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ABSTRACT

Modern organizations manage their data with a wide variety of
specialized cloud database engines (e.g., Aurora, BigQuery, etc.).
However, designing and managing such infrastructures is hard.
Developers must consider many possible designs with non-obvious
performance consequences; moreover, current software abstrac-
tions tightly couple applications to specific systems (e.g., with
engine-specific clients), making it difficult to change after initial
deployment. A better solution would virtualize cloud data manage-
ment, allowing developers to declaratively specify their workload
requirements and rely on automated solutions to design and man-
age the physical realization. In this paper, we present a technique
called blueprint planning that achieves this vision. The key idea is
to project data infrastructure design decisions into a unified design
space (blueprints). We then systematically search over candidate
blueprints using cost-based optimization, leveraging learned mod-
els to predict the utility of a blueprint on the workload. We use
this technique to build BRAD, the first cloud data virtualization
system. BRAD users issue queries to a single SQL interface that can
be backed by multiple cloud database services. BRAD automatically
selects the most suitable engine for each query, provisions and
manages resources to minimize costs, and evolves the infrastruc-
ture to adapt to workload shifts. Our evaluation shows that BRAD
meet user-defined performance targets and improve cost-savings
by 1.6–13× compared to serverless auto-scaling or HTAP systems.
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1 INTRODUCTION

Over the past decade, the cloud has transformed how organiza-
tions manage their data through two key forces: (i) offering a
plethora of specialized database engines optimized for diverse work-
loads [9, 11, 14], and (ii) enabling “one-click” on-demand access to
conceptually “infinite” resources [13, 16, 43, 72]. To reap these bene-
fits, cloud users must curate a collection of such specialized database
engines, each offering a competitive edge on different parts of their
workload. For example, an organization might use Aurora [11] to
manage client accounts with transactions, Snowflake [33] to analyze
historical sales data, and BigQuery Omni [41] for exploratory anal-
ysis. Benefits aside, these multi-system infrastructures introduce
new management challenges. Data engineers need to (i) choose a
suitable set of engines (out of dozens [19, 20, 42]) for their work-
load, (ii) partition and/or replicate their data across the engines,
(iii) decide which engines to use for each aspect of their workload
(i.e., which queries go to each engine), (iv) provision the engines
appropriately, and (v) repeat these steps each time their workload
or business needs change. Navigating these decisions is hard; prior
work showed that an optimal infrastructure depends on many inter-
connected factors such as query selectivity, service level objectives
(SLOs), and dynamic load of the system [58]. Designs based on con-
ventional wisdom can miss out on significant performance and cost
savings (Section 2.1). As a result, organizations struggle to design
their infrastructure while also keeping costs under control [44].

To address this challenge, we recently presented our vision for
BRAD [58]. BRAD is fundamentally a virtualization layer for cloud
data infrastructure. BRAD users do not specify the mapping of data
to specific engines or explicitly provision resources. Instead, BRAD
uses a proxy-like indirection layer [18, 23, 28] to abstract away
multiple database engines, appearing to end-users as a single SQL
endpoint. Under the covers, BRAD allocates data and operates the
infrastructure by picking the “best” set of engines for the workload,
choosing the appropriate data distribution and provisioning for
each engine, and routing queries optimally. This is a fundamentally
challenging because BRAD must explore a huge space of possible
solutions, while meeting performance expectations.

We solve this problem using a novel technique we call blueprint
planning, which is a holistic cost-based optimization over the in-
frastructure design space. Specifically, blueprints are system plans
that define a BRAD deployment. They contain (i) the set of engines
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to include in the infrastructure, (ii) their provisioning configura-
tions (e.g., instance type and number of nodes), (iii) the engine(s)
on which each table in the dataset is placed, and (iv) a policy for
routing queries to the engines. Blueprints allow us to systematically
and quantitatively consider all aspects of the infrastructure design
problem in a unified search space, analogous to traditional query
planning [94]. However, accurately assigning scores to blueprints
is significantly harder than query planning. First, the utility of a
blueprint is not captured by performance alone, as a good blueprint
for a given workload minimizes dollar-based operating costs under
a latency-based performance constraint (or vice-versa, depending
on user-specified goals). Second, accurately predicting a workload’s
performance (e.g., a query’s run time) on a blueprint is difficult
due to (i) engines having opaque system implementations and (ii)
new constraints in our setting. Specifically, we must make these
predictions when a physical query plan is unavailable, preventing
us from reusing existing learned models [48, 68, 69, 71, 98, 112]. For
example, a candidate blueprint may add an engine into the infras-
tructure that is not yet running (e.g., starting up a data warehouse)
or replicate a table onto a new engine to support a query.

In this paper, we show that these challenges are tractable. In the
cloud setting, infrastructure operators can collect performance data
over a wealth of workloads and deployments to build learned perfor-
mance models. Moreover, most query optimizers are deterministic.
Thus, we can train a model to predict a query’s run time using just
its logical properties (e.g., filter selectivities, join templates) since
the optimizer will pick similar query plans with comparable run
times for similar queries. We leverage these observations to build a
graph neural network with a novel query featurization that relies
only on such logical query features (Section 3.2). Together with
other analytical models, we use this model to predict the perfor-
mance and cost of candidate blueprints on a given workload. We
then use these predictions to drive a greedy beam-based search
over the blueprint search space to find an optimized infrastructure
design. We have implemented our blueprint planner in BRAD, en-
abling it to automatically design infrastructures consisting of three
engines that cover a large part of enterprise needs: (i) a transac-
tional store (Aurora [11]), (ii) a data warehouse (Redshift [14]), and
(iii) a data lake query engine (Athena [9]).

While there is a wealth of prior work in automatically optimiz-
ing single systems [66, 76, 80–82, 84–86, 93, 104], and in managing
existing multi-engine deployments [5, 24, 26, 27, 36, 39, 50, 51, 90,
95, 108, 116], BRAD holistically automates and optimizes the design
and operation of multi-engine infrastructures. Doing so involves
reasoning about cost and performance across engines and hypothet-
ical deployments, which, to our knowledge, have not been studied.

We evaluate BRAD by having it automatically optimize a data
infrastructure for cost under a performance constraint, We use a
workload with both transactions and diverse analytics running on
an adapted version of the IMDB dataset [61]. Overall, we show that
BRAD is able to react to changing workloads and select designs
that achieve performance targets in diverse deployment scenarios.
When compared to a baseline that naïvely auto-scales transactional
and analytical systems, BRAD achieves 1.6–13× cost savings due
to its ability to route queries between engines and precisely scale
to the resource needs of a workload, instead of reacting passively
to increased system load.
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Figure 1: Query performance and operating costs of the same

workload on two data infrastructure designs.

Contributions. In summary, we make the following contributions:

• We introduce blueprint planning: a new framework for virtual-
ized, automated cloud data infrastructure design and manage-
ment that applies cost-based optimization.

• We present a practical blueprint planning solution. We leverage
a graph neural network with a novel logical query featurization
that generalizes to common gradual workload changes.

• We present the design, implementation, and evaluation of BRAD:
a virtualized cloud database management system that uses blue-
print planning to automate infrastructure design.

2 CONQUERING THE COMPLEX CLOUD

We first illustrate the subtle challenges in cloud infrastructure de-
sign and contrast this experience with using BRAD.

2.1 When Conventional Wisdom Falls Short

Consider the data processing needs of a movie theater chain. Un-
der conventional wisdom, they should run an OLTP engine (e.g.,
Aurora) for their transactions and a data warehouse (e.g., Red-
shift) for their analytics. To show the downsides of this approach,
we run a synthetic workload based on a 160 GB version of the
IMDB dataset [61] comprising transactions, repeating dashboard-
ing queries A B , and periodic reporting queries C . We run Aurora
with one db.t4g.medium instance and two Redshift dc2.large nodes
(Design 1). Figure 1 shows the analytical query latencies. We aim
to keep some queries under 3 s A and others under 30 s B C .

At first glance, Design 1 appears reasonable. However, consider
an alternative design with just two Aurora db.t4g.medium instances:
a primary and replica (Design 2). We can run a subset of the queries
A B on the Aurora replica and offload the reporting queries C

onto Athena (a serverless data lake engine). As shown in Figure 1,
Design 2 saves 2× on cost D , meets the performance targets, and
even improves query latency on some queries (up to 48× B and
2.1× C ). Transaction latency is unaffected on both designs because
they run on the unchanged Aurora db.t4g.medium primary instance.

Design 2 performs better because some queries B have pred-
icates on indexed columns, which Aurora can leverage. Redshift
does not support indexes and must use table scans. The reporting
queries C run infrequently, once every four hours, so they can be
offloaded to Athena (a serverless engine) instead of incurring a high
cost on a provisioned but underutilized Redshift cluster. Athena’s
serverless burst capability enables the up to 2× decrease in query
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latency C . These queries cannot meet the performance targets on
Aurora; they would run for over 150 seconds each.

This example shows that an effective design strongly depends
on the specifics of the workload and engines, rather than high-level
guiding principles (e.g., run transactions on an OLTP engine and
analytics on a data warehouse). Here, the conventional wisdom
design is about twice as expensive and an order of magnitude slower
on some queries than Design 2. An engineer would need an intimate
understanding of the engines and workloads to find such a design,
possibly spending a lot of time doing so. Moreover, because the
best design is workload-dependent, it can change in response to
workload shifts, forcing the engineer to redo their work. These
repeated design endeavors are unscalable and difficult to get right,
underscoring the need for a principled and automated alternative.

2.2 BRAD to the Rescue

With BRAD, users no longer manually design and operate their
infrastructures. Instead, each virtualized database engine managed
by BRAD has a user-specified design goal (e.g., minimize cost and
keep query latency under 30 seconds), and users simply submit
their queries and transactions directly to BRAD as if it were a single
engine. BRAD uses this design goal to optimize the infrastructure
to best run the user’s workload—what we call blueprint planning.
In this paper, we focus on the models, algorithms, and mechanisms
used in BRAD’s blueprint planner (Section 3). That said, virtualiza-
tion comes with many more challenges. In the remainder of this
section, we briefly outline how BRAD tackles them. We leave a
more detailed exploration of this topic for future work.

Data consistency and freshness. Since BRAD can choose to back
a (virtual) table with multiple replicas across engines, consistency
and freshness are natural concerns. In BRAD, (i) a table𝑇 will have
exactly one “writer engine” 𝐸 (i.e., all DML statements affecting
𝑇 run on the same 𝐸), and (ii) transactions run on a single engine
(Aurora). BRAD syncs its table replicas (if any) at a user-defined
frequency. Analytical queries (i.e., read-only queries not part of a
transaction) run against a snapshot, but the snapshot can be stale up
to the last sync. All transactions always run on the latest snapshot.
This approach provides similar freshness to existing solutions [53].

Transformations.Modern data infrastructure designs typically
use ELTs [6, 97], meaning that tables are first replicated into a
data warehouse and then transformed inside the warehouse using
DML statements. BRAD supports this model, as it already syncs
table replicas across engines; these transformations would thus
run as regular DML statements that modify the logical tables in
BRAD. Running these transformations on a schedule is orthogonal
to BRAD and can be handled using an external tool.

SQL dialects and semantics. Different database engines can have
different SQL dialects and semantics, meaning the same SQL state-
ment may not be executable on every engine. Currently, we assume
that BRAD can detect the subset of its engines that can correctly
run a given SQL query; BRAD will ensure it only routes the query
to those eligible engines (see Section 4.3). SQL dialect translation
techniques [22] may enable BRAD to expand a query’s set of eligible
engines; we leave this to future work.
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Figure 2: BRAD’s blueprint planning life cycle.

3 BRAD’S BLUEPRINT PLANNER: KEY IDEAS

We now describe the key ideas behind BRAD’s blueprint planner.
We continue with further implementation details in Section 4.

3.1 The Blueprint Planning Life Cycle

BRAD automatically designs and operates data infrastructures us-
ing a blueprint planning life cycle, which we depict in Figure 2. The
core idea is to select the “best” blueprint for the user’s workload,
operate the infrastructure according to the blueprint, and then trig-
ger re-optimization if the workload changes. Concretely in BRAD,
blueprints are infrastructure plans that contain

• The engines to include in the underlying data infrastructure.
• The provisioning configuration to use for each engine when

applicable (e.g., instance type, the number of nodes to use).
• The placement of data tables and replicas on the engines.
• A policy for routing queries to the engines in the infrastructure.

Below, 𝐵 is an example blueprint describing an infrastructure com-
prising Aurora (provisioned with one db.r6g.xlarge instance) and
Athena. Table𝑇1 is placed on Aurora, and𝑇2 is replicated on Aurora
and Athena. The routing policy consists of concrete query assign-
ments chosen during blueprint optimization (query 𝑞1 to Aurora
and 𝑞2 to Athena) (see Section 3.3) and an online policy 𝑃 (𝑞) that
selects an engine for a given query 𝑞 (see Section 3.4).

𝐵 =




{Aurora,Athena} Engines

{ (Aurora, db.r6g.xlarge, 1) } Provisioning

{𝑇1 → Aurora,𝑇2 → Aurora,𝑇2 → Athena} Placement

{𝑞1 → Aurora, 𝑞2 → Athena, 𝑃 (𝑞) } Routing

To automatically find an optimized blueprint, BRAD needs a
mechanism to (i) quantify the utility of (i.e., assign a “score” to)
candidate blueprints on the user’s workload (Section 3.2), and (ii) to
systematically search over the blueprint design space (Section 3.3).
Here, a workload is a representative (but not necessarily exhaustive)
list of expected queries and DML statements along with dataset
statistics (e.g., its size). Concretely, BRAD obtains a user’s workload
by logging their transactions and queries (see Section 4.1).

Scoring a blueprint is challenging because multiple factors in-
fluence a blueprint’s utility (e.g., performance, cost), and different
users may have different design goals (e.g., maximizing perfor-
mance vs. minimizing cost). Consequently, BRAD assigns vector
scores to its candidates, which comprise three components:

(1) Workload Performance. BRAD predicts the run time of the
queries and transactions in the workload on the blueprint.

(2) Operating Cost. The monetary cost of operating the data
infrastructure and routing policy specified by the blueprint.

(3) Transitions. The time and monetary cost of transitioning the
underlying infrastructure to the candidate blueprint.
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BRAD uses a set of learned models to assign values to all three
components, which we discuss next in Section 3.2.

Users express their “design goals” to BRAD by providing a com-
parator function that ranks the vector scores (Section 4.5), analo-
gous to the comparators used in sort routines [32]. For example, one
such goal could be to design an infrastructure that minimizes cost
while maintaining a performance constraint (e.g., a latency SLO,
see Section 4.5). The comparator would therefore rank blueprints
by their operating cost while treating blueprints that are predicted
to not meet the latency constraint as having an infinite cost.

3.2 Blueprint Scoring

In the blueprint’s score vector, the main challenge is predicting
the performance of the workload on the blueprint. For BRAD, this
means estimating the latencies of the queries in the workload on
each of BRAD’s engines while taking into account their provision-
ing and load. We discuss scoring in more depth in Section 4.2.

3.2.1 Query Run Times. Prior work has proposed run time predic-
tion methods for use in query optimization [98], workload schedul-
ing [107], resource management [93], and maintaining SLOs [31].
These methods require the query’s physical execution plan as in-
put. For example, DBMS cost models and traditional predictors use
hand-derived heuristics to understand the cost of each physical
operator [4, 37, 63, 109]. Advanced methods featurize the physi-
cal query plans and train deep learning models to predict their
run time [48, 68, 69, 71, 98, 112]. BRAD cannot directly use these
methods because it cannot always get a physical plan. For example,
BRAD may need to predict the run time of a query on an engine
that is not running or does not have the relevant data loaded (e.g., to
decide whether to start Redshift and/or move a table there). BRAD
must also account for the effects of provisioning and system load.

BRAD addresses these challenges using a graph neural network
(GNN) and two analytical models. We design a new GNN that pre-
dicts a query’s run time using the query’s SQL as input (i.e., relies
only on logical features) for an unloaded engine on a fixed provi-
sioning. Our GNN’s novelty is that it featurizes a query based on its
SQL text and data properties. In contrast, existing models featurize
queries using their physical query plans. We then use two analytical
models, based on Amdahl’s law [21] and queuing theory [46] to
adjust this model’s estimates for different provisionings and system
loads, respectively. We take this approach because making such
predictions with a single model is expensive and hard to realize due
to the need for diverse run time observations across various query
types, provisionings, and system loads. We describe the details of
our analytical models in Section 4.2.2; they provide an acceptable
accuracy and enable BRAD to find effective blueprints (Section 5.2).

GNN model and query featurization. We use a GNN model
with a novel query featurization that depends only on logical query
properties (e.g., the join template, join/filter selectivity) and dataset
statistics (e.g., estimated join selectivity). Our design is based on
the key observation that most query optimizers are deterministic:
they will choose similar query plans with similar run times for
queries with similar features and statistics. Thus, we identify these
features and then model them with a novel graph structure. As a
result, evenwithout physical plans, ourmodel learns the optimizer’s
behavior and makes accurate predictions for queries similar to the

training queries in our featurization space (Section 5.3). We use
the same approach to predict the amount of data a query scans (to
estimate Athena’s query cost). We describe the featurization and
graph structure in more detail in Section 4.2.1.

3.2.2 Model Bootstrapping. BRAD is designed to be gradually de-
ployed onto an existing infrastructure running one or more of our
component engines. When first deployed, BRAD observes the run-
ning workload and gathers performance data (e.g., query run times)
for each engine in a brief “bootstrapping phase.” BRAD then uses
this data to train these aforementioned models. Once complete,
BRAD then begins to actively optimize the infrastructure using
its blueprint planner. Avoiding a bootstrapping phase would re-
quire having performance models that are fully transferable across
workloads and datasets, which we leave to future work.

3.3 Blueprint Search

Exhaustively searching the entire design space is intractable for
most workloads because it is exponentially large with respect to
the number of tables and queries. Given this challenge, BRAD must
use an efficient search algorithm that finds optimized blueprints
without visiting the entire search space.

BRAD uses a greedy beam-based search [67] over the blueprint’s
routing policy (i.e., query-to-engine mapping), which directly im-
pacts the workload’s performance. Blueprints are optimized for a
workload which contains a representative list of expected queries.
The idea is to incrementally expand a set of top-𝑘 blueprints (the
“beam”) by examining queries in the workload one-by-one. For each
blueprint in the current top-𝑘 , the planner takes the next query and
assigns it to each of the three engines, creating three new candidate
blueprints. It then places tables according to these routing decisions
(e.g., if a query accessing table 𝑇 is routed to 𝐸, then a copy of 𝑇
is placed on 𝐸). After each step, the planner only keeps the top-𝑘
blueprints, and it repeats until all the queries have been assigned.
BRAD runs this beam search for each provisioning “near” the cur-
rent one (in computational resources) and returns the best-scoring
blueprint. BRAD uses a beam of size 100 (i.e., 𝑘 = 100). We analyze
and discuss our search algorithm in more detail in Section 4.4.

3.4 Operating Blueprints: Query Routing

Once BRAD has chosen a blueprint, the final step is to use it to serve
the workload. To route queries, BRAD first consults the query-to-
engine assignment in its blueprint. If the query is in the assignment,
BRAD uses this pre-planned routing decision. Otherwise, it uses
an online routing policy. BRAD’s online policy is a decision forest
that, for a given query, produces a ranking of the engines (most
preferred routing to least). BRAD routes the query to the highest-
ranked engine that has all the tables the query accesses. As input,
the forest takes the estimated scan cardinality of each table that
the query accesses; these cardinalities can be computed using an
off-the-shelf cardinality estimator. The forest is trained as the final
step in blueprint optimization using run times that our query run
time model predicts (the engine with the lowest predicted run time
is the most preferred). Inference over the decision forest is fast and
does not impose an undue overhead on the queries. We discuss
additional practical details for query routing in Section 4.3.
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Figure 3: A detailed view of BRAD’s architecture and its end-to-end blueprint planning life cycle.

4 BRAD’S BLUEPRINT PLANNER: DETAILS

In this section we outline the implementation details behind BRAD
and provide additional details about BRAD’s blueprint planner.

4.1 Realizing the Blueprint Planning Life Cycle

Figure 3 depicts BRAD’s system architecture, which implements
the blueprint planning life cycle using two components: (i) a fron-
t-end server responsible for interfacing with clients and operating
the blueprint, and (ii) a blueprint planner that monitors the work-
load and selects new blueprints when appropriate. We describe the
architecture by walking through the blueprint planning life cycle.

The life cycle begins at BRAD’s front-end server (Figure 3 A ).
Users submit SQL queries to the server, which get routed to a suit-
able engine for execution (Section 3.4). Crucially, to keep track of
the executing workload, the front end (i) logs the queries it receives
B , and (ii) collects metrics about the workload (e.g., transaction
latency, query latency). The blueprint planner monitors these met-
rics C , alongside others it retrieves from the underlying engines
(e.g., CPU utilization) and triggers blueprint optimization when
they exceed or fall below specified thresholds D .

When starting blueprint optimization, BRAD first extracts the
queries that ran during its planning window (a sliding window of a
configurable length E ) from its workload log. These queries, along
with dataset statistics (e.g., the sizes of the tables), are passed to
the optimizer and represent the workload that BRAD uses when
scoring candidate blueprints F . BRAD’s optimizer then searches
over valid blueprints (Section 3.3), scores them (Section 4.2), and
returns the best-scoring blueprint G (Section 4.5). The planner then
transitions the infrastructure to the chosen blueprint and passes it
to the front end H . The front end uses this blueprint until the next
one is chosen, completing the blueprint planning life cycle.

4.2 Additional Blueprint Scoring Details

4.2.1 Query Run Time and Data Scanned. As discussed in Sec-
tion 3.2, BRAD uses a graph neural network with a novel query
featurization to predict a query’s run time and the amount of data it
scans. We now describe the featurization and model in more detail.

Table A Table CTable B

A2 A3
C1 C5B3

=

B1

=

< LIKE

Embedding

Agg

A1
1

Scan A Scan B Scan C

SELECT   SUM(A1) 

      FROM A, B, C 

WHERE   A3 = B1  

      AND   B3  = B1  

      AND   A2  < 5 

      AND   C5  LIKE    

                ‘%SAM%’;

2 3

4

Join AB Join BC

12.31 s 346 MB

Table features num_rows, num_columns, storage_size, storage_format

Attribute features width, data_Type, NDV, null_Frac, is_PK, is_FK,

is_partition_key, is_sorted, index_type

Predicate features operator_type (e.g. AND, OR, <, =), literal_complexity

Operation features type (e.g. scan, join), width, estimated_selectivity, join_type 

(e.g. inner, left), agg_type (e.g. SUM, AVG)

Embedding features num_tables, num_columns, num_predicates, num_operations

A B

C D

M
essag

e p
assin

g

Final prediction

Embedding

  1 x 128

128 x 32

32 x 2
MLP

1 x 2

Figure 4: The query featurization used by our model, which

predicts a query’s run time and the amount of data it scans.

Query featurization. As discussed, existing run time predictors
require the query’s physical execution plan as input, which is not
always available in BRAD’s setting (Section 3.2). Thus, we design a
new graph featurization approach to encode information, such as
filters, joins, and group-bys, purely from a query’s SQL. This logical
featurization differentiates our GNN from existing models [48, 68,
69, 71, 98, 112]. Figure 4 shows an example procedure to extract
such a query feature graph. It has five types of nodes, each with
distinct node features (shown in Table D in Figure 4) and edges
representing the dependencies between these nodes. We parse the
query’s SQL to extract the tables, columns, predicates, and logical
operations it involves and construct the feature graph in four steps.

First, we extract the tables and columns involved in the query.
We show an example table 𝐴 and its relevant columns 𝐴1, 𝐴2, 𝐴3

in blue in Figure 4 A . We create a table node for each table and
a column node connecting to a table node for each column (Fig-
ure 4 B ). Second, we extract the operations on a single table, such
as “scan”, “aggregate”, and “group-by”, as highlighted in green in
Figures 4 A and 4 B . Specifically, we create a predicate node for
each filter predicate and connect the column nodes involved in this
predicate to it. We extract the features of the predicate nodes using
an approach similar to recent work [48, 98]. We connect these pred-
icate nodes to their parent operation node. For operations without a
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predicate, such as “aggregate”, we just connect them to the relevant
column nodes. Third, we parse the operations involving multiple
tables, e.g., “join”, as highlighted in red. The children of each join
operation node are the relevant scan operation nodes and the join
predicate node extracted the same way as a filter predicate. We list
the features for all node types in Figure 4 D . Finally, as highlighted
in yellow in Figure 4 B , all the operation nodes are connected to
the embedding node, which aggregates the overall information.

This generic query graph representation does not encode any
information about a physical plan (e.g., join order or physical opera-
tors). The features we use can all be independently derived without
relying on BRAD’s underlying engines. We use a value of −1 for
the aforementioned node features if the feature is unavailable.

Selectivity estimates. Our model also uses an estimate of the
selectivity of each operation node. This is because the selectivity
influences the chosen physical plan, and thus the query’s run time
as well. BRAD collects simple statistics about each table (e.g., his-
tograms) using analysis pass over the underlying data. BRAD then
uses the Selinger method [94] to make these estimates because of
its simplicity and negligible overhead. The choice of estimator is or-
thogonal to our model; other methods are also applicable [79, 111].

Graph neural network. Inspired by the zero-shot run time predic-
tor [48], we use a graph neural network to model interactions be-
tween nodes and propagate information through the feature graph.
We construct one multi-layer perception (MLP) node encoder for
each level that embeds the node features into a fixed-length vec-
tor. Then, we create another MLP for message passing through
edges [40]. At each internal node, we sum its children’s embedded
vectors, concatenate them with its own vector, and feed the result-
ing vector to the MLP to get a new vector. The message passing
stops at the last level when the “embedding node” has aggregated
all of the query’s information into a single vector. This vector is
fed to two MLPs (Figure 4 C ) to predict the query’s run time and
amount of data scanned. The entire model is trained end-to-end.

Discussion. By using logical features and selectivity estimates, our
model implicitly learns a query optimizer’s behavior and makes
accurate predictions for queries similar to our training queries (see
Section 5.3). Our model may not work well in some cases where the
testing queries are significantly different from our training queries.
For example, suppose the model was only trained on short running
queries joining small tables and the user then submits a long run-
ning query joining large tables. Then, the engine could possibly
choose a join operator/order that it has never chosen before, and
our model (and possibly all existing run time models) would be
unlikely to correctly predict that query’s run time. However, recent
work shows that in practical workload traces, a large portion of
queries are repeating and “similar” to prior queries [110]. Thus,
encountering a query that greatly impacts the selected plan in a
way that was not captured in the training data should be rare.

4.2.2 Provisioning and System Load. Next, we describe the two
analytical models we use to adjust our GNN’s run time estimates
for different provisionings and system load.

A query’s run time consists of two components: the time spent
running and the time it queues due to system load. Thus, BRAD
models a query’s complete run time 𝑅 as 𝑅(𝐺, 𝜌) = 𝑃 (𝐺) +𝑊 (𝜌),

where 𝐺 is the run time given by our GNN, 𝑃 (·) is a model that
accounts for the engine’s provisioning, and𝑊 (·) is the time spent
queuing depending on the system’s utilization (load) 𝜌 .

Compute resources. BRAD uses 𝑃 (𝐺) = (𝑐1 (𝑏/𝑑) + 𝑐2)𝐺 , which
we derive from Amdahl’s law [21]. We model the query’s run time
as having two parts: (i) one that will decrease (or increase) if the
engine’s provisioning is changed to have more (or less) compute
resources, and (ii) a fixed part that will not change even with more
resources. Here 𝑐1𝐺 represents part (i) and is multiplied by 𝑏/𝑑 ,
which is the ratio between the resources available on the “base”
and “destination” provisionings. The base is the provisioning on
which the graph neural network was trained. The destination is the
engine’s provisioning in the candidate blueprint. The 𝑐2𝐺 term is
part (ii). BRAD uses the total number of vCPUs in the provisioning
to represent the available compute. We learn one set of constants
𝑐1 and 𝑐2 for each engine (Aurora and Redshift) using least squares
linear regression [25] on the query workload. This approach as-
sumes that provisioning changes do not cause significant query
plan changes that would affect the run time. Empirically, we find
this model to be sufficient for blueprint planning (Section 5.2).

System load. BRAD models𝑊 (𝜌𝑟 ) using queuing theory, approx-
imating an engine as an M/M/1 system [46]. We use 𝑊 (𝜌𝑟 ) =

−𝐾 (1 − 𝜌𝑟 )
−1 log

(
𝜌−1𝑟 (1 − 𝑞)

)
which models the 𝑞-th percentile

queuing time on a system with utilization 𝜌𝑟 [2]. 𝐾 represents the
mean processing time, which we estimate as the average 𝑃 (𝐺) for
all queries assigned to the engine. We approximate an engine’s
utilization using its measured CPU utilization. In our experiments,
BRAD optimizes for a p90 latency constraint, so we use 𝑞 = 0.9.
We use this model as it provides a simple closed-form expression
for wait time. Not all engines are M/M/1 systems; for example, the
query arrival distribution may not be exponential and/or the engine
may process queries in parallel. However, we empirically find that
this simple model is sufficient for blueprint planning (Section 5.2).

Adjusting 𝜌𝑟 .𝑊 (𝜌𝑟 ) relies on a representative 𝜌𝑟 . BRAD cannot
directly use CPU utilization because the candidate blueprint may
use a different query routing as the current blueprint, thereby im-
posing different loads. Instead, we assume that a query’s “load” is
proportional to its run time. BRAD thus scales its observed CPU uti-
lization by a factor: the sum of the run times of the queries routed to
the engine in the candidate blueprint divided by the sum of the run
times that actually ran on the engine in the last planning window.

4.2.3 Transaction Latency. BRAD estimates transactional latency
on a candidate blueprint to ensure it provisions Aurora appropri-
ately for the transactional load it experiences. In general, estimating
a transaction’s run time is a hard problem due to the many factors
that can influence its latency (e.g., lock contention, buffer pool state,
etc.) [77]. We make a simplifying assumption that the transactional
workload is uncontended and consists of TPC-C-like [99] indexed
point reads and writes made interactively over the network. For this
setting, we use an analytical function that models a transaction’s
latency as a function of system utilization: 𝑅(𝜌𝑡 ) = 𝑎/(𝑀 − 𝜌𝑡 ) + 𝑏.
Here, 𝑅(𝜌𝑡 ) is the overall transactional latency. 𝑎, 𝑏, and 𝑀 are
workload-specific learned constants. 𝜌𝑡 ∈ [0, 1] is the system uti-
lization; we require that𝑀 > 𝜌𝑡 . We use CPU utilization as a simple
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proxy metric for 𝜌𝑡 . This model captures that transaction latency in-
creases rapidly as 𝜌𝑡 approaches𝑀 , like it would on an overloaded
system [46]. We derive this model empirically; it is loosely based
on the queuing theory equations for an M/M/1 system [46].

Adjusting 𝜌t. The candidate blueprint’s 𝜌𝑡 may not be the same as
the measured 𝜌𝑡 on the current blueprint (e.g., due to a changed pro-
visioning and/or query routing). BRAD applies two scaling factors
to compensate. First, it multiplies 𝜌𝑡 by the ratio of vCPUs between
the candidate blueprint’s provisioning and the current blueprint’s
provisioning. Second, it applies the same query load scaling factor
mentioned in Section 4.2.2 to account for query movement.

4.2.4 Operating Cost and Transitions. A blueprint’s cost comprises
provisioning costs, Athena query costs, and storage costs. For
Aurora and Redshift, BRAD uses AWS’ on-demand instance pric-
ing [12, 15]. Currently BRAD only considers Aurora I/O optimized
instances, which do not bill I/O usage [7]. Since Athena bills by the
amount of data scanned, BRAD uses its data scanned predictions
(Section 4.2.1) along with Athena’s scan pricing [10]. For storage
costs, BRAD models a table’s size as 𝑘 |𝑇 | where |𝑇 | is the number
of rows in the table and 𝑘 is an engine and table-specific constant.
To compare blueprints, BRAD normalizes costs to be in $/hour.

Table movement. BRAD currently moves tables via S3 (i.e., export
to S3 and import from S3). It estimates the movement time as 𝑆/𝑘𝑒 +
𝑆/𝑘𝑖 , where 𝑆 is the physical size of the table and 𝑘𝑒 and 𝑘𝑖 are
empirically measured export and import rates. These rates are
engine-specific but independent of the engine provisioning, which
we confirmed empirically. AWS does not charge for S3 transfers
between AWS services, so BRAD does not incur movement costs.

Aurora provisioning time. BRAD estimates Aurora’s provision-
ing time as the number of instance changes multiplied by a fixed
amount of time (we empirically measured 5 minutes). Removing
replicas is considered to take no time since BRAD does not need to
wait for the completion of removal to start using the next blueprint.

Redshift provisioning time. The time it takes to complete a
Redshift provisioning change depends on whether it can be done
using an elastic resize or not [8]. For elastic resizes, BRAD uses
AWS’ published estimate of 15 minutes [8]. BRAD estimates classic
resizes to take |𝑅 |/𝑘 where |𝑅 | is the physical size of the data in the
Redshift cluster. We empirically observed 𝑘 to be approximately 18
megabytes per second. Pausing Redshift is also considered to take
no time for the same reason as Aurora replica removals.

4.3 Additional Query Routing Considerations

Upon receiving a query, BRAD selects a suitable engine in two
steps: (i) determine the set of engines that are able to execute the
query, and then (ii) select the most suitable (e.g., best performing)
engine from this set. In this section, we describe step (i). For (ii),
BRAD uses the online routing policy described in Section 3.4.

In BRAD, an engine’s eligibility to run a query depends on the
table placement and its functionality support. Table placement is the
set of engines that hold a copy of a table and is governed by the
blueprint; BRAD currently only routes a query to an engine if it
has a copy of every table the query accesses. BRAD parses the SQL
query to extract the tables it references and compares them against
the blueprint’s table placement. During blueprint planning, BRAD

ensures that all tables are placed together on at least one engine to
so that it can always run a query that joins any subset of tables.

A query may also use specialized functionality only available
on a subset of the engines (e.g., vector similarity search [62, 88]).
By taking functionality into account, BRAD ensures that it only
selects engines that can run the query. Automatically determin-
ing the “specialized functionality” that a query uses is something
we leave to future work. BRAD currently uses keyword matching
against pre-specified keyword lists to determine if a query uses
such functionality (e.g., the presence of the <=> operator would
imply that the query uses vector similarity search).

4.4 Additional Blueprint Search Details

The intuition for using a top-𝑘 beam search instead of a naïve
greedy search lies in the nature of the search space. At the begin-
ning of the search, assigning queries to some engines may be better
(e.g., prefer Athena, which is pay-per-query, instead of Redshift
where you pay for provisioning). But after assigning more queries,
this trade-off changes (e.g., there are enough queries to justify run-
ning Redshift). Keeping a set of promising candidates helps BRAD
balance these changing trade-offs. We search over nearby provi-
sionings because BRAD handles gradual workload changes; the
next best provisioning is likely to be near the current provisioning.

Discussion. Beam search works well empirically in our setting
for two reasons. First, BRAD uses a large beam (𝑘 = 100), which
helps prevent some promising candidates from being eliminated
too early. Second, the queries in our workload have a skewed arrival
frequency (i.e., some queries arrive more frequently than others).
This property was also observed by our industrial partners in their
real-world workloads [110]. As a result, BRAD processes queries
in decreasing order of arrival frequency. Along with using a large
beam, this processing strategy makes it more likely for “important”
(i.e., frequently occurring) queries to be assigned to the best engine.

Analysis. Let 𝑚 be the number of engines considered, 𝑞 be the
number of queries in the workload, and 𝑝 be the number of dis-
tinct provisionings considered. This algorithm considers 𝑂 (𝑘𝑚𝑞𝑝)

candidate blueprints. Currently, BRAD has𝑚 = 3 and uses 𝑘 = 100.

4.5 Blueprint Comparator: Minimizing Cost

As discussed in Section 3.1, end-users need to define a comparator
function, which imposes an ordering on blueprint vector scores.
This comparator is how users convey their infrastructure design
goals to BRAD. A common goal is to minimize an infrastructure’s
operating costs while maintaining a service level objective (SLO)
(e.g., p90 query latency should be under 30 seconds). We use this
design goal when evaluating BRAD in Section 5. We now describe
how this goal is implemented as a comparator.

Given two blueprints (𝐵1, 𝐵2), the general idea is to map their
vector scores to scalar costs (𝑊1,𝑊2); the candidate with the lower
cost is considered better. A simple mapping would be to use the
blueprint’s operating cost when the predicted query latency falls
under the desired latency constraint and an infinite cost otherwise
(to indicate infeasibility). However, this mapping does not consider
the time and cost of transitioning to the candidate. Instead, our
approach is to weigh the cost of operating each blueprint using the
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transition time 𝑇𝑇 and a user-defined “benefit period” 𝑇𝐵 . This pe-
riod represents how long the user expects the workload to “benefit”
from the new blueprint. Concretely, we use

𝑊 = 𝑃𝛾𝐶0𝑇𝑇 +𝐶𝑇 +𝐶𝑇𝐵 𝑃 = 1 +max (𝑡/𝑡SLO, 𝑞/𝑞SLO)

𝐶0 represents the current blueprint’s operating cost, 𝐶 is the candi-
date blueprint’s predicted operating cost and 𝐶𝑇 is the transition
cost. 𝑃 ∈ [1,∞) is a penalty multiplier that grows as the current
blueprint approaches and exceeds the performance constraints (e.g.,
because the workload changes). 𝛾 is a user-chosen weight (we use
𝛾 = 2). 𝑡 and 𝑞 represent the transaction and analytical latency
measured on the current blueprint; 𝑡SLO and 𝑞SLO represent the
user-specified performance constraints for these values. Users can
declare multiple such constraints (e.g., for different queries).

When the current blueprint exceeds the performance constraints,
the first term in the equation on the left will dominate. Thus BRAD
will prefer candidate blueprints that are faster to transition to. Oth-
erwise, BRAD weighs the operating costs by the time spent transi-
tioning versus running the new blueprint. This means BRAD will
still consider blueprints requiring very expensive transitions (high
𝑇𝑇 ) but will only select them if their benefit is large enough (low 𝐶

during 𝑇𝐵 ). If a candidate blueprint has a predicted transactional
or analytical latency greater than 𝑡SLO or 𝑞SLO, we just assign an
infinite cost. If all of the candidates are infeasible, BRAD will ask
the user to change their constraints.

4.6 Discussion

Blueprint planning practicality. Our blueprint planning frame-
work has three practical benefits. First, blueprints and their scores
are human-interpretable, making it easy for data engineers to in-
spect BRAD-chosen designs. Second, blueprints provide a useful
abstraction for realizing cloud infrastructure designs. Conceptually,
they can be “compiled down” into infrastructure-as-code manifests
(e.g., CloudFormation [17]) for deployment. Finally, blueprints are
generalizable to other cloud infrastructure design problems that
involve cost/performance-based resource provisioning, task sched-
uling, and adaptation under changing conditions. Some example
use cases include resource configuration selection for Ray [75] pro-
grams, designing long-lived infrastructures used by Sky intercloud
brokers [29], or assembling a model serving service [91].

Adding engines to BRAD. BRAD can support additional engines
beyond Aurora, Redshift, and Athena. For an engine to be included
in BRAD, it must (i) support relational data, (ii) have a SQL-based
query interface, (iii) expose system metrics (e.g., CPU utilization),
(iv) use a deterministic query planner, and (v) have deterministic
operational costs. Practically, the engine should also have manage-
ment APIs that allow BRAD to programmatically alter its allocated
resources (i.e., provisioning) to deploy blueprints. By (iv), we mean
that the query planner must pick the same physical plan for the
same query if it has the same dataset statistics (e.g., estimated scan
selectivity) (see Section 4.2.1). Finally by (v), we mean that the cost
of running the engine in the cloud must be a deterministic function
of the engine’s physical configuration (e.g., its provisioning and the
size of its data) and the user’s workload. For example, the engine’s
operating cost cannot depend on external factors that BRAD cannot
directly observe (e.g., resource demands from other cloud users).

5 EVALUATION

In our evaluation, we seek to answer the following questions:

• How effective is BRAD at optimizing a data infrastructure for cost
when compared to serverless autoscaling systems? (Section 5.2)

• How accurate are the models that BRAD uses to score its candi-
date blueprints and how well do they generalize? (Section 5.3)

Across five workload scenarios, we find that BRAD selects designs
that meet performance targets while outperforming a serverless
Aurora and Redshift infrastructure and a serverless HTAP system
(where comparable) on cost by up to 13× and 4.6× respectively. In
our extended paper, we include additional experiments on query
routing, blueprint search, and planning robustness [114].

Overall implementation. We implemented BRAD in Python us-
ing approximately 30k lines of code. Although BRAD currently uses
AWS services, the concepts underlying blueprint planning and our
scoring models are general and applicable to other cloud providers.

5.1 Workload and Experimental Setup

We evaluate BRAD on a newworkload that models the data process-
ing needs of a fictitious movie theater company called QuickFlix.

Why create a new workload? BRAD automates the design of
multi-engine cloud data infrastructures serving diverse transac-
tional and analytical workloads. Thus, we need a realistic and di-
verse workload that warrants multiple specialized engines. To our
knowledge, no such public workloads exist. The TPC [100, 101] and
HATtrick benchmarks [74] are entirely synthetic. IMDB JOB [61]
and STATS CEB [45] use real-world datasets and queries, but only
contain OLAP queries as they are for evaluating query optimizers.
Snowset [106] has statistics about real OLAPworkloads, but no data
or queries. Our workload addresses these limitations: it (i) contains
transactions and diverse analytical queries, (ii) adapts a real-world
dataset, and (iii) mimics Snowset statistics where possible.

Dataset. We use an adapted version of the IMDB dataset [61],
which is based on real-world data. As the original IMDB dataset is
small (3 GB), we create a larger dataset by replicating each tuple
in the dataset’s major tables 30 times. Then, we assign new values
for each replicated primary key and re-assign these values to their
corresponding foreign keys. This approach preserves the dataset’s
attribute correlations, skew, and join-key distributions. We addition-
ally add three synthetic tables representing movie theaters, movie
showings, and ticket orders to capture the company’s transactional
needs. The final uncompressed dataset is 160 GB.

Analytical queries. Our workload consists of two classes of an-
alytical queries: (i) recurring queries (e.g., used for QuickFlix’s
dashboards and interactive internal tools), and (ii) complex ad-hoc
analytical queries (e.g., representing exploratory data analysis). The
recurring queries consist of single table scans and two table inner
joins, both with predicates. The complex ad-hoc queries are ran-
domly generated to resemble the IMDB JOB queries. They span
hundreds of distinct templates that join 4 to 15 tables with complex
filter predicates. Of the unique queries in our workload, 80% are
recurring and 20% are ad-hoc; we chose this split to match what
our industry partners have observed in their production workloads.
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Transactions. We use 3 transaction types: (i) Purchase, (ii) Add-
Showing, and (iii) UpdateMovie. Purchase looks up a theater,
selects a showing, inserts a ticket order, and updates the showing’s
seat count.AddShowing looks up a theater and movie and inserts a
new showing record. UpdateMovie selects a movie from the “title”
table and edits the corresponding note column in the “movie_info”
and “aka_title” tables. We run these transactions with a breakdown
of 70% Purchase, 20% AddShowing, and 10% UpdateMovie.

Baselines.We compare BRAD against (i) an infrastructure using
serverless Aurora for all transactions and serverless Redshift for
analytics, and (ii) SystemH, a popular open-source serverless HTAP
database. Note that these comparisons are not perfectly fair as these
systems provide different guarantees. We select them because they
represent existing industry-standard infrastructure solutions that
provide the same hands-off autoscaling experience.

Metrics.We record three metrics: (i) transaction latency, (ii) analyt-
ical query latency, and (iii) monthly operating cost. In our experi-
ments, BRAD optimizes a data infrastructure to minimize operating
cost while ensuring that p90 transaction latency remains under
30 milliseconds and p90 query latency remains under 30 seconds.

Operating cost calculations.We compute BRAD’s operating cost
using the on-demand instance hourly cost scaled to 30 days. For
queries running on Athena, we compute their cost using the re-
ported bytes scanned. We project this value into a monthly cost by
assuming that the query repeats at the same observed rate. We in-
clude storage costs for the tables placed on Aurora and Athena (S3).
For serverless Aurora and Redshift, we use the ACU and RPU values
reported by AWS during the workload and scale them to monthly
costs. For System H, we use the cost reported by the vendor.

5.2 Optimizing a Data Infrastructure

We have BRAD optimize a data infrastructure for cost under a
performance constraint in five scenarios faced by QuickFlix:

(1) Scaling down an over-provisioned infrastructure.
(2) Scaling engines due to increased load.
(3) Maintaining support for specialized functionality.
(4) Adjusting to user-changed constraints.
(5) Workload intensity variations during a day.

5.2.1 Scaling Down an Over-Provisioned Infrastructure. QuickFlix
has been struggling with their data infrastructure. After learning
about BRAD, they adopt it to free up their data engineers. QuickFlix
deploys BRAD on their infrastructure, consisting of two Aurora
db.r6g.xlarge instances (primary and read replica) and two dc2.large
Redshift nodes. Following conventional wisdom, they use Redshift
for analytical queries and Aurora for transactions. Figure 5 shows
workload performance and the monthly operating cost over time.
The shaded area indicates QuickFlix’s performance constraints:
30 ms p90 transaction latency and 30 s p90 analytics latency.

Soon after starting, BRAD triggers blueprint optimization A

because it detects a low Redshift CPU utilization. BRAD removes
the Aurora read replica, shifts the entire analytical workload onto
Aurora, and pauses Redshift. BRAD makes these changes to reduce
cost B , as it correctly predicts that Aurora is sufficient to handle
the workload. After observing the workload on this new blueprint,
BRAD then correctly predicts that Aurora can support the workload
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Figure 5: BRAD reduces cost while maintaining p90 latency

constraints (shaded region). The dotted (solid) vertical lines

indicate when a new blueprint is chosen (takes effect).

with a smaller (cheaper) instance type and thus downscales Aurora
to two db.t4g.medium instances to further reduce cost D . The
momentary spike in p90 transactional latency is due to the Aurora
primary failover that occurs when changing instance types C . The
chosen blueprint meets QuickFlix’s performance constraints E F .
From these results, we draw the following two conclusions.

BRAD reduces operating cost by 6.0× over its starting pro-

visioning and by 4.6× over System H, the next best baseline.

Serverless Aurora and Redshift is 13×more expensive than BRAD’s
because serverless Redshift has a large minimum size, making it
cost-ineffective on this workload. Although System H is only 4.6×
more expensive than BRAD, its p90 transaction latency is nearly
100× higher than the other baseline. We hypothesize that this is
due to System H’s internal replication on writes.

BRAD shifts workloads across engines to reduce cost, dif-

ferentiating it from static multi-engine autoscaling infras-

tructures. BRAD correctly predicts that Aurora can support the
analytical workload, enabling it to pause Redshift to reduce cost.
This decision would never be considered in static autoscaling in-
frastructures, such as our serverless Aurora and Redshift baseline,
since they only scale to respond to system load while keeping the
workload assignment fixed (i.e., analytics always run on Redshift).

5.2.2 Scaling Engines Due to Increased Load. As QuickFlix grows,
their transactional load increases. Figure 6 shows how BRAD han-
dles this change; we plot the same metrics as before and include the
number of transactional clients over time A . We begin with the
same blueprint as the end of the previous scenario. After a few min-
utes, BRAD notices that the transaction p90 latency is exceeding
QuickFlix’s 30 ms ceiling B and triggers blueprint optimization.
BRAD chooses to scale up Aurora to a single db.r6g.xlarge instance
as it correctly predicts that a single Aurora instance can support
both the increased transactional load and the running analytical
queries. The spike in p90 transactional latency C is when the
Aurora primary failover occurs. On the new blueprint, the transac-
tional p90 latency falls under the latency ceiling E ; the analytical
queries also continue to complete under the 30 s ceiling F . Again,
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Figure 6: As transactional load increases, BRAD switches to

a larger Aurora instance and also removes the read replica.

the increased System H analytics latency might be due to a combi-
nation of its internal physical autoscaling and storage writes.

This shows that BRAD reacts to transactional load tomain-

tain latency constraints. The blueprint that BRAD selects is 2.6×
cheaper than the serverless Aurora and Redshift baseline D but
up to 1.1× more expensive than System H. Serverless Aurora and
Redshift is more expensive due to Redshift’s large minimum size.

5.2.3 Maintaining Support for Specialized Functionality. To increase
engagement, QuickFlix decides to deploy a new feature that recom-
mends movies similar to the ones shown in their theaters. To make
recommendations, they use vector similarity search [62, 88] queries
that find movies with title embeddings that are closest to a given
movie’s title embedding. QuickFlix deploys this feature on their
existing infrastructure; since similarity search is only supported on
Aurora, they place the relevant tables on Aurora and run all other
queries that access these tables on Aurora as well. They use two
Aurora db.r6g.2xlarge instances and two dc2.large Redshift nodes.

Figure 7 shows performance and infrastructure cost over time.
The dashed lines are from before BRAD deploys its first optimized
blueprint. Crucially, System H cannot run this workload because
it does not support vector similarity search A . BRAD notices that
the analytical p90 latency exceeds QuickFlix’s constraint of 30 s
B and initiates blueprint optimization. BRAD selects a blueprint
that shifts the non-vector similarity search queries onto Redshift
(replicating the tables they access onto Redshift) while keeping the
vector similarity search queries on Aurora. It also correctly predicts
that it can downscale Aurora (to a db.r6g.xlarge instance) to save
cost, as much of Aurora’s former query load was moved onto Red-
shift. After making this change, the workload’s performance falls
within the user’s performance constraints D E . The momentary
spike in analytics latency at the 40 minute mark C is due to a cold
Redshift cache when BRAD first moves queries onto Redshift. The
serverless Aurora and Redshift design is 2.4× more expensive F

because of the large Redshift minimum size and because Aurora
has scaled up to support the new similarity search queries.
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Figure 7: BRAD runs vector similarity search on Aurora and

shifts other queries to Redshift for performance. System H

does not support vector similarity search.
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Figure 8: After the user changes their SLO constraints, BRAD

selects a new blueprint to meet the new constraints.

This scenario shows howBRAD is fundamentally different

from single-system (e.g., HTAP) solutions like System H.

When using a single system to run a diverse data workload, you
can always run into situations where you want to use a feature that
does not exist on your system of choice. In contrast, in the BRAD
architecture, one can (in concept) always incorporate a system with
the required functionality into the underlying infrastructure.

5.2.4 Adjusting to Changed Constraints. As QuickFlix’s business
changes, they revise their performance constraints; Figure 8 shows
how BRAD adapts to their new needs. QuickFlix initially uses a
p90 transaction and query SLO of 40 ms and 40 s respectively A

B . BRAD starts with one db.r6g.xlarge Aurora instance and two
Redshift dc2.large nodes. Later, QuickFlix lowers their transaction
and query SLOs to 20 ms and 20 s respectively (the change happens
at the dashed line in Figure 8 C ). This SLO change causes the trans-
action latency to exceed QuickFlix’s constraints. Thus, BRAD scales
up Aurora to one db.r6g.2xlarge instance D and leaves Redshift
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as-is. This change increases the operating cost E as BRAD switches
to a larger Aurora instance. After BRAD finishes transitioning the
infrastructure, the transaction latency falls under the new 20 ms
p90 constraint F . The query latency constraint also remains under
the new 20 s p90 constraint G . BRAD’s operating costs are 4.2×
lower than the serverless Aurora and Redshift baseline. This is be-
cause serverless Redshift has a large minimum size. While SystemH
ends with a 4.4× lower monthly operating cost than BRAD, it does
not meet the 20 ms transaction latency constraint (its transactions
have a latency around 2 seconds). We again think that this elevated
latency is due to System H’s internal replication on writes. This
scenario shows that BRAD adapts to changes to a user’s constraints.

5.2.5 Workload Intensity Variations During a Day. Finally, we run
BRAD on a workload representing a full day at QuickFlix. For
practical reasons, we scale the actual workload to 12 hours. Figure 9
shows performance and cost over the day. We use the workload and
dataset from Section 5.1 adapted to mimic the Snowset trace [106].
Concretely, we run queries with a run time distribution similar to
the Snowset trace and vary the number of clients issuing queries
and transactions to mimic the diurnal pattern observed in Snowset
(a peak near the middle of the day, Figure 9 F ).

Initially, the workload is light. BRAD uses a blueprint with four
dc2.large Redshift nodes and two Aurora db.t4g.medium instances,
which is 2.5× cheaper than the serverless Aurora and Redshift
baseline A . As the workload intensity increases, BRAD detects
the increases in latency B C and triggers blueprint optimiza-
tion, ultimately scaling Redshift up to 16 nodes and Aurora to one
db.r6g.xlarge instance at the peak. The serverless Aurora and Red-
shift baseline also scales up, but it does not consistently meet the
analytics performance target of 30 s D , despite being 2.1× more
expensive than BRAD’s design E at the workload peak. System H
maintains the p90 analytics latency SLO throughout the workload,
but its transactional latency is again almost two orders of magni-
tude higher than the other systems (we hypothesize for the same
reasons as discussed earlier). The brief analytics latency spikes are
due to Redshift resizes, which force clients to reconnect.

This result shows that BRAD effectively responds to load

variations during the day. Over the day, BRAD maintains perfor-
mance targets while reducing cumulative cost by 1.7× compared to
the serverless Aurora and Redshift baseline.

5.3 Scoring: Model Accuracy and Generalization

We next examine the test accuracy of our predictive models and
their generalizability across common workload shifts.

5.3.1 Model Accuracy. Table 1 shows themedian test Q error of our
models for each engine. Q error is 𝑄 (𝑝, 𝑎) = max(𝑝/𝑎, 𝑎/𝑝), where
𝑝 refers to the predicted value and 𝑎 to the actual value. Lower is
better; 1 is the best possible score. We train each run time and data
accessed model using approximately 8000 queries, validate on 2000
queries, and test on 125 unseen queries. Our query dataset consists
of over 1000 unique join templates. The models for Athena perform
better than Aurora and Redshift because the run time distribution
of Athena queries has a lower variance. We test our provisioning
and transaction latency models on an unseen provisioning that is
larger (i.e., has more resources) than all the training provisionings.
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Figure 9: BRAD optimizes for load variations during the day.

Table 1: Median test Q error of our blueprint scoring models.

Prediction Target Aurora Redshift Athena

Query Run Time 1.5769 1.6539 1.3427
Data Accessed – – 1.2614

Run Time on Different Provisioning 1.6718 1.6824 –
Transaction Latency 1.2030 – –

Overall, we find that our models’ prediction accuracy is sufficient
for BRAD to design effective infrastructures (Section 5.2).

5.3.2 Generalizability. We evaluate our query run time model’s
generalizability on three workload shifts: (i) unseen join templates,
(ii) adding a new table to the dataset, and (iii) a larger dataset size.

Unseen join templates. We train our run time models on queries
with less than 5 joins. We then test the model’s predictions on
queries with 5, 6, and ≥ 7 joins. Figure 10 shows each model’s
median test Q error compared with (i) a model trained on all the
join templates (“full”), and (ii) a naïve linear model that scales the
cost returned by the engine’s query optimizer to a run time. We
label the percentage difference from the model trained on the full
dataset. Our model generalizes across unseen join templates with a
Q error of at most 20% above the model trained on the full dataset.
Our model still performs much better than the naïve linear model,
which has a Q error of at least 4.6. Since Athena’s optimizer does
not provide a query cost, we do not include a linear model result.

Added table. We train our run time models on queries that do
not access the “person_info” table and test them only on queries
that access the “person_info” table. This table is around 10 GB (the
second largest table in the dataset); the overall dataset size is 160 GB.
Figure 11 shows our results using the same baselines and notation
as Figure 10. Our model generalizes to an added table with a Q error
at most 22% above the model trained on the full dataset. The linear
model still does poorly, with a Q error of 4.6.

Increased dataset size. Finally, we evaluate our run time model’s
generalizability to larger datasets.We train ourmodels using queries
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Figure 12: BRAD generalizes to an increased dataset size.

executed on a 3 GB, 20 GB, 40 GB, and 60 GB version of our work-
load dataset. Then we test the models on the original 160 GB dataset.
Figure 12 shows that our model generalizes to the larger dataset
with a Q error of 1.1%, 8.3%, and 57% above a model specifically
trained on the 160 GB dataset on Athena, Redshift, and Aurora
respectively. The Aurora model has a higher error due to a change
in caching behavior that occurs beyond 60 GB. The linear model
has a Q error of 6.3 and 7.7 on Aurora and Redshift respectively.
Overall, these results are sufficient for BRAD since an increase from
60 GB to 160 GB would likely happen over a longer period of time,
allowing for BRAD to update its models given newly observed data.

6 RELATEDWORK

Instance-optimized, self-driving, and auto-tuning systems.

Recent work has proposed techniques to automatically (i) adapt data
systems to the workload [1, 34, 35, 55–57, 59, 68–70, 78, 87, 113, 115],
(ii) manage complex systems [66, 76, 84–86, 93] (iii) adapt cloud
database instance sizing [80–82, 104], and (iv) tune their knobs [52,
83, 103]. In contrast, BRAD optimizes an entire multi-engine data
infrastructure instead of tuning individual services. BRAD can be
seen as applying instance-optimization at the granularity of cloud
database services instead of within a database engine [56].

Simplifying and optimizing the cloud. Like BRAD, recent re-
search has explored ways to simplify and optimize the design and
operation of cloud infrastructures. These thrusts include (i) high-
-level cloud programming abstractions [30, 65, 75, 92], (ii) infras-
tructure as code [17, 47], (iii) enhancing cross-cloud compatibil-
ity [29, 102], and (iv) improving resilience across services [64].
BRAD’s key difference is that it focuses on simplifying cloud in-
frastructures containing multiple relational database systems while
optimizing their use for cost under a performance constraint.

Single-system solutions. Another way to handle diverse data
workloads is to use a single specialized (e.g., HTAP) database sys-
tem designed for high performance across many workloads [38,
49, 54, 60, 96]. For some workloads (e.g., real-time analytics), such
systems can be more efficient than BRAD because they are not in-
ternally constrained by engine boundaries. But these single-system
solutions can be difficult to migrate to and they limit users to their
specific feature set. In contrast, BRAD is designed to optimize exist-
ing multi-engine data infrastructures and (in concept) can include
new systems to support specialized functionality (Section 5.2.3).

Polystores and federated databases. Prior work on polystores [3,
5, 36, 89, 105, 108, 117] and federated databases [24, 26, 27, 39, 50,
51, 73, 90, 95, 116] also aim to distribute query workloads across
heterogeneous engines. Unlike BRAD, these systems focus on (i) op-
timizing queries within a given set of engines and hardware con-
figuration, and (ii) bridging different data models [36]. In contrast,
BRAD tackles the problem of selecting the best set of engines to
include in the underlying infrastructure for the user’s workload
(among Aurora, Redshift, and Athena), while also jointly optimizing
the workload assignment, engine provisioning, and data placement.

7 CONCLUSION

This paper presents blueprints, blueprint planning, and BRAD: a
system that virtualizes a cloud data infrastructure and leverages
blueprint planning to automatically manage its physical realization.
The key takeaway is to cast infrastructure design as a cost-based
optimization problem, which we refer to as blueprint planning. This
approach allows us to systematically search for an optimized de-
sign for a given workload by leveraging learned models to predict
the utility of candidate blueprints. We show that BRAD automat-
ically achieves performance targets while saving 1.6–13× in cost
compared to existing serverless autoscaling systems.
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