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ABSTRACT
In this demonstration, we introduce Spade, a sophisticated real-time
fraud detection framework adept at navigating the complex trans-
action graph. Unlike conventional methods that are limited by per-
formance and lack incremental update capabilities, Spade leverages
advanced incremental updates in dense subgraph peeling algorithms
to enhance e�ciency, usability, and reduce latency, achieving a sig-
ni�cantly better fraud prevention ratio. The demo showcases an
interactive GUI prototype, allowing users to customize and explore
dense subgraphs with various metrics and algorithms. This interac-
tive demonstration also e�ectively highlights Spade’s robust capacity
to unearth fraudulent transactions within varied settings, including
Grab’s services and cryptocurrency transactions.
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1 INTRODUCTION
Fraud detection is pivotal in online marketplaces, where malicious
activities can precipitate substantial �nancial losses. The rapid evo-
lution of social and transaction graphs in these domains intensi�es
the challenge of timely fraud identi�cation. Traditional peeling algo-
rithms, lauded for their e�ciency and theoretical guarantees, face
limitations due to their static nature and inability to adapt to evolving
graphs. Spade, leveraging advancements in real-time analytics, over-
comes these obstacles by o�ering an incremental approach to graph
analysis, signi�cantly reducing latency and enhancing the detection
of fraudulent activities within narrow timeframes. This adaptability
is crucial for platforms like Grab, where transaction graphs evolve
swiftly, necessitating immediate responses to potential fraud.

Our motivation stems from the critical need for real-time fraud
detection in transaction graphs, highlighted by our collaboration
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Figure 1: Common Data Pipeline for Fraud Detection

with Grab. The fraud detection process at Grab, depicted in Fig-
ure 1, confronts challenges like customer-merchant collusion, where
promotions are exploited through fake accounts and transactions,
forming dense subgraphs. Leveraging our prior work with Spade [8],
we’ve developed an incremental algorithm framework that enhances
the capability for real-time detection of such fraud within dense sub-
graphs, accommodating various de�nitions of density. This approach
signi�cantly advances the e�ciency and responsiveness of fraud
detection mechanisms in dynamic transaction environments.

In this demo paper, we introduce an interactive system prototype
featuring a GUI that builds upon our previous research [8]. This sys-
tem empowers users to tailor and apply various density metrics and
peeling algorithms for constructing and analyzing dense subgraphs.
It’s designed to enhance fraud detection capabilities across real-world
datasets, including those from industry and cryptocurrency sectors.
The demonstration will highlight speci�c features of this system,
showcasing its practical application and e�ectiveness in identifying
fraudulent activities through an intuitive and customizable interface:

(1) Ease of Use. Spade provides a user-friendly approach, allowing
developers to incorporate their suspiciousness functions for de-
tecting fraudulent communities. It o�ers a comprehensive suite
of APIs for customizing fraud detection semantics. Additionally,
its GUI supports coding, result visualization, and integrates a
code generation tool for the APIs.

(2) Automated Incrementalization. Spade simpli�es the incremental-
ization process across various peeling algorithms, concealing
the complexities from the developers. This feature empowers
developers to create custom fraud detection semantics through
speci�c edge and vertex suspiciousness functions.

(3) High E�ciency. With data sets from Grab and cryptocurrencies,
we will demonstrate that Spade greatly accelerates the fraud de-
tection process, with speed-ups of up to six orders of magnitude.

With Spade, users can explore transaction graphs and frauds in an
interactive and real-time manner. For example, as the dense subgraph
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is highlighted, users can zoom in/out to examine the pattern. Another
example is, users can specify the nodes of interest and explore its
structure interactively. We will showcase the application of Spade
in identifying fraud within both Grab and cryptocurrency scenarios.

2 THE Spade FRAMEWORK
2.1 Preliminary
Graph ⌧ . We consider a directed and weighted graph ⌧ = (+ , ⇢),
where + is a set of vertices and ⇢ ✓ (+ ⇥+ ) is a set of edges. Each
edge (D8 ,D 9 ) 2 ⇢ has a non-negative weight, denoted by 28 9 .
Induced Subgraph. Given a subset ( of + , we denote the induced
subgraph by ⌧[(] = ((, ⇢[(]), where ⇢[(] = {(D, E)|(D, E) 2 ⇢ ^ D, E 2
(}. The number of vertices in ( is represented as |( |.
Density Metrics 6. To measure the density of a subset ( of vertices
in the graph, we adopt the class of metrics 6 commonly used in
previous studies [2, 5, 6], 6(() = 5 (()

|( | , where 5 is the total weight of
⌧[(], i.e., the sum of the weight of ( and ⇢[(]:

5 (() =
X
D8 2(

08 +
X

D8 ,D 9 2(
V(D8 ,D 9 )2⇢

28 9 (1)

The weight of a vertexD8 represents the suspiciousness of the user
D8 , denoted by 08 (08 � 0). The weight of the edge (D8 ,D 9 ) represents
the suspiciousness of the transaction (D8 ,D 9 ), denoted by 28 9 > 0.
Intuitively, 6(() is the density of the induced subgraph ⌧[(]. The
larger 6(() is, the denser ⌧[(] is.
Graph Updates ∆⌧ . We denote the set of updates to the graph
⌧ as ∆⌧ = (∆+ ,∆⇢). The updated graph after incorporating ∆⌧ is
represented as ⌧ � ∆⌧ , which is equal to (+ [ ∆+ , ⇢ [ ∆⇢). In our
framework, we only consider edge insertions and not deletions, as
transaction graphs continuously evolve.

Spade targets to identify the subset of + , denoted as (⇤, whose
density metric 6((⇤) is maximized on the updated graph ⌧ � ∆⌧ .

2.2 Backend of Spade
Data Storage. The storage component within Spade leverages the
RisingWave [9] distributed database for stream processing. This
choice simpli�es the development and reduces the costs of creating
real-time applications. As new transactions are produced during ex-
ecution, Spade not only inserts these transactions into RisingWave
but also initiates an incremental maintenance procedure. Speci�cally,
Spade is designed to update the graph⌧ incrementally, accommodat-
ing new transactions as they are inserted. This process is represented
by ∆⌧ , signifying the changes applied to the graph structure.
Spade Code Generation Tool Chain. The peeling algorithms in
our framework are incrementalized based on user-de�ned functions,
such as the vertex suspiciousness function and the edge suspicious-
ness function. To generate the codes of the new peeling algorithms,
we provide simple programming interfaces by allowing developers
to de�ne customized data structures using C/C++. Our framework
automatically plugs in the user-de�ned functions to the peeling score
function, which is invisible to the developers and saves their pro-
gramming e�orts. We also provide a module that allows developers
to control the streaming process, including the batch size and the
checking of benign transactions.

APIs and Data Structure. To enhance �exibility and cater to var-
ious application needs, we o�er developers comprehensive APIs
that allow for the customization and deployment of their peeling
algorithms. Speci�cally, developers have the ability to tailor VSusp
and ESusp, enabling the development of nuanced fraud detection
semantics unique to their requirements. For the seamless integration
of new data, we have introduced two APIs tailored for edge inser-
tion: InsertEdge and InsertBatchEdges. Detailed documentation of
the APIs is thoroughly presented in our research paper [7, 8].

2.3 Sample Semantics
We demonstrate that popular peeling algorithms, such as DG [2],
DW [5] and FD [6], can be easily implemented and supported by
Spade. As an example, we present the discussion of FD and refer
to [8] for the other instances. FD was proposed by Hooi et al.[6] to
counter the disguise of fraudsters by weighting edges and setting
the prior suspiciousness of each vertex using side information.

To implement FD using Spade, developers simply need to plug in
their de�ned suspiciousness functions for vertices and edges. This
can be done by calling the VSusp and ESusp APIs, respectively. The
suspiciousness function for vertices, vsusp, is a constant function,
where for a given vertex D, vsusp(D) = 08 . The suspiciousness func-
tion for edges, esusp, is a logarithmic function, such that for a given
edge (D8 ,D 9 ), esusp(D8 ,D 9 ) = 1

log(G+2) , where G is the degree of the
object vertex between D8 and D 9 , and 2 is a positive constant [6].

Spade simpli�es the implementation of customized peeling algo-
rithms, signi�cantly reducing the engineering e�ort required. As
an example, the implementation of FD using Spade requires only
around 20 lines of code (Listing 1), compared to the approximately
100 lines required in the original implementation of FD [6].
1 double vsusp(Vertex v, Graph g){

2 return g.weight[v];

3 }

4 double esusp(Edge e, Graph g){

5 return 1/log(g.deg[e.src ]+5);

6 }

7 int main() {

8 Spade spade;

9 spade.VSusp(vsusp); //plug in vsusp (line 1-3)

10 spade.ESusp(esusp); //plug in esusp (line 4-6)

11 spade.TurnOnEdgeGrouping (); // enable edge grouping

12 spade.LoadGraph(�graph_sample_path�);

13 vector <Vertex > fraudsters = spade.Detect ();

14 //edge insertions prepared by developers

15 vector <Edge > edge_insertions;

16 for(Edge e: edge_insertions){

17 fraudsters = spade.InsertEdge(e);

18 }

19 return 0;

20 }

Listing 1: Implementation of FD on Spade

3 DEMONSTRATION PLAN
The demonstration1 consists of two parts. First, we showcase the
ease-of-use and performance of Spade. Second, we provide real fraud
cases from Grab and cryptocurrencies, highlighting its e�ectiveness.
Experimental Setup. Our Spade prototype [8] is implemented in
C++ and demonstrated on a MacBook Air with an Apple M2 proces-
sor and 16GB of memory. The frontend is built using CoreUI [3] and
the graph is visualized using G6 [1]. We compare the performance
of Spade with three popular peeling algorithms (DG [2], DW [5],

1https://www.youtube.com/watch?v=VeiZ2vuwduY
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Figure 2: Backend of Spade and the real-time detection work�ow

Figure 3: Spade’s Graphical User Interface
Table 1: Statistics of Real-World Datasets

Datasets |+ | |⇢ | avg. degree Increments Type

GFG 3.38M 29M 16.94 2.8M Transaction
Grab1 3.991M 10M 5.011 1M Transaction
Grab2 4.805M 15M 6.243 1.5M Transaction
Grab3 5.433M 20M 7.366 2M Transaction
Grab4 6.023M 25M 8.302 2.5M Transaction
Amazon 28K 28K 2 2.8K Review
Epinion 264K 841K 6.37 84.1K Who-trust-whom

Slashdot0811 77K 905K 23.41 90.5K Social network
Slashdot0902 82K 948K 23.09 94.8K Social network
Youtube 1.13M 2.99M 5.27 299K Social network
DBLP 317K 1.05M 6.62 105K Collaboration network
NFT 18K 34K 3.71 3.4K Transaction

and FD [6]), which identify the fraudulent community from scratch
with each edge insertion. The improved versions of these algorithms,
IncDG, IncDW, and IncFD, are implemented within Spade.
Datasets. We evaluate our framework on a diverse set of eleven
datasets (see Table 1). Five of the datasets (GFG, Grab1-Grab4) are
provided by our industry partner Grab and represent real-world
transaction records as edges. The edges are ordered based on their
increasing timestamps to re�ect the temporal nature of the transac-
tions. We also use three popular open datasets, including Amazon,
Epinion and some datasets from SNAP [10]. Finally, we include a new

dataset, NFT, which we crawled from the online marketplace [11].
The datasets vary in size, sparsity, and degree distribution, providing
a comprehensive evaluation of our framework’s performance.
AWalk through Spade.We demonstrate the ease-of-use and per-
formance of Spade through the following �ve steps. Each step could
be used by users to perform more in-depth studies on the data in a
interactive manner to our system.
(1) Plug-in (developers). As shown in Figure 3 (Step 1�), developers
can specify the vertex suspiciousness and edge suspiciousness func-
tions in the plug-in panel. Spade will integrate these functions into
the engine and compile a new peeling algorithm for fraud detection.
(2) Play (moderators). In the play panel (at the top of Figure 3), mod-
erators can select a dataset, a built-in peeling algorithm or a custom
algorithm, and a batch size to adjust the e�ciency and prevention
rate. We also provide a special batch size option called "edge group-
ing" that enables real-time checking of whether a new transaction
is benign or potentially fraudulent in $(1). Spade provides three
built-in fraud detection algorithms: DG, DW, and FD. Moderators
can compare the performance of these algorithms with di�erent sus-
piciousness functions. Spade enables moderators to manually submit
graph updates and interact dynamically with the system.
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Figure 4: E�ciency Comparison between Peeling Algorithms
and their Corresponding Incremental Versions on Spade

Figure 5: Identifying Fraud with Spade.

(3) Statistics.The detection results are displayed in the statistics panel,
including the number of clients, the number of fraudsters, benign
transactions, and potential fraudulent transactions. The details of
the frauds are listed in the user panel, including the user ID, fraud
type, and amount of fraudulent activities. The statistics are updated
in real-time as new fraudsters are detected, allowing moderators to
monitor the transaction network in real-time.
(4) Inspection (moderators). First, Spade loads the graphs from Ris-
ingWave and visualizes the transaction graph in the inspection panel
(Figure 3, Step 2�). Moderators can explore the graph structure by
zooming and dragging. After setting the parameters, moderators can
run either incremental or static algorithms to detect fraudsters and
fraudulent activities. When Spade detects new fraudsters, it sends
them to the front-end for visualization. During runtime, the fraudu-
lent transactions involving these fraudsters will be highlighted in the
transaction network. Spade visualizes the fraud communities on the
graphs in real-time (Figure 3, Step 3�). Spade provides two modes
for moderators to inspect the fraudsters and fraudulent transactions
(Figure 3, Step 4�). Moderators can inspect the fraud manually by
inputting the fraudster IDs or transaction IDs, and they can also in-
vestigate the cases by exploring the suspects’ neighbors. Spade also
provides a one-click inspection function for detected fraudsters to in-
vestigate their connections in the network. In addition to vertex-level
and edge-level inspection, moderators can also click "Show Fraud
Community" button to inspect the fraud community at the subgraph
level. This can provide more insight into the fraud patterns and help
moderators gain a better understanding of the fraud activity.
(5) Performance Comparison.The comparison of performance between
incremental peeling algorithms and traditional peeling algorithms
is conducted to evaluate the e�ciency of Spade (Figure 4). Our ex-
periments demonstrate that IncDG (respectively, IncDW and IncFD)
is up to 4.17 ⇥ 103 (respectively, 1.63 ⇥ 103 and 1.96 ⇥ 106) times
faster than DG (respectively, DW and FD) with an edge insertion.
The results also show that IncDG (respectively, IncDG and IncFD)
can prevent 88.34% (respectively, 86.53% and 92.47%) of fraudulent
activities. The scalability of Spade is also veri�ed in [8].

Case Studies (Figure 5). To showcase the e�ectiveness of Spade,
we present case studies in the datasets of Grab and NFT [4]. These
case studies highlight three common fraud patterns: Deal-Hunting,
Click-Farming, and Customer-Merchant Collusion. The �rst pattern,
Deal-Hunting, involves a group of users taking advantage of promo-
tions or merchant bugs. The second pattern, Click-Farming, involves
merchants recruiting fraudsters to create false prosperity by per-
forming fake transactions. The third pattern, Customer-Merchant
Collusion, involves customers and merchants performing fake trans-
actions to take advantage of promotions and earn bonuses. All three
fraud patterns form dense subgraphs in a short period of time. Spade
can detect the fraudsters in real-time as it incrementally updates the
fraud community without having to recompute from scratch. We
show the "Inspect Fraudster" inspection by using two fraud cases.
Deal-Hunter.When the moderators click on "Inspect Fraudster" for
client 1,681, Spade zooms in to show the connections around the
fraudster in the network. We can see from the panel that the fraud-
ster frequently makes purchases from merchants with IDs 6,476,
5,867, and 849, as well as from some normal or fraudulent merchants.
The moderators can observe that these transaction activities form a
deal-hunter fraud pattern, providing them with useful insights for
detecting and preventing similar fraudulent activities in the future.
Click-Farming. In the sameway, by clicking on "Inspect Fraudster" for
merchant 9,893, the moderators can observe that apart from normal
users, several fraudsters, including 8,863, 3,996, and 7,293, make fre-
quent purchases from this merchant. These fraudulent transactions
form a dense subgraph and indicate a click-framing fraud pattern.
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