
RUSH: Real-time Burst Subgraph Detection in Dynamic Graphs
Yuhang Chen

National University of Singapore

Singapore, Singapore

yuhangc@u.nus.edu

Jiaxin Jiang

National University of Singapore

Singapore, Singapore

jxjiang@nus.edu.sg

Shixuan Sun

Shanghai Jiao Tong University

Shanghai, China

sunshixuan@sjtu.edu.cn

Bingsheng He

National University of Singapore

Singapore, Singapore

hebs@nus.edu.sg

Min Chen

GrabTaxi Holdings

Singapore, Singapore

min.chen@grab.com

ABSTRACT
Graph analytics have been effective in the data science pipeline of

fraud detections. In the ever-evolving landscape of e-commerce plat-

forms like Grab or transaction networks such as cryptos, we have

witnessed the phenomenon of ‘burst subgraphs,’ characterized by

rapid increases in subgraph density within short timeframes—as a

common pattern for fraud detections on dynamic graphs. However,

existing graph processing frameworks struggle to efficiently man-

age these due to their inability to handle sudden surges in data. In

this paper, we propose RUSH (Real-time bUrst SubgrapH detection

framework), a pioneering framework tailored for real-time fraud de-

tection within dynamic graphs. By focusing on both the density and

the rate of change of subgraphs, RUSH identifies crucial indicators

of fraud. Utilizing a sophisticated incremental update mechanism,

RUSH processes burst subgraphs on large-scale graphs with high

efficiency. Furthermore, RUSH is designed with user-friendly APIs

that simplify the customization and integration of specific fraud

detection metrics. In the deployment within Grab’s operations, de-

tecting burst subgraphs can be achieved with approximately ten

lines of code. Through extensive evaluations on real-world datasets,

we show RUSH’s effectiveness in fraud detection and its robust scal-
ability across various data sizes. In case studies, we illustrate how

RUSH can detect fraud communities within various Grab business

scenarios, such as customer-merchant collusion and promotion

abuse, and identify wash trading in crypto networks.

PVLDB Reference Format:
Yuhang Chen, Jiaxin Jiang, Shixuan Sun, Bingsheng He, and Min Chen.

RUSH: Real-time Burst Subgraph Detection in Dynamic Graphs. PVLDB,

17(11): 3657 - 3665, 2024.

doi:10.14778/3681954.3682028

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Xtra-Computing/RUSH.

1 INTRODUCTION

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.

doi:10.14778/3681954.3682028

2

Graph Construction

Fraud Semantics:
DG, DW, FD

Transaction Logs Transaction Graph

Fraudsters

Action

a) Ban b) Analyse
c) Supervise1

Dense Subgraph
Detection

RUSH

Graph Update
a) Weight Decay
b) Peeling Sequence

Reordering
Peeling Sequence

Generation

3 4

5

Figure 1: Fraud Detection Pipeline of Grab

1
1

T0
Without Decay With Decay

Densest Subgraph Burst Subgraph

Fraudster
Normal User
Decayed Edge

1

4

4 2 1
2

4 2 3

2

2

1

2

T1

1 1
1

1

2 2 3

2

2

1

2

Figure 2: An example of burst subgraph detection
Graph analytics have become increasingly prevalent in data sci-

ence pipelines of various applications, e.g., fraud detection on e-

commerce platforms. These platforms often represent temporal data

in the form of graphs [21, 22], constructing various networks such

as transaction networks [8, 10, 17], user-device networks [7, 15],

and finance networks [35, 40]. In dynamic graph environments, the

identification of burst subgraphs [11, 29]—defined by sharp density

increases in short durations—has become a pivotal pattern for fraud

detection. This observation highlights the importance of scalable

data science techniques for effective fraud mitigation in complex

networked contexts. For example:

(1) Anomalous Surge in Transaction Activity. Consider the example

of a transaction network. A high frequency of transactions occur-

ring within a short time span indicates potential collusion, fraud-

ulent activities such as brushing, or exploitation of promotions.

Efficient detection of these patterns is essential for maintaining the

integrity of the network and safeguarding the interests of genuine

participants. Swiftly processing incoming transactions and detect-

ing emerging fraud in real time are vital for minimizing losses,

underscoring the necessity for a scalable fraud detection pipeline.

(2) Identifying Fraud via Device Activity.Another example is the user-

device graph, where each node represents a user or a device, and

each edge denotes the usage of a device by a user. Recent stud-

ies [1, 38] report that 21.4% of traffic to e-commerce portals was

malicious bots in 2018. In instances of fraudulent behavior on e-

commerce platforms, it is often observable that both fraudsters and

their numerous associated devices become active within a short

time span. This pattern of burst behavior can be systematically

utilized by platform moderators as a heuristic to detect and inves-

tigate fraudulent communities. Moreover, the swift surge in such

fraudulent activities places a significant strain on detection efforts.

3657

https://doi.org/10.14778/3681954.3682028
https://github.com/Xtra-Computing/RUSH
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682028
https://www.acm.org/publications/policies/artifact-review-and-badging-current

 0
 20
 40
 60
 80

 100

dot tf ba mb ab gb1gb2

P
er

ce
n
ta

g
e

(a)

 0
 20
 40
 60
 80

 100

dot tf ba mb ab gb1gb2
(b)

Figure 3: Statistics of Burst Subgraph Detected by RUSH: (a)
indicates the percentage of nodes in burst subgraphs, (b) in-
dicates average percentage of fraud nodes in burst subgraphs
Fraud Detection Pipeline in Grab (Figure 1). (1) The existing
transactions form a weighted graph, where the weight of an edge

might represent the volume of funds transferred, and the weight

of a vertex could indicate the associated suspiciousness of a user.

(2) Grab recursively peels the nodes from the transaction graph,

generating a peeling sequence. (3) As new transactions occur, Grab
integrates them into the existing graph and progressively reduces

edge and vertex weights to emphasize recent activities. This ap-

proach enhances the detection of emerging fraudulent behaviors

marked by bursts. (4) To identify fraudulent activities, algorithms

specialized in detecting dense subgraphs (e.g., peeling algorithm)

are utilized. (5) Upon detection, moderators take immediate action

to prevent further financial damage.

Example 1.1. Figure 2 illustrates a burst subgraph detection ex-

ample within a transaction graph, where nodes represent users and

edges represent transactions. From 𝑇0 to 𝑇1, a brief time period,

a fraudulent community conducts four transactions. Traditional

dense subgraph detection systems often fail to identify such com-

munities because loyal users engaged in regular transactions can

also form dense subgraphs, thereby obscuring the fraudulent ac-

tivity. In contrast, the burst subgraph detection system decays the

weights of outdated transactions. As a result, the fraudulent com-

munity becomes more distinguishable due to the high volume of

transactions conducted in a short period.

Figure 3 shows the percentage of nodes in burst subgraphs

withinNFT transaction and industrial graphs fromGrab. It indicates
that between 3.1% and 33.7% of nodes partake in burst subgraphs,

whereas 64.4% to 93.4% of identified fraudulent nodes demonstrate

burst behavior. This phenomenon stems from fraudulent commu-

nities aiming for quick profits through promotion exploitation or

brushing schemes. Within theNFT graph ba, a single day saw a vol-

ume of fraudulent transactions amounting to 813.2 ETH. The lack

of efficient detection systems for such burst activities can result in

significant financial losses for both users and platforms. Thus, the

urgency for real-time detection of burst subgraphs is highlighted.

Numerous systems target the mining of burst subgraphs but

tend to specialize in identifying specific patterns like burst core or

burst cohesiveness subgraphs. Even state-of-the-art systems such as

MBC [29] and DBS [11] reconstruct these subgraphs from scratch,

compromising real-time detection efficiency. Systems aimed at find-

ing the densest subgraphs [18, 23, 28] may overlook rapid weight

changes in fraudulent communities. They typically detect burst

fraud communities only when they become the densest, leading to

high detection latency. While systems such as Spade [25] can be

modified for burst subgraph detection, they lack efficient methods

for adjusting to weight changes, hindering timely fraud detection.

A key strategy to improve the detection of burst activities in-

volves applying a time decay function to graph weights, thereby

accentuating the significance of recent transactions. However, this

approach faces three primary challenges. Firstly, there is an impera-

tive need for rapid response to new transactions, especially critical

in the financial sector, where threats must be neutralized within

100 milliseconds [25, 27]. Achieving incremental updates of burst

subgraphs within such stringent time frames poses a considerable

challenge. Secondly, the application of a time decay function to

weights with each new transaction presents its own set of difficul-

ties. Recomputing the burst subgraph from scratch for each new

transaction incurs untenably high latency, necessitating a method

for incrementally updating weight decay. Thirdly, deployment is

challenging for engineers. Implementing detection for burst sub-

graphs necessitates establishing a mechanism to manage the decay

of weights throughout the entire graph and designing incremental

algorithms for burst subgraphs based on their density metrics.

In response to these challenges, we introduce RUSH, a real-time

framework designed for burst subgraph detection. To address the

first challenge, RUSH enhances the process of incremental edge

weight updates using innovative optimization techniques to facil-

itate real-time detection. To address the second challenge, RUSH
employs batch update and batch selection strategies to accelerate

the weight decay process. To address the third challenge, RUSH
supports a suite of friendly APIs that allow users to specify dense

metric functions or tailor detection system parameters. In summary,

this paper makes the following contributions:

• RUSH utilizes an innovative metric with a half-life decay func-

tion embedded in transaction networks, emphasizing temporal

dynamics for enhanced detection precision.

• RUSH implements several optimization techniques, including

batch updates, graph compression, and efficient selection strate-

gies, to boost real-time detection efficiency.

• RUSH provides extensive APIs for easy customization, enabling

quick deployment with about ten lines of code for fraud detection

in diverse applications, including Grab’s business scenarios.
• Extensive experiments on industry and NFT datasets not only

show that RUSH delivers results four orders of magnitude faster

than the state-of-the-art methods for burst subgraph detection

but also highlight its robust scalability, maintaining sublinear

growth in update times and latency across graphs scaling.

• The case studies highlight RUSH’s impact on fraud detection

pipelines, significantly lowering detection time for fraudulent

communities and preventing up to 97.4% of frauds.

2 BACKGROUND
2.1 Preliminaries
In this paper, we focus on the (un)directed graph𝐺 = (𝑉 , 𝐸) where
𝑉 is a set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges. For each

vertex 𝑣𝑖 or edge (𝑣𝑖 , 𝑣 𝑗), they have a non-negative weight for them,

denoted as 𝑎𝑖 or 𝑐𝑖 𝑗 . Given a vertex 𝑣 ∈ 𝑉 , 𝑁 (𝑣) is the neighbor set
of 𝑣 , i.e., {𝑣 ′ |𝑒 (𝑣, 𝑣 ′) ∈ 𝐸} where 𝑒 (𝑣, 𝑣 ′) denotes the edge between
𝑣 and 𝑣 ′. 𝑑 (𝑣) is the degree of 𝑣 , i.e., 𝑑 (𝑣) = |𝑁 (𝑣) |.
Induced Subgraph. Given 𝑆 ⊆ 𝑉 , we denote the induced subgraph

by 𝐺 [𝑆] = (𝑆, 𝐸 [𝑆]), where 𝐸 [𝑆] = {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ 𝐸 ∧ 𝑢, 𝑣 ∈ 𝑆}.

3658

Density Metrics 𝑔. We adapt the class of density metrics 𝑔 in

previous studies [23, 25], 𝑔(𝑆) = 𝑓 (𝑆)
|𝑆 | , where 𝑓 is the total weight

of 𝐺 [𝑆], i.e., the sum of the weight of 𝑆 and 𝐸 [𝑆]:

𝑓 (𝑆) =
∑︂
𝑢𝑖 ∈𝑆

𝑎𝑖 +
∑︂

𝑢𝑖 ,𝑢 𝑗 ∈𝑆
⋀︁(𝑢𝑖 ,𝑢 𝑗) ∈𝐸

𝑐𝑖 𝑗 (1)

The weight of a vertex 𝑢𝑖 , denoted by 𝑎𝑖 where 𝑎𝑖 ≥ 0, quantifies

the suspiciousness associated with vertex 𝑢𝑖 . Similarly, the weight

of an edge (𝑢𝑖 , 𝑢 𝑗) reflects the suspiciousness of the transaction

between𝑢𝑖 and𝑢 𝑗 , denoted by 𝑐𝑖 𝑗 . The function 𝑔(𝑆) represents the
density of the induced subgraph 𝐺 [𝑆]. However, existing works,

such as [23, 25], assume that the weights of the edges remain con-

stant over time. This assumption overlooks that the influence of

transactions progressively weakens as time passes.

Weight Decay via Half-Life Principle. We deviate from relying

solely on the original edge weight 𝑐𝑖 𝑗 and instead employ a half-life

function [5, 20, 33] to progressively reduce the influence of an edge

on the graph over time, denoted by

𝑐𝑖 𝑗

2
⌊
𝑡𝑖 𝑗
𝛿
⌋
, where 𝑡𝑖 𝑗 is the time

elapsed since the edge (𝑢𝑖 , 𝑢 𝑗) was established and 𝛿 is the half-life

duration. We use a similar decay function
𝑎𝑖

2
⌊ 𝑡𝑖
𝛿
⌋
for the node weight,

where 𝑡𝑖 is the time elapsed since the node weight was assigned.

Hence, the density function can be redefined as follows:

𝑓 (𝑆) =
∑︂
𝑢𝑖 ∈𝑆

𝑎𝑖

2
⌊ 𝑡𝑖
𝛿
⌋
+

∑︂
𝑢𝑖 ,𝑢 𝑗 ∈𝑆

⋀︁(𝑢𝑖 ,𝑢 𝑗) ∈𝐸

𝑐𝑖 𝑗

2
⌊ 𝑡𝑖 𝑗

𝛿
⌋

(2)

Using a half-life decay mechanism in our analysis is crucial for

highlighting emerging fraudulent patterns. It diminishes the weight

of outdated transactions, directing attention to recent activities

essential in identifying emerging fraudulent communities. Thus,

we use 𝐺 (𝑙) to denote the graph at time 𝑙 , where all weights have

been reduced using the half-life decay function.

Graph Updates Δ𝐺 .We denote the set of updates to 𝐺 by Δ𝐺 =

(Δ𝑉 ,Δ𝐸). We denote the graph obtained by updating Δ𝐺 to 𝐺 as

𝐺 ⊕ Δ𝐺 . Therefore,𝐺 ⊕ Δ𝐺 = (𝑉 ∪ Δ𝑉 , 𝐸 ∪ Δ𝐸). Similarly, we also

denote the graph deletion operation as 𝐺 ⊖ Δ𝐺 , which is deleting

all the edges and vertices in Δ𝐺 from 𝐺 .

Problem Definition. Given a graph𝐺 (𝑙), a dense subgraph metric

𝑔(𝑆), a specified half-life duration 𝛿 , and graph updates Δ𝐺𝑙+1, our
objective is to efficiently detect the densest subgraph within the

updated graph 𝐺 (𝑙 + 1). The graph 𝐺 (𝑙 + 1) is created by updating

Δ𝐺𝑙+1 to 𝐺 (𝑙) and then applying decay to all weights that reach

the half-life at time 𝑙 + 1.

2.2 Peeling Algorithm and Reordering
Peeling Weight. The peeling weight function 𝑤𝑢𝑖 (𝑆) quantifies
a node’s contribution to the dense subgraph and is contingent

upon the density metric employed. If we use the density metrics in

Section 2.1, the weight function will be:

𝑤𝑢𝑖 (𝑆) =
𝑎𝑖

2
⌊ 𝑡𝑖
𝛿
⌋
+

∑︂
𝑢𝑖 ,𝑢 𝑗 ∈𝑆

⋀︁(𝑢𝑖 ,𝑢 𝑗) ∈𝐸

𝑐𝑖 𝑗

2
⌊ 𝑡𝑖 𝑗

𝛿
⌋
+

∑︂
𝑢 𝑗 ,𝑢𝑖 ∈𝑆

⋀︁(𝑢 𝑗 ,𝑢𝑖) ∈𝐸

𝑐 𝑗𝑖

2
⌊ 𝑡 𝑗𝑖

𝛿
⌋

Prior research [23, 25] has employed a peeling strategy to identify

the densest subgraph within a given graph. This approach conducts

the methodology delineated in Algorithm 1 to ascertain the peeling

sequence. Subsequently, the data graph is peeled according to this

Algorithm 1: Execution of Peeling Algorithms

Input: A graph𝐺 = (𝑉 , 𝐸)
Output: The peeling sequence order𝑂

1 𝑆0 = 𝑉

2 for 𝑖 = 1, . . . , |𝑉 | do
3 select the vertex 𝑢 ∈ 𝑆𝑖−1 with the minimum peeling weight 𝑤𝑢 (𝑆𝑖−1)
4 𝑆𝑖 = 𝑆𝑖−1 \ {𝑢};𝑂.add(𝑢)

5 return𝑂

𝑣4

2

𝑣1

𝑣2

𝑣3
4

𝑣5

𝑣4

2

𝑣1

𝑣2

𝑣3
4 6

𝑣5

8 2 𝑣4

1

𝑣1

𝑣2

𝑣3
2 6

𝑣5

8 2

2

𝑣4

1

𝑣1

𝑣2

𝑣3
2 3

𝑣5

2

4
16

(𝒂)	𝐺(𝑡1), 𝑡1 = 1 (𝒃)	𝐺(𝑡2), 𝑡2 = 2 (𝒄)	𝐺(𝑡3), 𝑡3 = 3 (𝒅)	𝐺(𝑡4), 𝑡4 = 4

𝑣 /

𝑣 Incoming node/edge/ 𝑣 Node/Edge reaches its half-life period/

Node In densest subgraph𝑣Normal node/edge

Figure 4: Example of Half-life Decay (w.r.t. 𝛿 = 2).
sequence. The densest subgraph as revealed through this peeling

procedure provides a 2-approximation to the true densest subgraph.

Example 2.1. Figure 4 illustrates an example of the research prob-

lem. The system takes a data graph, a specified half-life duration,

and edge updates as inputs. With each update, it appends the in-

coming edges to the graph and applies a decay function to adjust

the weights. The system then identifies the subgraph with the high-

est density, which is highlighted in grey. The half-life duration is

set to 2 units. Consequently, the weights of all incoming edges at

time 𝑡1 (highlighted in red) are halved by time 𝑡3 (depicted in blue).

Consider the graph 𝐺 (𝑡4) depicted in Figure 4(d). The application

of the weight function to nodes 𝑣1 to 𝑣5 yields peeling weight val-

ues of 3.5, 3, 3, 7.5, and 1 respectively. Hence, the first node to be

peeled is 𝑣5. This process is replicated sequentially until all nodes

are removed, resulting in the peeling sequence [𝑣5, 𝑣3, 𝑣2, 𝑣1, 𝑣4].

Peeling Sequence Reordering. The core of the peeling algorithm
involves maintaining the peeling sequence (𝑂) after graph updates.

In this paper, we integrate Spade [25], which takes the data graph

𝐺 , an existing peeling sequence 𝑂 , and graph updates Δ𝐺+ and
Δ𝐺− as inputs. It outputs the updated peeling sequence𝑂 ′. We use

𝑂 ′ = Spade(𝐺,𝑂,Δ𝐺−,Δ𝐺+) to denote the update algorithm.

The key steps of Spade include: (1) Initialization of a priority

queue that maintains the affected peeling subsequence, ordering

vertices in ascending order of their peeling weight. (2) Insertion

of the updated vertices into the priority queue and marking the

neighbors of these vertices as affected. (3) Recursive insertion of

affected vertices in the peeling sequence into the priority queue.

(4) Peeling of vertices from the priority queue. Spade reduces the
update cost from 𝑂 (|𝐸 | log |𝑉 |) to 𝑂 (|𝐸AFF | log |𝑉AFF |) [25], where
|𝐸AFF | and |𝑉AFF | denote the number of edges and vertices in the

affected area, respectively.

3 FRAMEWORK OF RUSH
3.1 The RUSH Architecture
Figure 5 shows the architecture for RUSH. RUSH imports the trans-

action logs and constructs the graph (Step 1). Utilizing the user-

specified dense metric function, RUSH then applies a peeling al-

gorithm to generate the initial peeling sequence (Section 2.2). As

3659

RUSH API
· InsertEdge
· SetDuration
· SetMetric
· SelectionMethod

RUSH Computing Engine

Weight Decay2.2

Edge Insertion 2.1 Batch Selection

Batch Updating

3

4

Graph Storage (AL)

Transaction logs New Transaction Fraud Community

1 2 5

Figure 5: The Architecture of RUSH

1 class RUSH{
2 public:
3 void LoadGraph(string path);
4 // Set the duration for half -life decay
5 void SetHalfLifeDuration(int time_length);
6 void SetBatchSize(int batch_size);
7 void SetSelectionMethod(Type selection_method);
8 set <Vertex > InsertEdge(Edge &E);
9 // Set the edge/node weight function
10 Void EdgeFunction(Function <double(Edge &E)> eFunc);
11 Void NodeFunction(Function <double(Node &V)> vFunc);
12 private:
13 vector <Vertex > CalculatePeelingSequence ();
14 };

Listing 1: RUSH’s API

new transactions arrive, RUSH incorporates each incoming edge

and incrementally updates the existing peeling sequence (Step 2.1).

Concurrently, RUSH monitors edges reaching their half-life thresh-

olds, halving their weights accordingly (Step 2.2). With the batch

updating algorithm, RUSH utilizes the user-selected or adaptive

approach (Step 3) to incrementally update edges in batches (Step 4).

Finally, RUSH reports burst communities to the moderators, who

can then enact preventive measures (Step 5).

3.2 APIs of RUSH
Density Metrics. RUSH accommodates a wide range of density

functions, conforming to the formula 𝑔 =
𝑓 (𝑆)
|𝑆 | , where 𝑓 (𝑆) adheres

to Equation 2 and 𝑎𝑖 and 𝑐𝑖 𝑗 are non-negative. By varying 𝑎𝑖 and

𝑐𝑖 𝑗 , RUSH can seamlessly adapt to half-life versions of the popular

peeling algorithms such as DG [6], DW [19], and FD [23].

APIs of RUSH (Listing 1). RUSH empowers users to customize

their peeling algorithms for their specific applications. Developers

can define their density metrics by implementing custom weight

functions. Unlike Spade, RUSH provides APIs such as SetHalfLife-

Duration and SetBatchSize, which allow users to set decay mech-

anisms without manually performing decay operations across the

entire graph. In the architecture of RUSH, implementing the time-

decayed DW density can be achieved with just 14 lines of code.

In contrast, accomplishing the same functionality within Spade
requires approximately 40 lines of code. Detailed implementation

for DW, DG and FD are provided in Appendix B of [9].

4 IMPLEMENTATION OF RUSH
4.1 Baseline Approaches in Half-Life Dynamics
Given a graph𝐺 = (𝑉 , 𝐸), and let Δ𝐺 = (Δ𝑉 ,Δ𝐸) denote a subset of
𝐺 ’s elements (both edges and vertices) subject to decay. The decay

of the graph is denoted by
Δ𝐺
2
𝑛 , where 𝑛 represents the number of

half-life periods, and
Δ𝐺
2
𝑛 symbolizes the division of the weights

Algorithm 2: Adapting Spade for Half-Life Dynamics

Input:𝐺 = (𝑉 , 𝐸) , existing peeling sequence𝑂 , Δ𝐺
Output: Updated peeling sequence order𝑂 ′

1 Initialize Δ𝐺−,Δ𝐺+ ← ∅
2 for 𝑥 ∈ 𝑉 ∪ 𝐸 do
3 if 𝑥 is pending halving then
4 Δ𝐺− ← Δ𝐺− ∪ {𝑥 }

5 Δ𝐺+ = Δ𝐺−
2
∪Δ𝐺 ; /* Halve weights of Δ𝐺− and new insertions */

6 𝑂 ′ = Spade(𝐺,𝑂,Δ𝐺−,𝐺+) ; /* Peeling sequence reordering */

7 return𝑂 ′

of all elements in Δ𝐺 by a factor of 2
𝑛
. This results in the progres-

sive reduction of weights, reflecting the diminishing influence or

significance of these elements in the graph. More specifically,

• Vertex Weights: For each vertex 𝑢𝑖 ∈ 𝑉 , if 𝑢𝑖 ∈ Δ𝑉 , its
weight or attribute after decay is 𝑎′

𝑖
=

𝑎𝑖
2
𝑛 .

• Edge Weights: Similarly, For each edge 𝑒 = (𝑢𝑖 , 𝑢 𝑗) ∈ 𝐸, if
𝑒 ∈ Δ𝐸, its weight after decay is𝑤 ′

𝑖 𝑗
=

𝑤𝑖 𝑗

2
𝑛 .

Adapting Spade for Half-Life Dynamics (Algorithm 2). In a

system where both edges and vertices are subject to time decay,

whenever a new edge (𝑢𝑖 , 𝑢 𝑗) is introduced at time 𝑇𝑛 , the frame-

work requires a reevaluation of the weight for existing edges and

nodes. Each edge (𝑢𝑖 , 𝑢 𝑗) and each node 𝑢𝑖 is characterized by its

creation time,𝑇𝑖 𝑗 for edges and𝑇𝑖 for nodes, alongside its respective

weight, 𝑐𝑖 𝑗 for edges and 𝑎𝑖 for vertices. If an edge or node meets

the decay criteria based on its timestamp and current system time,

it is added to the pending update set, denoted as Δ𝐺− (Line 2-4).

After assembling all elements requiring updates, the system re-

moves Δ𝐺− and replaces them with their decayed counterparts

Δ𝐺+ = Δ𝐺−
2

(Line 5). Once the edges and vertices requiring halv-

ing are identified, RUSH invokes Spade’s incremental method to

maintain the peeling sequence by removing Δ𝐺− and incorporating
Δ𝐺+, i.e., 𝑂 ′ = Spade(𝐺,𝑂,Δ𝐺−,Δ𝐺+) (Line 6).

Traditionally, updating the weights and attributes of edges and

vertices based on their temporal dynamics has been computation-

ally intensive. It involves scanning each element to assess its de-

cay requirement. This approach, while comprehensive, is resource-

intensive and impractical in scenarios characterized by frequent

updates due to the excessive computational overhead.

Time complexity. Given an edge insertion, the process necessi-

tates an𝑂 (|𝑉 | + |𝐸 |) traversal to determine which edges and nodes

require their weights to be halved. Additionally, given the Δ𝐺+

and Δ𝐺− , the time required for reordering the peeling sequence is

bounded by 𝑂 (|𝐸 | log |𝑉 |) [25]. Consequently, the worst-case cost
for processing a newly inserted edge is 𝑂 (|𝐸 | log |𝑉 |).

4.2 Batch Update
Notably, Algorithm 2 requires traversing the entire graph for each

graph update, determining which edges and nodes will decay. On

the other hand, some users exhibit regular patterns where, even af-

ter the peeling weight has halved, new transactions might increase

the peeling weight again, resulting in minimal overall change in

peeling weight. Based on this observation, we recognize that main-

taining individual edge insertions can lead to considerable overhead.

To enhance efficiency, RUSH employs a batch processing strategy.

Batch Update Scenario. As illustrated in Figure 7, edges in the

dynamic graph are grouped and processed in batches. Each batch

3660

𝑣1

𝑣2

𝑣3
2 6

8
𝑣1

𝑣2

𝑣3
1 6

8

1

𝑣1

𝑣2

𝑣3
1 6

8

1

𝑣1

𝑣2

𝑣3
1 3

8

1 4

(𝒂)	𝐺(𝑡1), 𝑡1 = 1 (𝒃)	𝐺(𝑡2), 𝑡2 = 2 (𝒄)	𝐺(𝑡3), 𝑡3 = 3 (𝒅)	𝐺(𝑡4), 𝑡4 = 4

𝑣 /

𝑣 Incoming node/edge/ 𝑣 Node/Edge reaches its half-life period/

Node In densest subgraph𝑣Normal node/edge

Figure 6: Batch Update Example (w.r.t. 𝛿 = 2)

ΔG1ΔG2 ΔGk+1
Time

0 1 2 … k …. nk nk+1

: Current time ΔGm: A batch of edges ΔGm : The batch needs to decay

ΔG1

ΔG1 k

ΔGnk+1…

Compress
ΔG1

*

ΔG1∗ΔG2∗ ΔGk∗
Compress

ΔGk+1

…
…

…

ΔGnk+1

Figure 7: Batch Compression Example
encompasses a time interval defined as ((𝑚 − 1) · 𝑡,𝑚 · 𝑡], where
𝑚 is an integer that indexes each interval and 𝑡 is the length of

the interval. If the half-life duration is 𝑘 times the duration of the

interval, then the half-life period can be expressed as 𝛿 = 𝑘 · 𝑡 .
This period defines the frequency at which edge weights decay

in accordance with batch processing. For the remainder of this

section, since all times are multiples of the unit time 𝑡 , we will use 𝑙

to represent the actual time 𝑙 ·𝑡 for clarity and ease of understanding.

Edge and Vertex Set Decay Within an Interval. For a given

batch, the set of edges updated within the time interval (𝑚 − 1,𝑚]
is denoted as Δ𝐺𝑚 . The time𝑚 marks the completion of the batch

processing for Δ𝐺𝑚 . After this, the weights of edges and vertices

in Δ𝐺𝑚 are subject to decay, following the half-life principle over

time. Specifically, after 𝑛 half-life periods 𝛿 at time𝑚 + 𝑛 · 𝑘 , the
weights of the edges and nodes in Δ𝐺𝑚 decay to

Δ𝐺𝑚

2
𝑛 .

Graph Representation Over Time. At any given time 𝑛 · 𝑘 +𝑚,

the graph can be represented by appending the batches as follows:

𝐺 (𝑛 · 𝑘 +𝑚) =
𝑛 ·𝑘+𝑚∑︂
𝑙=1

(︃
Δ𝐺𝑙

2
⌊ 𝑛 ·𝑘+𝑚−𝑙

𝑘
⌋

)︃
(3)

Example 4.1. Figure 6 illustrates the efficiency of batch update

over the simple edge updating strategy. In the case of simple edge

updating, each modification, such as halving the weight of the edge

between node 𝑣2 and 𝑣3 at time 𝑡1, requires individual processing.

However, batch updating merges these operations over the duration

of the batch (2 units in this example). Consequently, at time 𝑡2, it is

unnecessary to recompute the peeling sequence since the net effect

of reducing and subsequently adding an edge of equivalent halved

weight negates any change. Therefore, the peeling sequence at time

𝑡2 remains identical to the initial sequence. Similarly, the transition

from graph𝐺 (𝑡2) to graph𝐺 (𝑡4) can be perceived as simply adding

a new edge with weight 1 between 𝑣1 and 𝑣2.

We observe that both the decay and reordering operations are

positively correlated with the size of the graph. Hence, the com-

pression of different batches can improve the efficiency.

Definition 4.2 (Batch Compression). Given two batches Δ𝐺𝑚1
=

(𝑉𝑚1
, 𝐸𝑚1
) and Δ𝐺𝑚2

= (𝑉𝑚2
, 𝐸𝑚2
) satisfying𝑚2 > 𝑚1 and𝑚1 ≡

𝑚2 (mod 𝑘), they are compressed into Δ𝐺𝑚 = (𝑉𝑚, 𝐸𝑚) where:

• 𝑉𝑚 = 𝑉𝑚1
∪𝑉𝑚2

and 𝐸𝑚 = 𝐸𝑚1
∪ 𝐸𝑚2

.

• ∀𝑢𝑖 ∈ 𝑉𝑚 , its weight 𝑎𝑖 is calculated as 𝑎𝑚1
/2

𝑚
2
−𝑚

1

𝑘 +𝑎𝑚2
, where

𝑎𝑚1
and 𝑎𝑚2

are vertex weights in Δ𝐺𝑚1
and Δ𝐺𝑚2

.

• ∀(𝑢𝑖 , 𝑢 𝑗) ∈ 𝐸𝑚 , its weight 𝑐𝑖 𝑗 is calculated as 𝑐𝑚1
/2

𝑚
2
−𝑚

1

𝑘 + 𝑐𝑚2
,

where 𝑐𝑚1
and 𝑐𝑚2

are edge weights in Δ𝐺𝑚1
and Δ𝐺𝑚2

.

The batch compression technique can be extended to recursively

compress multiple batches whenever any two of these batch up-

dates, Δ𝐺𝑚𝑖
and Δ𝐺𝑚 𝑗

, satisfy the condition 𝑚𝑖 (mod 𝑘) = 𝑚 𝑗

(mod 𝑘) for𝑚𝑖 ≠𝑚 𝑗 and𝑚𝑖 ,𝑚 𝑗 ∈ N+. For example, if 𝑘 = 5, then

batches Δ𝐺2 and Δ𝐺7 will decay simultaneously, as 2 (mod 5) = 7

(mod 5). When 𝑙 = 7, Δ𝐺2 will be compressed with Δ𝐺7, since

they share the same decay period and will decay at subsequent

times such as 𝑙 = 12, 17, Similarly, when 𝑙 = 12, Δ𝐺12 will be

compressed. We formally define the batch congruence class below.

Definition 4.3 (Batch Congruence Class). Let G be a set of batch

updates, each denoted as Δ𝐺𝑚 . A congruence class within G is

defined as a subset of G where two batches Δ𝐺𝑚1
and Δ𝐺𝑚2

are

considered equivalent if 𝑚1 (mod 𝑘) = 𝑚2 (mod 𝑘) for a given

modulus 𝑘 . Formally, the congruence class for Δ𝐺𝑚 is defined as:

[Δ𝐺𝑚]𝑘 = {Δ𝐺𝑛 ∈ G |𝑚 (mod 𝑘) = 𝑛 (mod 𝑘)} (4)

Batch Compression via Congruence Classes. We observe that

batches within the same congruence class share identical half-life

decay points. Hence, we compress batches in each congruence class.

After applying batch compression to each of the 𝑘 congruence

classes, we obtain 𝑘 compressed batches: Δ𝐺∗
1
, Δ𝐺∗

2
, . . . , Δ𝐺∗

𝑘
. Each

compressed batch Δ𝐺∗𝑚 is the result of compressing all batches

within the congruence class [Δ𝐺𝑚]𝑘 .
Intuitively, batch compression benefits the system by reducing

the graph size through compression within congruence classes.

Specifically, the scale of the original graph 𝐺 (𝑙) is significantly
reduced after compression, from

∑︁𝑙
𝑖=1 |Δ𝐺𝑖 | to

∑︁𝑘
𝑚=1 |Δ𝐺∗𝑚 |, where

|Δ𝐺𝑖 | denotes the size of each individual batch before compression,

and |Δ𝐺∗𝑚 | represents the size of compressed batch. It also decrease

update times by reducing the number of edges that require decay.

Example 4.4. Figure 7 illustrates an example of graph compres-

sion. When the half-life duration is 𝑘 times the batch duration,

batches such as Δ𝐺0, Δ𝐺𝑘 , and others belong to the same congru-

ence class [Δ𝐺0]𝑘 . RUSH aggregates all batches within this class to

create a compressed batch update Δ𝐺∗
0
. Regardless of the original

number of batches, it is only necessary to maintain 𝑘 compressed

batches since there are at most 𝑘 batch congruence classes.

TimeComplexity.While the time complexity remains𝑂 (|𝐸 | log |𝑉 |),
the efficiency is improved due to the reduced scale of |𝐸 | and |𝑉 |.

Lemma 4.5. Utilizing the batch update strategy within RUSH, the
resulting densest subgraph achieves a 4-approximation.

Proof. The edge update strategy yields a 2-approximate result

for the densest subgraph, as demonstrated in [23]. Our batch update

strategy achieves a 2-approximation relative to the edge update

strategy, thereby concluding the proof. Due to space limitations,

the complete proof is provided in Appendix C of [9]. □

Lemma 4.5 demonstrates the accuracy guarantee of RUSH.

3661

4.3 Batch Selection Strategy
Due to the half-life setting, the detection of dense subgraphs at time

𝐺 (𝑛 ·𝑘 +𝑚) can be incrementally maintained either from the dense

subgraphs of𝐺 ((𝑛−1) ·𝑘 +𝑚) along with the intermediate batches,

or from 𝐺 (𝑛 · 𝑘 +𝑚 − 1) in addition to the most recent batch. We

introduce two distinct selection methods in this subsection.

Lemma 4.6. Let 𝐺 be a graph with a peeling sequence 𝑂 , and
associated peeling weights Δ𝑖 for each 𝑢𝑖 in 𝑂 . Consider the graph
𝐺 ′ = 𝐺

𝑛 , obtained by dividing all weights in 𝐺 by a constant 𝑛 > 0.
Then, the peeling sequence 𝑂 ′ in 𝐺 ′ satisfies 𝑂 ′ = 𝑂 , and for each 𝑢𝑖
in 𝑂 , the corresponding peeling weight Δ′

𝑖
in 𝐺

𝑛 is given by Δ′
𝑖
=

Δ𝑖

𝑛 .

Proof. Lemma 4.6 is verified by first demonstrating that the

initial vertex peeled in 𝐺 is identically the first peeled in
𝐺
𝑛 due

to uniform peeling weight adjustments. This initial step is then

extended through induction to confirm that the sequence holds for

the subsequent (𝑘 + 1)th nodes after the initial 𝑘 nodes are peeled.

The complete proof can be found in Appendix C of [9]. □

Given the graph 𝐺 ((𝑛 − 1) · 𝑘 +𝑚), we can derive the peeling

sequence and peeling weight for the same graph at time 𝑛 ·𝑘 +𝑚 by

retaining the original peeling sequence and halving the previous

peeling weights, as indicated by Lemma 4.6. This method reduces

the computational cost from 𝑂 (|𝐸 | log |𝑉 |) to 𝑂 (𝑉).
Option 1: Incremental Maintenance Post-Half-Life Updates
(RUSH-PHL). We can get the peeling sequence of 𝐺 (𝑛 · 𝑘 + 𝑚)
by incorporating the recent 𝑘 batches to the decayed subgraph

𝐺 ((𝑛 − 1) · 𝑘 +𝑚). Formally, we define 𝑂 ′ = Spade(𝐺 ((𝑛 − 1) ·
𝑘 +𝑚)/2,𝑂, ∅,Δ𝐺+), where 𝑂 represents the peeling sequence of

𝐺 ((𝑛 − 1) · 𝑘 +𝑚)/2 and Δ𝐺+ =
∑︁𝑛 ·𝑘+𝑚
𝑖=(𝑛−1) ·𝑘+𝑚+1 Δ𝐺𝑖 .

Option 2: IncrementalMaintenance Post-BatchUpdate (RUSH-
PBU). Formally, we define𝑂 ′ = Spade(𝐺 (𝑛·𝑘+𝑚−1),𝑂,Δ𝐺−,Δ𝐺+),
where𝑂 represents the peeling sequence computed at the end of the

last batch. Δ𝐺− denotes the set of edges and vertices subject to halv-
ing, while Δ𝐺+ includes the edges and vertices to be inserted post-

halving. Specifically, Δ𝐺− = Δ𝐺∗𝑚 and Δ𝐺+ = Δ𝐺∗𝑚
2
⊕ Δ𝐺𝑛 ·𝑘+𝑚 .

Selection by the Number of Updates (RUSH-S): The efficiency

is directly proportional to the number of updates. Therefore, we

introduce the selection strategy aimed at choosing the updating

option that requires the fewest number of updates. In Option 1, there

are a total of 𝑥1 =
∑︁𝑛 ·𝑘+𝑚
𝑖=(𝑛−1) ·𝑘+𝑚+1 |Δ𝐺𝑖 | updates, while in Option 2,

there are 𝑥2 = 2|Δ𝐺∗𝑚 | + |Δ𝐺𝑛 ·𝑘+𝑚 | updates. When 𝑥1 ≤ 𝑥2, RUSH
selects Option 1; otherwise, RUSH selects Option 2. As the number

of batches increases, the value of 𝑘 rises accordingly, leading to

an increase in 𝑥1 and a decrease in 𝑥2. This leads to longer update

times for RUSH-PHL and shorter ones for RUSH-PBU.

5 EXPERIMENT
5.1 Experiment Setup
The codebase

1
was compiled using g++ (version 8.3.1) with the -O3

optimization. The experiments were executed on a Linux-based

system with two Intel Xeon Gold 6246R CPUs and 384 GB of RAM.

Datasets. Experiments were conducted on seven distinct datasets,

as elaborated in Table 1. Among these datasets, two originate from

1
https://github.com/Xtra-Computing/RUSH

Table 1: Experiment Datasets
Datasets Name |V| |E| Avg. Degree |∆E| Time Interval (day)
dotdotdot dot 11.4K 19.0K 3.4 1.9K 191.8

Terraforms tf 16.3K 35.6K 4.4 3.6K 100.7

BAYC ba 21.4K 65.6K 6.1 6.5K 103.5

Meebits mb 38.3K 69.7K 3.6 7.0K 85.0

ArtBlock ab 250.3K 452.5K 3.6 45.3K 85.9

Grab1 gb1 6.7M 75.2M 22.1 75K 1.41

Grab2 gb2 14.5M 32.0M 4.4 32K 0.78

industrial sources at Grab, denoted as gb1 and gb2. Additionally,
five datasets were utilized from the NFT repository [2]. The con-

struction of the graph𝐺 commences with an initial setup compris-

ing the vertex set𝑉 and 90% of the edges 𝐸, reserving the remaining

10% of 𝐸 for incremental testing.

Competitors.We conducted a comparative analysis betweenRUSH
and four state-of-the-art systems specialized in detecting burst sub-

graphs and dense subgraphs. The chosen benchmarks for this com-

parison includeMBC [29], DBS [11], Fraudar [23], and Spade [25].
We compare RUSH with SCAN [37] and DOMINANT [13], which

represent the commonly used clustering and graph neural network

(GNN)-based strategies for detecting graph outliers, respectively.

Default Setting.Within RUSH, the default configuration set the

half-life duration to 60 seconds for industrial datasets, such as those

fromGrab, and to 3,600 seconds for all other datasets. By default, the
batch duration for processing was determined as one quarter of the

respective half-life durations across all datasets. For the comparison

frameworks,MBC andDBS, we defined the time window to be four

times the half-life duration specified for RUSH. We use the default

parameters forMBC, SCAN and DOMINANT.

Density Function. Following [25], we employed three density

functions (DG, DW, and FD) to assess their influence on various

systems. By default, our approach employs DW. Additional experi-

ments onDG and FD are detailed in the supplementary material [9].

Metric.We employ updating time and latency to measure the ef-

ficiency. Updating time refers to the average duration a system

takes to incorporate a new edge insertion within the updated graph.

Latency is defined as the interval from the moment a fraud node

makes its first transaction to when it is detected by the system.

Updating Time. Figure 9(a) showcases the updating times for sys-

tems employing the DW density function. RUSH significantly out-

performs SCAN, DOMINANT, MBC, DBS, and Fraudar, achieving
speedups by factors of 5.4×102, 3.9×102, 17.1, 1.6×104, and 2.9×103,
respectively. This remarkable efficiency gain can be attributed to

RUSH’s incremental update methodology, which avoids recalculat-

ing from scratch for each update. RUSH surpasses Spade by being

18.8 times faster, a feat achieved through the implementation of

the graph compression technique and the selection strategic use

of batch updates. These innovations considerably enhance the effi-

ciency of the updating process, allowing RUSH to swiftly respond

to the explosive transactions exhibited by fraudulent communities.

RUSH achieves an improvement in throughput by approximately

two orders of magnitude compared to other systems. The detailed

comparison can be found in Appendix A of [9].

5.2 Efficiency
Latency. Figure 9(b) contrasts the latency of RUSH with other

systems. On average, RUSH achieves speedups of 821.9, 774.5, 332.2,

801.9, and 645.9 times compared to SCAN, DOMINANT, MBC,

3662

https://github.com/Xtra-Computing/RUSH

 0
 0.2
 0.4
 0.6
 0.8

 1

dot tf ba mb ab gb1 gb2
(a) Precision

 0
 0.2
 0.4
 0.6
 0.8

 1

dot tf ba mb ab gb1 gb2
(b) Recall

SCAN DOMINANT MBC DBS Fraudar Spade RUSH

 0
 0.2
 0.4
 0.6
 0.8

 1

dot tf ba mb ab gb1 gb2
(c) F1 Value

Figure 8: Overall Effectiveness (w.r.t. DW)

10
-1

10
1

10
3

10
5

dot tf ba mb ab gb1gb2A
v
g
.
U

p
d
at

in
g
 T

im
e

 P
er

 E
d
g
e

(m
s)

(a) Updating time

10
-2

10
-1

10
0

10
1

10
2

dot tf ba mb ab gb1gb2

L
at

en
cy

 (
h
o
u
r)

(b) Latency

SCAN DOMINANT MBC DBS Fraudar Spade RUSH

Figure 9: Overall Performance (w.r.t. DW)
DBS, and Fraudar, respectively. This improvement in latency is due

to RUSH’s design, optimized for dynamic updates and explosive

insertions. In contrast to MBC, DBS, and Fraudar’s reliance on

intensive recalculations, RUSH proposes incremental algorithms

that quickly adapt to graph updates. Despite being built for dynamic

graphs, Spade overlooks the link between time andweight, allowing

fraudsters to act longer before detection and thus increasing Spade’s
latency, which is 254.4 times higher than that of RUSH.
Impact of Batch Update. Figure 10 compares the batch update

strategy with the edge updating method. RUSH-E signifies the edge

updating approach, in contrast to the other labels, which represent

different selection methods within the batch update framework.

The method employed by RUSH-E involves scanning the entire

graph and reordering the peeling sequence after each edge update,

as detailed in Section 4.1. This approach is significantly more time-

consuming, taking 12.3𝑋 longer than RUSH-S.
Impact of Batch Selection. Figure 10 compares the performance

of three different batch selection methods. As the number of batches

increases, the number of batches that need updating increases for

RUSH-PHL and decreases for RUSH-PBU as analyzed in Section

4.3. Meanwhile, RUSH-S evaluates the number of edges requiring

updates and selects the most cost-effective strategy. As a result,

RUSH-S consistently achieves a speedup of 1.2 times on average

compared to both RUSH-PBU and RUSH-PHL.
Impact of Batch Compression. Figure 12 evaluates the batch

compression technique. On average, it achieves a speedup of 1.3𝑋 .

This improvement is attributed to the method’s ability to merge

batches in the same congruence class, thereby reducing the number

of edges that need to be updated during the batch update phase.

Evaluation of Scalability. Scalability plays a crucial role in the

fraud detection pipelines, as it determines the ability to handle

increasing volumes of data without compromising performance.

Figure 11 showcases RUSH’s scalability across varying scales of

the Grab graph. As the graph scales from 1 million to 64 million

edges, the updating time and latency increase by only 2.3 and 1.6

times, respectively, demonstrating a sublinear growth pattern. This

efficiency is attributed to the graph compression technique, which

becomes increasingly effective at larger scales, significantly reduc-

ing the graph’s size. Concurrently, the time decay function enhances

RUSH’s capability to rapidly identify burst behavior, ensuring swift
detection despite the graph’s expansive size. Hence, both updat-

ing time and latency maintain a sublinear trajectory, underscoring

RUSH’s robust performance to large-scale environments.

5.3 Effectiveness
Metric. We employ metrics such as precision, recall, and F1 score to
evaluate the effectiveness of the systems. Precision quantifies the

proportion of transactions that the system accurately identifies as

fraudulent. Recall measures the percentage of fraud nodes success-

fully detected by the system. F1 score serves as a balanced metric,

representing the harmonic mean of precision and recall.

Overall Effectiveness. Figure 8 showcases the superior effective-
ness of RUSH when utilizing the DW density function, with an

F1 score that surpasses MBC, DBS, Fraudar, and Spade by factors

of 1.5, 9.7, 2.7, and 1.7, respectively. Unlike MBC, which focuses

on detecting burst 𝑘-core, RUSH is tailored to identify burst sub-

graphs, a strategy that more accurately captures the characteristics

of fraudulent behavior, thus significantly enhancing precision by

1.31. In contrast to both DBS and Fraudar, which target subgraphs

within a specific timespan, RUSH takes a holistic approach by con-

sidering the entire temporal span of the graph. This methodology

enables the detection of a broader range of fraudsters, elevating

RUSH’s recall above these systems by 9.51 and 1.64, respectively.

While Spade achieves a precision comparable to RUSH, its recall
is comparatively lower across several datasets. This discrepancy

is attributed to Spade’s equal treatment of outdated and new data,

making it challenging to detect emerging fraudulent communities.

On average, RUSH achieves higher F1 value than SCAN and DOMI-

NANT by factors of 3.1𝑋 and 2.5𝑋 . SCAN underperforms primarily

because fraudulent nodes often exhibit similar behaviors (e.g., high

volume of transactions in a short period) but do not necessarily

belong to the same cluster. DOMINANT is less effective because

the relatively small number of fraudulent nodes (fewer than 1000)

challenges the system’s ability to learn from the data effectively.

Parameter Tuning. As batch size increases, the system’s recall

slightly decreases due to the increasing of the granularity of time be-

tween updates. This leads to less timely adjustments in the weights

of nodes and edges. Details on how parameters affect detection

effectiveness are provided in Appendix A.3 of [9].

5.4 Case Study within Grab
Spade has been deployed within Grab to identify fraudulent activi-

ties. Consequently, in our case studies, we conduct a comparative

analysis between RUSH and Spade to evaluate their performance.

Customer-Merchant Collusion. Figure 13(a) illustrates a case
of customer-merchant collusion, where customers and merchants

participate in sham transactions on promotional offers for financial

benefits. In this scenario, a normal user may engage in numerous

transactions with legitimate merchants, forming a dense but gen-

uine community. Without decay function, systems like Spade takes
more time (8,732s) to find the fraudulent community, while RUSH
takes less time (673s) and prevent more fraudulent transactions.

3663

 1

 10

1 2 4 8 16 32 64A
v

g
.

U
p

d
at

in
g

 T
im

e

 P
er

 E
d

g
e

(m
s)

(a) Vary number of batches on mb

 1

 10

1 2 4 8 16 32 64

(b) Vary number of batches on gb1

RUSH-E RUSH-PHL RUSH-PBU RUSH-S

Figure 10: Vary number of batches in one 𝛿

 0

 10

 20

 30

1 2 4 8 16 32 64

A
v
g
.
U

p
d
at

in
g
 T

im
e

 P
er

 E
d
g
e

(m
s)

(a) Vary number of edges (*10
6
)

0

2

4

1 2 4 8 16 32 64

L
at

en
cy

 (
h
o
u
r)

(b) Vary number of edges (*10
6
)

DW DG FD

Figure 11: Evaluation of scalability

 0

 5

 10

 15

 20

dot tf ba mb ab gb1 gb2A
v

g
.

U
p

d
at

in
g

 T
im

e

 P
er

 E
d

g
e

(m
s)

Without Compression With Compression

Figure 12: Evaluation of
batch compression

Timeline:
|E|:
D:

D*(Spade):
D*(RUSH):

Loss:
Detected by Spade?:
Detected by RUSH?:

……

…

…

T0+8732s
32

89.7
82.4
N/A
32
Y

N/A

T0
1

5.2
82.4
82.4

1
N
N

T0+673s
4

23.5
82.4
21.3

4
N
Y

… … …
T0
1
1

79.3
79.3

1
N
N

T0+184s
11

59.7
79.3
43.4
11
N
Y

T0+694s
74

81.2
79.3
N/A

4
Y

N/A

…

T0
1

20.5
164.8
164.8
20.5
N
N

T0+1370s
5

53. 7
164.8
41.2
256.8

N
Y

T0+150031s
42
167.2
164.8
N/A

1245.9
Y

N/A
(a) Customer-Merchant Collusion (b) Promotion Abuse (c) Wash Trading

: Fraudsters

: Device

: Merchant

D: Density of fraudulent subgraph
D*: Density of outdated subgraph

Figure 13: Case Study Example: For (a) and (b), the loss is measured in the number of transactions, rather than amount of fund,
due to confidentiality issues. The loss in (c) is quantified in terms of the number of ETH involved in fraudulent transactions.

Promotion Abuse. Promotion abuse happens when a single user

creates multiple accounts on one device to repeatedly use a voucher

intended for single-use per individual. In scenarios of promotion

abuse, fraudsters exploit limited device access to frequently log

in, thereby creating an extremely dense subgraph within a short

timeframe. Traditional systems like Spade may fail to distinguish

between legitimate and malicious densities, as seen in Figure 13(b),

where the benign community appears denser (density of 79.3) than

the fraudulent one (density of 59.7) without time-based decay mech-

anisms. Conversely, RUSH reduces the benign community’s density

to 43.4, belowing the fraudulent’s 59.7.

5.5 Case Study on Crypto Wash Trading
Wash Trading. Figure 13(c) showcases a wash trading example,

illustrating how fraudulent users manipulate a token’s price via

coordinated buy-sell transactions. Spade [25] fails to recognize

fraudulent behaviors until they evolve into the densest subgraph.

During such delays, 42 transactions have been executed by fraud-

sters, amounting to over 1,000 ETH. In contrast, RUSH detects the

fraudulent community after just five transactions within the group,

reducing the loss to approximately 200 ETH.

6 RELATEDWORK
Dense Subgraph Detection. Numerous studies have employed

dense subgraph mining techniques to detect fraudulent activities,

identify spam, or uncover communities within social and review

networks [23, 30, 31]. While these approaches are adept at handling

static graph structures, their adaptation to dynamic graphs, though

explored [3, 16, 24, 25], often faces inherent limitations. Specifically,

methodologies, such as [32], assume that the weights on edges and

vertices remain constant over time. Moreover, the throughput of

these methods is not sufficient for scenarios characterized by burst

patterns. In contrast, RUSH integrates a time decay mechanism,

facilitating the rapid identification of burst subgraphs. This innova-

tive approach reduces latency in detecting fraudulent communities,

thereby enhancing the system’s efficiency and effectiveness.

Burst Subgraph Detection. Several systems [11, 29, 39] focus

on the mining of burst subgraphs. However, their scope is gener-

ally limited to identifying particular types, such as burst core or

burst cohesiveness subgraphs. In contrast, RUSH offers an exten-

sive range of APIs, allowing users to employ or develop various

density metrics to identify different types of burst subgraphs.

Fraud Detection Using Graph Techniques. In the landscape of

graph-based fraud detection, strategies such as COPYCATCH [4]

and GETTHESCOOP [26] have been instrumental, utilizing local

search heuristics to unearth dense subgraphs in bipartite graphs.

The method of label propagation, as discussed in [36], emerges as

an effective technique for community detection within this context.

The exploration of link analysis for fraud identification further

enriches the domain, as seen in [12, 37]. Graph Neural Networks

(GNNs) have significantly advanced graph-based fraud detection,

as demonstrated in studies like [13, 14, 34].

7 CONCLUSION
Burst subgraphs are effective common patterns for fraud detec-

tions in many data science pipelines of on-line applications such

as e-commerce and crypto transactions. In this paper, we present

RUSH, a novel system for efficiently detecting burst subgraphs in

dynamic graphs using a half-life time decay approach. RUSH in-

troduces graph compression and batch updating methods to speed

up graph updates. It also offers user-friendly APIs for customizable

fraud detection across different scenarios. Our experiments show

RUSH greatly outperforms existing systems in update speed and la-

tency reduction. Case studies confirm its effectiveness in combating

frauds in Grab and crypto networks, demonstrating its real-world

utility in real-time fraud detection data science pipelines.

ACKNOWLEDGMENTS
Jiaxin Jiang is the corresponding author. This research is supported

by the National Research Foundation, Singapore under its AI Sin-

gapore Programme (AISG Award No: AISG2-TC-2021-002) and the

Ministry of Education AcRF Tier 2 grant, Singapore (No. MOE-

000242-00/MOE-000242-01).

3664

REFERENCES
[1] [n.d.]. Distil Networks: The 2019 Bad Bot Report. https://www.bluecubesecurity.

com/wp-content/uploads/bad-bot-report-2019LR.pdf.

[2] 2023. Live Graph Lab. https://livegraphlab.github.io/. Accessed: 2023-12-10.

[3] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest Subgraph

in Streaming and MapReduce. Proceedings of the VLDB Endowment 5, 5 (2012).
[4] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and

Christos Faloutsos. 2013. Copycatch: stopping group attacks by spotting lockstep

behavior in social networks. In Proceedings of the 22nd international conference
on World Wide Web. 119–130.

[5] Robert E Burton and Richard W Kebler. 1960. The “half-life” of some scientific

and technical literatures. American documentation 11, 1 (1960), 18–22.

[6] Moses Charikar. 2000. Greedy approximation algorithms for finding dense

components in a graph. In International Workshop on Approximation Algorithms
for Combinatorial Optimization. Springer, 84–95.

[7] Nidhika Chauhan and Prikshit Tekta. 2020. Fraud detection and verification

system for online transactions: a brief overview. International Journal of Electronic
Banking 2, 4 (2020), 267–274.

[8] Tianyi Chen and Charalampos Tsourakakis. 2022. Antibenford subgraphs: Un-

supervised anomaly detection in financial networks. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2762–2770.

[9] Yuhang Chen, Jiaxin Jiang, Shixuan Sun, Bingsheng He, and Min Chen. 2024.

RUSH: Real-time Burst Subgraph Discovery in Dynamic Graphs (Complete

Version). https://github.com/Xtra-Computing/RUSH/blob/main/RUSH_paper.

pdf

[10] Dawei Cheng, Xiaoyang Wang, Ying Zhang, and Liqing Zhang. 2020. Graph neu-

ral network for fraud detection via spatial-temporal attention. IEEE Transactions
on Knowledge and Data Engineering 34, 8 (2020), 3800–3813.

[11] Lingyang Chu, Yanyan Zhang, Yu Yang, Lanjun Wang, and Jian Pei. 2019. Online

density bursting subgraph detection from temporal graphs. Proceedings of the
VLDB Endowment 12, 13 (2019), 2353–2365.

[12] Corinna Cortes, Daryl Pregibon, and Chris Volinsky. 2003. Computational

methods for dynamic graphs. Journal of Computational and Graphical Statistics
12, 4 (2003), 950–970.

[13] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep anomaly

detection on attributed networks. In Proceedings of the 2019 SIAM International
Conference on Data Mining. SIAM, 594–602.

[14] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. 2020.

Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged

Fraudsters. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM’20).

[15] HangYuan Du, Duo Li, and WenJian Wang. 2022. Abnormal User Detection

via Multiview Graph Clustering in the Mobile e-Commerce Network. Wireless
Communications and Mobile Computing 2022 (2022).

[16] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient densest

subgraph computation in evolving graphs. In Proceedings of the 24th international
conference on world wide web. 300–310.

[17] Michael Fleder, Michael S Kester, and Sudeep Pillai. 2015. Bitcoin transaction

graph analysis. arXiv preprint arXiv:1502.01657 (2015).

[18] Aristides Gionis and Charalampos E Tsourakakis. 2015. Dense subgraph dis-

covery: Kdd 2015 tutorial. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2313–2314.

[19] Naga VC Gudapati, Enrico Malaguti, and Michele Monaci. 2021. In search of

dense subgraphs: How good is greedy peeling? Networks 77, 4 (2021), 572–586.
[20] Jericho Hallare and Valerie Gerriets. 2020. Half life. (2020).

[21] WentaoHan, YoushanMiao, Kaiwei Li, MingWu, Fan Yang, Lidong Zhou, Vijayan

Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: a graph engine

for temporal graph analysis. In Proceedings of the Ninth European Conference on
Computer Systems. 1–14.

[22] Frank Harary and Gopal Gupta. 1997. Dynamic graph models. Mathematical
and Computer Modelling 25, 7 (1997), 79–87.

[23] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos

Faloutsos. 2016. Fraudar: Bounding graph fraud in the face of camouflage. In

Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 895–904.

[24] Jiaxin Jiang, Yuhang Chen, Bingsheng He, Min Chen, and Jia Chen. 2024. Spade+:

A Generic Real-Time Fraud Detection Framework on Dynamic Graphs. IEEE
Transactions on Knowledge and Data Engineering (2024).

[25] Jiaxin Jiang, Yuan Li, Bingsheng He, Bryan Hooi, Jia Chen, and Johan Kok Zhi

Kang. 2022. Spade: A Real-Time Fraud Detection Framework on Evolving Graphs.

Proc. VLDB Endow. 16, 3 (nov 2022), 461–469. https://doi.org/10.14778/3570690.

3570696

[26] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. 2014.

Inferring strange behavior from connectivity pattern in social networks. In

Pacific-Asia conference on knowledge discovery and data mining. Springer, 126–
138.

[27] Mingxuan Lu, Zhichao Han, Susie Xi Rao, Zitao Zhang, Yang Zhao, Yinan Shan,

Ramesh Raghunathan, Ce Zhang, and Jiawei Jiang. 2022. BRIGHT-Graph Neu-

ral Networks in Real-Time Fraud Detection. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. 3342–3351.

[28] Atsushi Miyauchi and Akiko Takeda. 2018. Robust densest subgraph discovery.

In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 1188–1193.
[29] Hongchao Qin, Rong-Hua Li, Ye Yuan, Guoren Wang, Lu Qin, and Zhiwei Zhang.

2022. Mining Bursting Core in Large Temporal Graphs. Proceedings of the VLDB
Endowment (2022).

[30] Yuxiang Ren, Hao Zhu, Jiawei Zhang, Peng Dai, and Liefeng Bo. 2021. Ensemfdet:

An ensemble approach to fraud detection based on bipartite graph. In 2021 IEEE
37th International Conference on Data Engineering (ICDE). IEEE, 2039–2044.

[31] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2016. Corescope: Graph

mining using k-core analysis—patterns, anomalies and algorithms. In 2016 IEEE
16th international conference on data mining (ICDM). IEEE, 469–478.

[32] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. Densealert:

Incremental dense-subtensor detection in tensor streams. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1057–1066.

[33] Sanya B Taneja, Tiffany J Callahan, Mary F Paine, Sandra L Kane-Gill, Halil

Kilicoglu, Marcin P Joachimiak, and Richard D Boyce. 2023. Developing a knowl-

edge graph for pharmacokinetic natural product-drug interactions. Journal of
Biomedical Informatics 140 (2023), 104341.

[34] Chen Wang, Yingtong Dou, Min Chen, Jia Chen, Zhiwei Liu, and S Yu Philip.

2021. Deep Fraud Detection on Non-attributed Graph. In 2021 IEEE International
Conference on Big Data (Big Data). IEEE, 5470–5473.

[35] Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,

Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A semi-supervised graph

attentive network for financial fraud detection. In 2019 IEEE International Con-
ference on Data Mining (ICDM). IEEE, 598–607.

[36] Meng Wang, Chaokun Wang, Jeffrey Xu Yu, and Jun Zhang. 2015. Community

detection in social networks: an in-depth benchmarking study with a procedure-

oriented framework. Proceedings of the VLDB Endowment 8, 10 (2015), 998–1009.
[37] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. 2007. Scan:

a structural clustering algorithm for networks. In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining. 824–
833.

[38] Chang Ye, Yuchen Li, Bingsheng He, Zhao Li, and Jianling Sun. 2021. GPU-

Accelerated Graph Label Propagation for Real-Time Fraud Detection. In Proceed-
ings of the 2021 International Conference on Management of Data. 2348–2356.

[39] Ming Zhong, Junyong Yang, Yuanyuan Zhu, Tieyun Qian, Mengchi Liu, and

Jeffrey Xu Yu. 2024. A Unified and Scalable Algorithm Framework for User-

Defined Temporal (𝑘, X)-Core Query. IEEE Transactions on Knowledge and Data
Engineering (2024).

[40] Hangjun Zhou, Guang Sun, Sha Fu, Linli Wang, Juan Hu, and Ying Gao. 2021.

Internet financial fraud detection based on a distributed big data approach with

node2vec. IEEE Access 9 (2021), 43378–43386.

3665

https://www.bluecubesecurity.com/wp-content/uploads/bad-bot-report-2019LR.pdf
https://www.bluecubesecurity.com/wp-content/uploads/bad-bot-report-2019LR.pdf
https://livegraphlab.github.io/
https://github.com/Xtra-Computing/RUSH/blob/main/RUSH_paper.pdf
https://github.com/Xtra-Computing/RUSH/blob/main/RUSH_paper.pdf
https://doi.org/10.14778/3570690.3570696
https://doi.org/10.14778/3570690.3570696

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Peeling Algorithm and Reordering

	3 Framework of RUSH
	3.1 The RUSH Architecture
	3.2 APIs of RUSH

	4 Implementation of RUSH
	4.1 Baseline Approaches in Half-Life Dynamics
	4.2 Batch Update
	4.3 Batch Selection Strategy

	5 Experiment
	5.1 Experiment Setup
	5.2 Efficiency
	5.3 Effectiveness
	5.4 Case Study within Grab
	5.5 Case Study on Crypto Wash Trading

	6 Related work
	7 Conclusion
	Acknowledgments
	References
	A More experiment
	A.1 Efficiency
	A.2 Effectiveness
	A.3 Parameter Tuning

	B Instance of RUSH
	C Proof

