workloads.

2.3 Modern NVMe SSD
Disks have improved significantly in the past few decades, espe-
cially with the advent of modern NVMe SSDs. Although conven-
tional systems continue to work with new hardware, many of their
assumptions have changed, particularly those designed around the
limitations of conventional HDDs. As a result, the operational trade-
offs of B-Trees and LSM-Trees warrant a reevaluation in the context
of new hardware capabilities.

Random vs. sequential writes. Conventional HDDs use spinning
disks to locate data, so sequential writes are much faster than ran-
dom writes. Log-structured write is a good fit for such hardware
as it only requires sequential writes. Modern NVMe SSDs, on the
other hand, have no mechanical moving parts, use flash memory
for efficient parallel access, and incorporate fast hardware garbage
collection schemes [62, 63]. This allows modern NVMe SSDs to
have almost as fast random write as sequential write; recent stud-
ies [26, 65] suggest that 4KB random writes can almost saturate an
SSD’s bandwidth, making log-structured writes less attractive.
Kernel bypass IO. Conventional IO operations require the kernel
to act as an intermediary, transferring data between the device
and user space. This incurs overheads of context switches and dual
copies of data. With modern NVMe SSDs, the IO latency can be a
few microseconds, comparable to a context switch; the bandwidth
can be >10GB/s [26], a significant fraction of memory bandwidth.
SPDK[64] and io_uring[2] are two mechanisms that allow appli-
cations to bypass the kernel and access storage devices directly,
eliminating unnecessary data copies and context switches.
B-Tree page size. Smaller page sizes are preferred to reduce am-
plification, especially on modern NVMe SSDs that support finer-
grained access. Bf-Tree therefore by default uses 4KB page size
instead of more common 8-32 KB page sizes [22, 32, 39, 52]. Recent
evaluation [26] on B-Tree page size shows that modern SSD favors
4KB page size, smaller page size results in worse IOPS and latency
due to excessive overhead in the flash translation layer and not
optimized 512-byte page access. This is consistent with our prelim-
inary experiment that 4KB page size is the sweet point on a PCIe
4.0 modern NVMe SSD [56].

3 BF-TREE ARCHITECTURE
Two major problems of conventional B-Trees – write amplification
and inefficient caching – stem from the fact that disk pages are
much larger than individual records. This granularity mismatch
fundamentally limits the performance of B-Trees, forcing them to
either cache cold records or write the entire page for a single record
update.

A B-Tree’s page organization is suitable for block devices and
naturally implements page-based caching. However, the cache does
not have to be page-based, as memory is byte-addressable. Bf-Tree
starts with this thought experiment:What if cached pages can
have variable lengths? By having variable-length pages, memory
caches no longer need to align to disk pages. Instead, they have the
freedom only to cache the data that is worth caching. In Bf-Tree,
this means it can cache (1) only the “read hot” part of a page to serve
reads efficiently and (2) the “write hot” part of a page to absorb
updates (often in-place) as much as possible before batch writes to
disk. It can also grow to cache the entire range gap if needed.

This section presents the high-level design of Bf-Tree, a modern
B-Tree re-imagined with a native variable-length buffer pool for
memory. Bf-Tree can leverage variable-length cache entries, called
mini-pages, to support efficient point lookup, range scan, and write
operations. While this design can help address the aforementioned
problems, it comes with new concurrency, memory management,
and resource utilization challenges. Section 4 will discuss how such
a buffer pool can be efficiently implemented for a Bf-Tree.

3444



Figure 2: High level architecture of Bf-Tree. Like conventional
B-Tree, but pages in the buffer pool are variable lengths.

Figure 2 shows the high-level architecture of the Bf-Tree. It con-
sists of four parts: (1) the inner nodes; (2) the buffer pool that caches
mini-pages; (3) the on-disk leaf pages; and (4) the mapping table
for leaf and mini pages. At a high level, the Bf-Tree’s architecture
is not much different from the conventional B-Tree, except that its
buffer pool supports variable length pages.

The rest of this section discusses the design of each component in
detail, specifically, where we store them in memory or on disk and
how they interact with each other. The last sub-section discusses the
optimizations we implemented to improve Bf-Tree’s performance.

3.1 Mini-page
A mini-page is an in-memory slim version of the corresponding
leaf page. It serves two purposes: (1) to buffer recent updates and
(2) to cache frequently accessed records. Mini-pages are for leaf
pages only (i.e., not for inner nodes), and each leaf page may have
at most one corresponding mini-page.

Records in a mini-page are maintained as sorted, preserving
spatial locality. This allows records to be efficiently searched using
binary search, unlike the delta chain approach that requires a se-
quence of pointer chases to find the target record. We next discuss
the high-level functionality of a mini-page. Section 5 will discuss
in detail how mini-pages are used in Bf-Tree’s core operations.

Absorbing write operations. A write operation tries to insert
to themini-page of the destination leaf page. If the leaf page does not
already have a mini-page, it creates a minimal-sized (e.g., 64 bytes to
align with a cache line) mini-page that can contain the new record.
If the mini-page is full, it grows to accommodate the new records.
Each time, the mini-page doubles its size until it can accommodate
the new record. Ultimately, the mini-page can grow too large (up to
4KB), which can cause the insertion/search performance to degrade.
Then, or when it needs to be evicted from memory, we batch-write
and merge the mini-page into the base leaf page. We will discuss
new mechanisms for a fast concurrent buffer pool implementation
for mini-pages in Section 4.

Caching hot records. Before reading the leaf page from disk, a
read operation first (binary) searches the mini-page for the desired
record and terminates early if the record is found. Searching the
mini-page is efficient as the records are sorted and in-memory. If
the record is not found in the mini-page, we load the corresponding
leaf page from disk.

After reading the record from disk, we can cache it by inserting it
into the mini-page. This allows future read operations to terminate

Figure 3: Mini-page (var len) / leaf node (4096 bytes) layout

the search early. Note that the mini-page will cache the individual
records, not the entire page, avoiding the inefficient page-level
caching of conventional B-Trees. To avoid flooding the mini-page
with cold records, we only cache the records from the leaf page at a
low probability, e.g., 1%. Caching hot records is implemented as an
in-memory insert operation to the mini-page, which may trigger
the mini-page to grow as needed.

Caching range gaps. Record caching does not help with range
scans because the range query has to look at the leaf page for the
full set of records; in other words, record caching breaks the spatial
locality needed for range scans. On the other hand, a page-level
cache is ideal for range scans, as it preserves the spatial locality of
records. Mini-pages support caching range gaps: when a mini-page
grows to the full size, we merge (if necessary) and convert it into
a full leaf page mirroring disk. Unlike systems such as RocksDB,
where static memory partitioning is required for row-cache and
block-cache, mini-pages in Bf-Tree automatically adapt to workload
changes (e.g., point or range query intensive). This allows the same
memory budget to be used for both range and point queries.

3.2 Mini and leaf page layout
Mini-pages and leaf pages share the same layout, storing key-value
pairs in sorted order and allowing efficient lookups. In Bf-Tree, they
share the same implementation, except that mini-pages can have
varying lengths. This significantly reduces the complexity of the
system and allows us to implement optimizations once and apply
them to both mini-pages and leaf pages.

As shown in Figure 3, the page layout starts with a 12-byte Node
Meta, which encodes the node size, page type (mini or leaf page),
split flag (whether the page is full), and value count (the number of
records on the page).

The Node Meta is followed by an array of KV Meta, which
stores the metadata of the key-value pair. The metadata and key-
value data are stored separately to support variable-length keys
and values. The KV Meta is stored from the beginning of the page,
and the actual key-value data is stored from the end of the page.
The node is full when the KV Meta and the key-value data meet
in the middle. Separating the metadata and the actual data also
allows efficient insertion, as we only need to shift the metadata
when inserting a new record instead of shifting the entire node.
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Each KV Meta is 8 bytes, which stores the length of the key and
value and the offset of the key and value in the page. It also stores
the type of the key and value (more detail on Table 1), whether
the key is a fence key (Section 3.5), the reference flag of the key-
value pair (Section 5.5), and finally, the look-ahead bytes of the key
(Section 3.5). The key-value data is stored sequentially on the page,
starting at the specified offset in the KV Meta.

3.3 Leaf pages and mapping table
Leaf pages are always on disk, and may have at most one associated
mini-page in memory. To locate the leaf page and its mini-page, the
last level inner node stores a page ID, which references a mini-page
or a leaf page. Bf-Tree maintains a mapping table that maps the
page ID to the actual location. If the page ID points to a mini-page,
its leaf page address can be found in the leaf field of the page
header.

As shown in Figure 2, the mapping table is an in-memory con-
tainer that maps the logical page ID to the physical location of the
page (i.e., memory address or disk offset). The mapping table can be
implemented using a hash table/indirection array [22, 36, 52], rely-
ing on the OS’s page table [12, 29], or using pointer swizzling [39].
Bf-Tree uses an indirection array for its simplicity and performance.
However, our design can work with any of the above approaches,
as the mapping table is decoupled from the rest of the system.

In addition to the address translation, the mapping table stores
the reader-writer lock for each page. The reader-writer lock (16
bits) is co-located with the page address (48 bits); they are together
packed into a 64-bit word for efficiency. As the mini-page and its
leaf page share the same page ID, locking the mini-page will also
lock the leaf page, simplifying the locking mechanism and reducing
overhead.

3.4 Inner nodes
Conventional B-Tree systems treat inner nodes and leaf nodes indis-
tinguishably and use the same mapping table to translate an inner
node page ID to a physical address. This creates a high overhead of
inner node access (due to translation) and a contention hotspot on
the mapping table. Inner nodes of practical B-Tree systems usually
take less than 1% of the total B-Tree size [15, 24], and they are
much more frequently accessed than leaf pages (e.g., every leaf
page access will involve multiple inner node accesses).

Bf-Tree by default pins the inner nodes inmemory and uses direct
pointer addresses to reference them. This allows a simpler inner
node implementation, efficient node access, and reduced contention
on the mapping table. As inner nodes are pinned to memory, the
buffer pool of Bf-Tree only needs to cache leaf pages. Pinning inner
nodes to memory is not a design requirement, when deployed with
constrained memory budget, users can choose to disable inner node
pinning, or only pin the first few levels of inner nodes to memory.
When a inner node is not pinned to memory, it will be accessed
through the mapping table using a page ID instead of a direct
memory address (similar to leaf pages).

Bf-Tree implements optimistic latch-coupling [41] on inner nodes
to reduce their contention – based on the observation that although
highly contended, inner nodes are rarely modified (only modified
on nodes split/merge). Specifically, we use an 8-byte version lock

to track the state of the inner node. A read operation compares the
version number before and after the operation and only proceeds
when the version number matches. A write operation will acquire
an exclusive lock on the inner node and bump the version lock after
the modification. Optimistic latch coupling for inner nodes allows
Bf-Tree to scale to high concurrency, as the read operation does not
pollute cache lines, thus avoiding cache coherence traffic.

3.5 Performance optimizations
Now we discuss the optimizations made to Bf-Tree’s node layout,
which apply to inner nodes, leaf nodes, and mini-pages.
Fence keys. Fence keys guard the key range of a page and de-
termine the neighbor nodes for range queries. The first key of a
mini/leaf page is the low fence key, and the second is the high
fence, followed by the actual records. The low fence points to the
node’s left neighbor, and the high fence points to its right neighbor.
Alternative approaches are possible, e.g., chained pointers. Bf-Tree
uses fence keys for their simplicity.
Prefix compression. Keys of Bf-Tree can have long prefixes, e.g.,
URL keys and names. To reduce memory usage and accelerate the
key search, Bf-Tree implements prefix compression based on the
fence keys. The node’s prefix is implicitly stored in the fence keys
as they tell the node’s key range; i.e., the common prefix of the low
and high fence keys is the node’s prefix. When inserting records
into a node, the common prefix is skipped, and only the suffix is
stored in the node; this reduces space consumption and allows
higher fan out. To read the full key, we assemble the key’s prefix
and suffix stored in the node.
Look-ahead bytes. Figure 2 shows thatBf-Tree stores the KV pair’s
metadata and actual data apart. While this design has the benefits
mentioned earlier, it can incur higher random memory access for
key comparison: we first load the record’s metadata, then use it to
load the actual key. To accelerate this two-step pointer chasing, we
store the first 2 bytes of the actual key (called look-ahead bytes) in
the metadata and compare the look-ahead bytes first. Thanks to
prefix compression, the first 2 bytes of the keys are usually different,
and we can terminate the search early without loading the full key.
We only need to load and compare the full key if the look-ahead
bytes are the same.

4 BUFFER POOL FOR MINI-PAGES
So far, we have described how mini-pages can significantly reshape
the design of a B-Tree, and how Bf-Tree leverages mini-pages to
achieve its efficiency goals. We next discuss how to manage the
memory of mini-pages, as mini-pages can be of different sizes and
grow and shrink dynamically.

The variable-length buffer pool has three challenges: (1) manages
the memory of all mini-pages, i.e., the exact memory location of
each mini-page, (2) tracks the hotness of each mini-page and evicts
the cold mini-pages when needed. (3) concurrency challenge of
evicting and allocating by many threads while maintaining memory
safety and parallelism. The first challenge has to deal with memory
fragmentation (like most allocators [19, 38]): When a large chunk
of continuous memory is broken into smaller chunks of variable
sizes, it is difficult to assemble them back to form a large chunk.
The second challenge is to systematically decide which mini-page
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Figure 4: Circular buffer for variable length mini-pages.

should be evicted and which should be kept in memory. The third
challenge is safely issuing enough parallel IO requests to saturate
SSD bandwidth.

Bf-Tree solves the problems above by designing a novel circular
buffer to manage mini-pages: we store the mini-pages in the circular
buffer, adding to the tail until the buffer is full. When it is full, the
mini-pages close to the head address are evicted to disk, allowing
the tail address to advance. This design is inspired by FASTER’s
hybrid log design [8, 9], where a similar goal is achieved. We next
discuss how the circular buffer is designed and implemented to
work in a concurrent setting.

4.1 Memory regions of circular buffer
The nature of the circular buffer evicts all mini-pages that reach the
head address. This is undesirable behavior for hot mini-pages. As
shown in Figure 4, the circular buffer has three addresses: the head,
tail, and second-chance addresses. These three addresses divide the
memory into 90% in-place-update region (between tail address and
second-chance address) and 10% copy-on-access region (the rest).
Mini-pages on the in-place-update region can be modified in place,
while mini-pages on the copy-on-access region will be copied to the
tail address on access (Section 5.5). This prevents hot mini-pages
from reaching the head address and getting evicted.

The circular buffer also maintains multiple free lists, each with a
different size class, to track recently de-allocated memory. A mini-
page de-allocation happens when it tries to grow or shrink. This
involves first allocating a new mini-page, copying the content of
the old mini-page to the new one, and finally de-allocating the old
mini-page. The de-allocated memory is added to a free list and
reused for future allocation.

4.2 Circular buffer API
The circular buffer provides a succinct yet efficient API to support
various operations on mini-pages.
Alloc.Memory for a mini-page can be allocated from two places:
the free list of the requested size category and the tail address.When
the free list has no memory, we allocate from the tail address by
advancing the tail address by the requested size. When the circular
buffer is full, i.e., the physical locations of tail and head addresses
are close to each other; the circular buffer returns an error. The
caller will then call eviction to make room for new allocations.
Eviction. Eviction is the process of making room for new alloca-
tions. Eviction starts from the mini-page closest to the head address.
A callback function is invoked to merge dirty records in the mini-
page to the leaf page on disk. Then, the mapping table is updated to
point to the leaf page, and the head address is advanced. Eviction
may happen simultaneously from multiple threads (more below).

Figure 5: Bf-Tree’s Get and Insert operations.

Dealloc. De-allocation simply adds the memory region to the cor-
responding free list, for reuse during a future allocation.

4.3 Performance optimizations
The circular buffer is central to Bf-Tree’s design and can easily
become a performance bottleneck if not optimized sufficiently.
Memory fragmentation. There’s no paging concept in the circular
buffer, i.e., mini-pages are allocated with no spaces between them.
Each allocated mini-page has an 8-byte metadata that stores its
size and state (e.g., ready or free-listed). The meta-data is stored
right before the mini-page. This design minimizes fragmentation
as mini-pages do not need to align to specific memory boundaries.
Memory alignments. Without paging, each mini-page is only
aligned to an 8-byte boundary; this means that some mini-pages
may cross the physical 4KB paging boundary, incurring additional
page table lookup while accessing the mini-page. This is mitigated
using the Huge Table provided by the Linux kernel, where the
entire physical memory of the circular buffer is backed by huge
pages of 2MB or 1GB, heavily reducing the likelihood of mini-pages
crossing the page boundary.
Concurrent evictions. Eviction ensures that cold mini-pages are
evicted to disk, making room for hotter mini-pages. Eviction bumps
the head address so that the tail address can be advanced. This is a
sequential operation because the head address can only increase
linearly. To parallelize the eviction process, we allow each thread
to start evicting a mini-page concurrently but require all threads
to finish the eviction in order, i.e., the head address can only be
advanced when all threads have finished their eviction.

5 BF-TREE CORE OPERATIONS
So far, we have discussed the core mechanisms of Bf-Tree and
the mini-pages. This section discusses how Bf-Tree connects the
components to support efficient read, write, and range scans.

5.1 Get
The get operation starts with traversing the tree to the mini-page
that may contain the target key-value pair and searching the mini-
page for the key. If the record is found in the mini-page (cached),
we will return the record and terminate the operation early. If the
record is not found (or no mini-page exists), we search the corre-
sponding leaf page on disk. We load the leaf page using the offset
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stored in the mini-page header (or the mapping table) and search
the page for the target key-value pair. With a small probability
(defaulting to 1%), we cache the record by inserting it into the mini-
page, creating a new mini-page if one does not already exist. This
allows subsequent searches for that record to complete in memory.
Algorithm 1 summarizes the get operation in pseudo-code.

1 de f g e t ( key ) :
2 ( mini_page , l e a f _ p a g e ) = t r a v e r s e ( key )
3 i f mini_page :
4 r e s u l t = mini_page . b i n a r y _ s e a r c h ( key )
5 i f r e s u l t :
6 # e a r l y t e rm in a t e i f found
7 r e t u r n r e s u l t
8
9 # o the rwi se , r ead from the l e a f page
10 r e s u l t = l e a f _ p a g e . b i n a r y _ s e a r c h ( key )
11 i f rand ( ) < 0 . 0 1 :
12 # with a sma l l p r o b a b i l i t y , cache i t i n the mini −page
13 mini_page . i n s e r t _ o r _ c r e a t e ( r e s u l t )
14 r e t u r n r e s u l t

Listing 1: Get operation

5.2 Insert
1 de f i n s e r t ( key , v a l u e ) :
2 ( mini_page , _ l e a f _ p a g e ) = t r a v e r s e ( key )
3 ok = mini_page . i n s e r t ( key , v a l u e )
4 i f ok :
5 # e a r l y t e rm in a t e i f i n s e r t s u c c e ed s
6 r e t u r n
7
8 new_s ize = mini_page . n e x t _ s i z e ( )
9 i f new_s ize == 0 :
10 # need to merge to the base page
11 mini_page . merge ( )
12 mini_page . i n s e r t ( key , v a l u e )
13 r e t u r n
14 e l s e :
15 # need to grow the mini −page
16 mini_page . r e s i z e ( new_s ize )
17 mini_page . i n s e r t ( key , v a l u e )
18 r e t u r n

Listing 2: Insert operation

Like the get operation, the insert operation starts with traversing
the tree to the mini-page, creating a new mini-page if it does not
already exist. The size of the new mini-page is just enough to fit
the new record so that we have minimal write amplification. Then,
we try to insert the record into the mini-page. If success, i.e., the
mini-page has enough space to absorb the record, we will terminate
the operation early. No IO (i.e., write to the leaf page) is needed in
this case. If the mini-page is full, we will try to resize it to fit its
current size. The resize process will allocate a new memory chunk
and copy-initialize the mini-page to the new location. Once the
mini-page is resized, we insert the record into the new mini-page.
If the current mini-page is already large (e.g., 4KB) – the mini-page
has already absorbed enough records – we merge it to the leaf page.
The merging process will evict all dirty (modified) and cold records
from the mini-page.

5.3 Range scan
Range scan involves scanning a range of records in the mini-page
and leaf page and then merging the records to get the final result.
This means the mini-page will not help reduce the IO for the range
scan because it needs to load the leaf page anyway.

To mitigate this, Bf-Tree allows a frequently scanned mini-page
to grow to the full page size and cache the entire page in the circular
buffer. Thus, the buffer pool can also behave as a page-level cache.

Page-level caching fundamentally differs from record-level caching
because it caches both individual records and entire range gaps.
Caching the entire leaf page provides us a simple way to handle
not only efficient range scan but also gap locking [24], negative
lookup, etc.

5.4 Delete/Update
Deleting a record is essentially inserting a tombstone record into
the mini-page. When a read operation reads the tombstone in the
mini-page, it returns a not-found result without touching the leaf
page. When the mini-page is merged to the leaf page, the tombstone
record is removed from the leaf page, if it exists.

Like Delete, an update operation inserts the record into the mini-
page. Future reads can directly read from the mini-page. The record
is updated on the leaf page when the mini-page is merged.

5.5 Mini-page operations
Mini-page merge. There are two cases where a mini-page might
be merged: (1) the mini-page is too large, and (2) the mini-page is
cold. A mini-page grows in size to cache/buffer as many records
as possible. But it can not grow arbitrarily large, as records in
the mini-page are sorted; a large mini-page incurs high insertion
overhead. When a mini-page grows beyond 2KB, it is merged with
the leaf page on disk to become a 4KB mini-page that mirrors the
leaf page. A mini-page will be evicted (merged to the leaf page) if
it is not accessed while in the second-chance region, as discussed
in Section 4.1.

To merge a mini-page with its leaf page, we first locate its leaf
page using the leaf field in the mini-page header. Then, we calcu-
late the space needed for the leaf page to accommodate the mini-
page; if the leaf page does not have enough space, we first split
the leaf page and then insert the records of the mini-page into the
corresponding leaf pages. Once all records are merged into the leaf,
we can discard the mini-page and reuse the memory.
Copy mini-page to tail. When a mini-page is accessed while it is
in the second-chance region, it is copied to the tail address. This
prevents a frequently accessed mini-page from reaching the head
address and, thus, being evicted to disk. We simply allocate a new
memory chunk from the circular buffer and copy the mini-page to
the new location. The old address is marked as a tombstone, and
eviction is not triggered. While copying a mini-page to the tail,
we also remove cold records from the mini-page (discussed below).
This means that a record in the mini-page is evicted to disk if it
is not accessed while it is in the in-place update region, and the
entire mini-page is evicted to disk if it is not accessed while in the
second-chance region.
Evicting cold records Mini-pages cache hot records, which can
become cold over time. Cold records are evicted to disk when a
mini page is copy-on-accessed in the second-chance region. Bf-Tree
takes this opportunity to examine all records and only keep hot ones
on the new mini page. Hot/cold records are differentiated by their
reference bit in the meta data; if set, the record is kept, otherwise
evicted. The reference bit is set when a record is accessed. When
eviction starts, we evict all records whose reference bit is 0 and clear
all other reference bits. If a cold record is a cache record (read cache
or phantom record), we can directly discard it without writing back
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to the leaf page. If the record is dirty (insert or tombstone), we
merge the entire mini-page to the leaf page (maximizing the utility
of the disk write) while retaining the hot records in the mini-page.
Leaf page split. Like a conventional B-Tree, a leaf node splits into
two nodes when it is full. For Bf-Tree, an insert always tries to insert
to the mini-page first. Growing a mini-page beyond 4KB triggers
an eviction, followed by a split operation of the leaf page. When
the split happens, each of the remaining records in the mini-page
is compared with the split key to determine which leaf page should
be inserted.

5.6 Handling negative search
A common problem with existing record-caching systems is that
they do not handle negative searches well. A negative search is an
operation that tries to find a key-value pair that does not exist in the
system. Existing record-caching systems only assert the existence
of a key-value pair; if a record is not found in the cache, it either
means the record is not cached or means the record does not exist.
Those systems then need to look up the leaf page to confirm the
record’s existence, which is inefficient.

Bf-Tree solves this problem as follows: we cache the negative
search result by inserting a phantom record into the mini-page.
The observation is that the negative record is like any frequently
searched record; we cache them in the mini-page. We note that
advanced techniques such as Bloom filters [20] can improve the
negativity test, but we leave this as future work as they may add
significant design complexity.

Record type Dirty? Existence?
Insert True True
Cache False True

Tombstone True False
Phantom False False

Table 1: Four types of records in a mini-page.

So far we have discussed four types of records (Table 1) in a mini-
page: insert, cache, tombstone, and phantom. Each of the types
indicates the dirty and existence property of a record – a dirty
record must be written back to the leaf page when the mini-page
is merged, and the existence tells whether a record exists in the
system.

5.7 Snapshotting, logging, and recovery
Bf-Tree is compatible with standard snapshotting, logging, and re-
covery mechanisms. Bf-Tree currently implements a simple ARIES-
style [51] physiological logging mechanism; more advanced mech-
anisms are left as future work.
Logging. Before any write operation is committed, it must append
a log entry to the WAL (write-ahead-log) and wait (log full or de-
fault 1ms interval) until the log is flushed. The log entry points to
a page on disk and describes an operation (e.g., insert, delete).
Snapshotting/Checkpointing. Like Aurora [59], Bf-Tree check-
pointing is done asynchronously and continuously offline by re-
playing the WAL entries in parallel. Online snapshotting is also
implemented by pausing the write operation and writing back the

dirty mini-pages to disk. The mapping table is appended to the last
pages of the snapshot file. Inner pages are also written back to disk
for faster/simpler recovery. A special mapping table is generated
and appended to the snapshot file to map the inner pages’ virtual
memory addresses to the physical disk offset.
Recovery. Bf-Tree recovery consists of two steps: (1) build the in-
memory representation from the snapshot file, (2) replay the WAL
to recover to the latest state. We first load the special mapping table
mentioned above to rebuild inner pages. Then for every inner page,
we use the mapping table to find the physical disk offset and load it
into memory. We recursively resolve and load its children’s pages.
Replaying the WAL consists of simply finding the corresponding
page and re-applying the operation.

6 EVALUATION
Bf-Tree re-designs the traditional B-Tree using variable-length
buffer pools and mini-pages. In this section, we compare the perfor-
mance of Bf-Treewith state-of-the-art key-value stores. Specifically,
we aim to answer the following questions:

• How does Bf-Tree compare against RocksDB [16], conven-
tional B-Tree, itsmodern variants [3, 11, 43], and Leanstore [39]
on various workloads?

• How doesBf-Tree perform on different workloads, contentions,
and cache sizes?

• Where does Bf-Tree spend its time on its different components?

6.1 Experimental setup
We run a YCSB-like benchmark with 200 million initial records,
each of which is 32 bytes (16-byte key and 16-byte value). We used
a Zip-f distribution with a skew factor of 0.9 (80% of requests access
33% of records); more distributions will be explored in Section 6.6
The default workload consists of 50% of reads and 50% of writes with
2GB memory cache. We warm up the system, repeat the benchmark
five times, and report the best throughput.

We implemented Bf-Tree in 13k lines of Rust. We use the latest
io_uring feature of the Linux kernel for efficient IO. Specifically,
we use the kernel polling mode [2, 26], which creates dedicated
kernel polling threads to perform direct IO with zero system calls
and bypass the OS page cache. The benchmark is performed on
a CloudLab machine ‘sm110p’, with 32 hyper-threads clocked at
2.4GHz, 128 GB of memory, and 1TB of NVMe PCIe 4.0 SSD with
over 600k IOP/s. It runs Ubuntu 22.04 with kernel 5.15 and ext4 as
the filesystem. Logging/snapshotting/checkpointing are orthogonal
to the core design of Bf-Tree and are disabled for all baselines.

We use lightweight formal methods [5] to validate the correct-
ness of Bf-Tree implementation. Specifically, we employ differen-
tial fuzzing to check that Bf-Tree acts semantically the same as
our reference model (the B-Tree in Rust’s standard library), run
Bf-Tree on CloudLab [17] using with libfuzzer [57] with address
sanitizer [58] to continuously check for memory issues (e.g., mem-
ory leak, use-after-free). We use shuttle [5] to deterministically
and systematically explore different thread interleaving to uncover
the bugs caused by subtle multithread interactions. We leverage
Rust’s reference model [33] to statically check that all accesses to
mini-pages are safe.
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6.2 Baselines
We compare Bf-Tree with (1) RocksDB (commit 54d6286); (2) B𝛿-
Tree (explained below); (3) conventional B-Tree; (4) Leanstore (com-
mit 677126c); and (5) TwoTree. This section discusses how we set
up and configure the baselines. Due to the nature of the complex
high-dimensional configuration space, we only highlight the key
configurations of each of these systems.
RocksDB. RocksDB is the state-of-the-art LSM-tree-based key-
value store. It is widely used in production and is highly optimized
for both read and write workloads. RocksDB has three caching
components: memtable, block cache, and row cache. The memtable
absorbs write operations and is flushed to disk when it is full; the
block cache caches the blocks of sstables, while the row cache caches
individual records of sstables. It is up to the users to configure how
to use the memory in these three caches. We spend half of the
memory on writing and half on reading, among which half is on
the block cache and half on the row cache. For better performance,
we enabled direct IO and disabled fsync and WAL.
Conventional B-Tree. We implemented a conventional B-Tree
from scratch in Rust. For fair comparisons, the conventional B-
Tree enjoys all optimizations from Bf-Tree except the mini-page
design, including hybrid latching, fence keys, prefix compression,
look-ahead bytes, and io_uring based IO. In other words, the
conventional B-Tree is Bf-Tree but with page-level caching.
B𝛿-Tree. To study the effect of delta records – like Bw-Tree [43] –
we implemented a B-Tree with delta records, which we call the B𝛿-
Tree. For fair comparisons, this implementation is also in Rust and
has all the optimizations in Bf-Tree, except for the mini-page design.
The B𝛿-Tree is implemented to be as close in design as possible to
the Bw-Tree, a state-of-the-art B-Tree used in production. To limit
delta chains’ memory consumption, we store all delta records and
page cache into the same circular buffer similar to that from Bf-Tree,
thereby preventing the system from using excessive memory.
Leanstore. Leanstore [39] is a B-Tree optimized for both in-memory
and larger-than-memory workloads by reducing the overhead of
the mapping table; Bf-Tree instead focuses on improving caching
efficiency and reducing write amplification. We include Leanstore
mainly to verify that Bf-Tree’s in-memory performance is not com-
promised by its novel buffer pool design.
TwoTree.TwoTree [69] is a new index structure that reuses existing
components to build record caching systems. We compare with
TwoTree to verify that our record caching (achieved by mini-pages)
is as performant as TwoTree.

6.3 Overall performance
This experiment examines how the five systems perform on the
three most important workloads in practice: point lookup, write,
and scan. We use the default benchmark setup mentioned in Sec-
tion 6.1 and run each workload separately. Figure 6 (top) shows the
throughput (the higher the better) of the systems in these workloads
with 31 threads, and Figure 6 (bottom) shows the corresponding
disk IO per operation (the lower the better).

For write, conventional B-Tree performs the worst, as a single
record update would incur a full page write, as evidenced by the
highest disk IO per operation. B𝛿-Tree, RocksDB, and Bf-Tree all
implement write buffers that batch write operations, leading to
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Figure 6: Bf-Tree vs. baselines on various workloads – Bf-
Tree is the only system performing well on all three representative
workloads.

lower disk IO per operation. Bf-Tree is faster than B𝛿-Tree as it
allows larger mini-pages, while B𝛿-Tree can only have up to 10 delta
records, allowing it to absorb more writes before writing to disk.
While having higher disk IO/operation, B𝛿-Tree performs similarly
to RocksDB due to its more efficient IO handling (e.g., zero-copy
IO) and more efficient in-memory data structure.

For point lookup, Bf-Tree and TwoTree stand out, as they em-
ploy record-level caching in the mini-page, which is more effi-
cient at identifying individual hot records. B𝛿-Tree and B-Tree use
page-level caching, which leads to similar throughput and disk IO.
RocksDB’s row cache also helps to improve caching efficiency, as
indicated by the fact that its disk IO is lower than B𝛿-Tree and
B-Tree. However, RocksDB’s in-memory skip list is less efficient
than B-Tree based implementations, leading to similar throughput.

For range scan, all B-Tree based systems perform similarly, as
they all cache the entire leaf page in the memory, preserving record
locality and allowing efficient scan. RocksDB performs the worst,
as it needs to scan all levels of the sstables and merge the results,
leading to higher disk IO per operation.

This experiment provides a high-level view of the system’s per-
formance on different workloads. It shows that Bf-Tree is the only
system that can perform well in all three representative workloads,
making it a good choice for general purpose key-value store.

6.4 Scalability
This section examines the scalability of Bf-Tree and the baselines
for larger-than-memory and in-memory workloads.

Figure 7 uses the default workload (50% read and 50% update)
and varies the number of threads. All systems scale well before
reaching the maximum disk bandwidth. Among them, Bf-Tree per-
forms the best, with the lowest write amplification and the most
efficient caching. Its efficient io-uring-based IO handling also allows
it to scale well without being bottlenecked by the kernel overhead.
Bf-Tree, B𝛿-Tree, and B-Tree saturated the disk bandwidth at 31
threads, with a scale factor of 19.2×, 15.1×, and 17.0×, respectively.
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Figure 7: The scalability of Bf-Tree vs baselines. – Bf-Tree
scales well before saturating the SSD bandwidth. RocksDB does not
saturate the bandwidth at thread 31.

B𝛿-Tree is worse than RocksDB (17.5×) because it does not have
recording-level caching like the row cache in RocksDB. B-Tree is
the worst among the four systems, as its page-granularity caching
is inefficient and incurs high write amplification.
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Figure 8: In-memory performance compared with Leanstore.
– When data fits in memory, Bf-Tree, B-Tree, B𝛿-Tree fold in a
similar design. This is a sanity check that Bf-Tree’s in-memory
performance is as good as the state-of-the-art Leanstore.

Figure 8 uses the same workload as the previous experiment but
ensures that the data fits in memory. When data fit in memory, Bf-
Tree, B-Tree, and B𝛿-Tree fold in the same design. This experiment
compares them with Leanstore, a state-of-the-art B-Tree that is
highly optimized for in-memory workloads. Leanstore uses pointer
swizzling to reduce the overhead of the mapping table; its tech-
niques are complementary to Bf-Tree’s, we include Leanstore here
to sanity check that Bf-Tree’s in-memory performance is not com-
promised by its mini-page design. At low thread count, Leanstore
performs slightly better than Bf-Tree, as it avoids the mapping ta-
ble overhead in Bf-Tree, specifically, for each operation, Leanstore
may have one less cache miss than Bf-Tree. At high thread count,
Bf-Tree performs slightly better than Leanstore, reaching a scale
factor of 23.9× as opposed to 14.5× of Leanstore, indicating that
Bf-Tree is more efficient at handling contention. Note that Bf-Tree’s
techniques can be applied to Leanstore, and vice versa, and we leave
it to future work to apply the Leanstore’s techniques to Bf-Tree.
Leanstore performs similarly to baseline B-Tree for larger-than-
memory workloads, as they both use page-level caching.

6.5 Latency
This experiment examines the latency distribution of Bf-Tree and
baselines with read-only workload and single thread execution.
The x-axis shows the latency in nanoseconds, and the y-axis shows
the cumulative latency distribution, starting from 0% to 100%. We
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Figure 9: Latency distribution of Bf-Tree vs baselines. – Bf-
Tree has the best 50th and 99th percentile latency due to its efficient
caching and IO handling.

measured the end-to-end latency of the systems, i.e., from issuing
the request to the system returning the result. We used dashed
vertical lines to show each system’s 99th-percentile tail latency.

Figure 9 shows that all systems present a two-stage latency
distribution: when data is cached in memory, the latency is around
1us, and when accessing data from disk, the latency increases 100×
to around 100𝜇𝑠 . Bf-Tree’s variable length mini-pages allow it to
cache more records in memory, leading to an almost 75% cache
ratio. In contrast, all other systems can only cache around 50%
of the records, leading to the lowest 50th percentile latency of
1.18𝜇𝑠 , while B𝛿-Tree, RocksDB, B-Tree has the 50th percentile
latency of 1.61𝜇𝑠 , 1.86𝜇𝑠 , and 58.7𝜇𝑠 , respectively. When data is
larger than memory, Bf-Tree has the lowest 99th percentile latency
(70𝜇𝑠), almost 2× lower than RocksDB (131𝜇𝑠), thanks to its efficient
zero-copy zero-syscall IO handling.

The multiple latency spikes in RocksDB are due to the LSM
tree’s multi-level structure. The last few latency spikes of B-Tree
and B𝛿-Tree are due to cache replacement, where new pages are
being promoted to cache and old pages are being evicted to disk.
Bf-Tree also presents a similar stair pattern but a much smaller
spike due to its high cache ratio.

6.6 Skewness

Uniform Zipf (0.6) Zipf (0.8) Zipf (1.0)
0.0

1.0

2.0

Th
ru

pu
t (

M
op

s/
s)

Bδ-Tree
RocksDB
B-Tree
Bf-Tree

Figure 10: Impact of workload skewness. –Bf-Tree performs
consistently the best across all skew levels.

Figure 10 shows the impact of workload skewness on the sys-
tems’ performance, from Uniform distribution to Zipf distribution
with a skew factor of 1.0. This experiment evaluates how well the
systems can handle workload skewness and whether they can han-
dle high contention. The performance of all systems increases as
the workload becomes more skewed, as the hot records are more
likely to be cached in memory. Bf-Tree consistently performs the
best, and its performance is the most pronounced when the work-
load presents a high skew. This is because Bf-Tree’s record-level
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caching is more efficient at identifying hot records than the page-
level caching used in B-Tree. RocksDB also has a row cache, but
its row cache memory budget is divided among memtable, block
cache, and row cache, leading to less efficient caching and Bf-Tree
which can adapt the entire memory for record caching. Similarly,
B𝛿-Tree’s delta chains and the page cache compete for the same
memory budget, leading to less efficient caching than Bf-Tree.

All systems perform poorly on uniform distribution, as caching
is less effective when every record has equal hotness. In this case, Bf-
Tree still has the best caching ratio because its mini-page design can
better handle the internal fragmentation of the leaf pages. Practical
B-Tree leaf pages only have about 70% of the space used due to the
nature of page splitting. When caching the entire page in memory,
this leads to a 30% waste of memory. Bf-Tree’s mini-pages will
dynamically grow and shrink to fit the actual number of records in
the page, leading to a better caching ratio.

6.7 Read write ratio.
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Figure 11: Impact of read and write workloads.

Figure 11 shows the impact of read and write workloads on Bf-
Tree and baseline systems. For systems that implement buffered
write, e.g., Bf-Tree, B𝛿-Tree, and RocksDB, the throughput is higher
with more write operations. This is because most write operations
are buffered in memory and only flushed to disk when the buffer
is full. But for read operations, each cache miss incurs a random
disk IO to read the data from the disk. For conventional B-Tree, a
higher read ratio leads to better performance, as read operations
incur one read IO, while write operations incur both read and write
IO. Overall, Bf-Tree performs significantly better than the baselines
in all read and write ratios. This is because Bf-Tree’s mini-page can
cache individual hot records and absorb write operations, leading
to the best performance across all read and write ratios.

6.8 Cache sensitivity
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Figure 12: Impact of cache size.

This experiment examines the cache sensitivity of Bf-Tree and
baseline systems. We used a read-only workload and varied the
memory size from 256MB to 4GB, and reported how their through-
put changed in response to the cache size. As memory size increases
by 16×, RocksDB’s performance steadily increases but only to 2.2×,
indicating a low caching efficiency. B𝛿-Tree and B-Tree perform
similarly as they both use page-level caching for the leaf pages,
with an increase of 4.7× and 3.3×, respectively. In particular, both
B𝛿-Tree and B-Tree have a slow performance increase when most
data are on disk and a fast performance increase when most data
are in memory, consistent with previous study [27]. Bf-Tree has a
similar performance increase of 4.1× and is consistently the best
across all memory sizes. The gap between Bf-Tree and the baseline
systems is wider when most data are on disk, showcasing Bf-Tree’s
efficient caching mechanism. The gap becomes narrower when
most data are in memory, as all B-Tree based systems fold to the
same design when data fit in memory.

6.9 Time-component analysis
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Figure 13: Time spent on different components of the system
– Recreated from the flamegraph [25] for better clarity.

Figure 13 shows the flamegraph [25] of the Bf-Tree for a read-
only in-memory workload. Larger-than-memory workloads present
similar results, except that >95% of the time is spent on disk IO.

The inner node search takes roughly half the time, involving
multiple inner node searches, one mapping table read, and one leaf
node search. Searching an inner node first loads the metadata for
key-value pairs, then binary searches the keys to find the next level
pointer, and finally loads the next node. Each mapping table access
first locates the slot from page ID, then loads and acquires a reader
lock on the mapping table and uses the physical address to load the
leaf page. Leaf page search is similar to inner-node search.

Multiple inner node searches spend similar time to one leaf node
search. This is because inner nodes are more frequently accessed,
most of which can fit in the CPU cache, while leaf node access is
less frequent and almost always needs to load from memory. The
mapping table uses only 12.8% of time, requiring only one memory
access for address translation and lock acquisition.

Within inner and leaf node searches, they spend similar time on
metadata load and binary search, as they have the same page layout
and optimizations. Among binary searches, roughly one-third of
the time is spent comparing the key bytes, and the rest is spent
loading data from memory.

6.10 Copy-on-access region size
Figure 14 varies the copy-on-access region size from 0% to 100%
of total circular buffer size, the y-axis shows the corresponding
throughput. At 0%, the buffer acts like a FIFO queue, demonstrating
low runtime overhead but low caching quality. At 100%, the buffer
acts like a strict LRU cache, demonstrating high runtime overhead
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Figure 14: Impact of copy-on-access region size (% of total
circular buffer size).

but high caching quality. Bf-Tree by default chooses a 10% copy-on-
access region size, which balances the trade-off between runtime
overhead and caching quality.

6.11 Impact on promotion rate
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Figure 15: Impact of promotion rate: the probability of pro-
moting a record from a disk page to its mini page.

Figure 15 varies the promotion rate (the probability of promot-
ing a cold record to cache) from 1% to 100%. The x-axis shows the
time since a workload change, and the y-axis shows the through-
put. When the promotion rate is low (e.g., 1%), the system favors
caching frequency and responds slowly to workload change but
might converge to a higher throughput. When it is high (e.g., 100%),
the system favors caching recency and converges quickly but ends
up with a lower throughput as it disrupts the cache by promoting
cold records. Bf-Tree by default chooses a 20% promotion rate, as it
balances the trade-off between recency and frequency.

7 RELATEDWORK
The design of Bf-Tree is inspired by many systems, including in-
memory indexes, larger-than-memory key-value stores, B-Tree for
new hardware, and LSM-Trees.
In-memory indexesART (adaptive radix tree) [40] is an in-memory
range index optimized for point lookup and memory efficiency. Bf-
Tree’s prefix compression is inspired by ART’s prefix compression.
Blink-hash [7] is an in-memory B-Tree optimized for append heavy
workloads, Bf-Tree’s mini-page is inspired by its write buffer de-
sign. BP-tree [44] is an in-memory B-Tree optimized for both point
lookup and range scan using large leaf pages. HydraList [50] is a
scalable in-memory index that separates data search and modifica-
tion, Bf-Tree’s optimistic latch coupling is inspired by its design.
Pea hash [46] is a performant hash table that balances the trade-off
between memory utilization and access latency. Bf-Tree is inspired
by the above systems to improve its in-memory performance.

Larger-than-memory KV stores FASTER [8, 9, 45] is a state-of-
the-art larger-than-memory hash key-value store optimized for
point lookups and write-heavy workloads. Bf-Tree’s circular buffer
design is inspired by FASTER’s hybrid log, which supports variable-
length record allocations. Unlike FASTER, Bf-Tree is a range index
that allows efficient range scans. TreeLine [65] is a B-Tree implemen-
tation incorporating record caching and insert forecasting. Unlike
Bf-Tree, it currently only supports fixed-size records. Leanstore [39]
is a B-Tree optimized for both in-memory and larger-than-memory
workloads; it is the first system to use pointer swizzling to reduce
the overhead of the mapping table. Two-tree [69] is a new index
structure to support efficient record caching using existing B-Trees.
SplinterDB [11] is a B𝜖-tree [4] implementation to focus on low
read/write amplification. These systems help Bf-Tree to design effi-
cient caching and IO handling while balancing trade-offs among
point lookup, write, and range scan workloads.
B-Tree for new hardware B-Trees for new hardware, e.g., NVMe
SSDs, PM, etc., shed light on how to design a Bf-Tree that works
well for future hardware. PIM-tree [34] is a range index designed
for PIM (process-in-memory) that balances inter-node communica-
tion and load balance. [54] leverages transparent compression in
modern SSDs to design efficient B-Tree that achieves low write am-
plification. Bztree [1], Plin [67], NBTree [66], APEX [47], Halo [30],
Hamming-tree [35] are range indexes designed for byte-addressable
persistent memory. [28, 42] comprehensively evaluates persistent
memory range indexes. Sherman [60] and [27] propose systems for
disaggregated/tiered memory systems.
LSM-trees LSM-Trees provide insights on how to reduce write
amplification of Bf-Tree. WALTZ [37] is an LSM-tree that leverages
ZNS (zoned namespace SSDs) to reduce tail latency. Chucky [13]
propose a new filter for LSM-tree that replaces the bloom filter
for better access cost. WiscKey [48] is an LSM-tree structure that
separates the key and value to reduce write amplification.

8 CONCLUSION
This paper presents Bf-Tree, a novel B-Tree variant optimized for
point lookup, write, and range scan workloads. It uses a novel mini-
page design to achieve low write amplification and efficient caching.
To manage the mini-pages, Bf-Tree designed a novel variable length
buffer pool using a circular buffer. We implemented Bf-Tree in Rust
with strong correctness guarantees. Our evaluations show that Bf-
Tree is 2.5× faster than RocksDB (LSM-Tree) for scan operations,
6× faster than a B-Tree for write operations, and 2× faster than
both B-Trees and LSM-Trees for point lookups.
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