
The Vadalog Parallel System:
Distributed Reasoning with Datalog+/-

Luigi Bellomarini
Banca d’Italia

luigi.bellomarini@bancaditalia.it

Davide Benedetto
Prometheux & Università Roma Tre

davben@prometheux.co.uk

Matteo Brandetti
TU Wien

matteo.brandetti@gmail.com

Emanuel Sallinger
TU Wien & University of Oxford

sallinger@dbai.tuwien.ac.at

Adriano Vlad
Prometheux, TU Wien &
University of Oxford

adriano@prometheux.co.uk

ABSTRACT

Over the past years, there has been a growing demand for ontologi-
cal reasoning systems based on languages of the Datalog+/- family,
such as Vadalog, for their ability to effectively model a wide range
of real-world problems with powerful features such as existential
quantification. As the scale and complexity of data analysis tasks
continue to grow, the ability to distribute the computational work-
load across multiple non-communicating processors has become
vital for these systems to achieve scalable performance.

The joint presence of existential quantification and recursion
poses new challenges, currently unsolved by existing distributed
systems, which only concentrate on Datalog and are therefore un-
suitable for ontological reasoning. When working across multiple
processors, generating all the facts to answer a specific reason-
ing query, avoiding duplication, and guaranteeing termination are
non-trivial tasks as infinitely many new symbols and facts can be
generated by existential quantification and recursion.

In this paper, we address such challenges and introduce the
first distributed framework in the Datalog+/- space. We propose
the condition of homomorphic decomposability, which identifies
sets of Datalog+/- rules with good distribution properties. We put
homomorphic decomposability into action with a distributed rea-
soning algorithm for Warded Datalog+/-, the core of Vadalog. We
implement Vadalog Parallel, a distributed reasoner for Vadalog and
provide experimental evaluation against state-of-the-art systems.

PVLDB Reference Format:

Luigi Bellomarini, Davide Benedetto, Matteo Brandetti, Emanuel Sallinger,
and Adriano Vlad. The Vadalog Parallel System: Distributed Reasoning
with Datalog+/-. PVLDB, 17(13): 4614 - 4626, 2024.
doi:10.14778/3704965.3704970

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/prometheuxresearch/VadalogParallel-Experiments.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.
doi:10.14778/3704965.3704970

Figure 1: The exposure network of Example 1.1. The nodes

are financial entities and the edges represent issued loans or

security ownership relationships.

1 INTRODUCTION

Recent years have witnessed a rising interest in the adoption of rea-
soning frameworks based on languages of the Datalog± family [16],
such as Vadalog [13], thanks to their reasoning features, such as
existential quantification and recursion. These features allow them
to support both triple-based models and multi-attributed graphs, to
efficiently encode graph traversals, to capture SPARQL under the
OWL 2 QL entailment regime for querying the semantic web [28].

We observe the use of Datalog± in finance (e.g., banking super-
vision, creditworthiness, anti-money laundering, fraud detection),
medicine and biology (e.g., virology, patient pathways), enterprise
resource planning (e.g., supply chain management), and more do-
mains, as also confirmed by a flourishing of industrial applica-
tions [3, 5, 10, 12, 15–18, 23, 33, 44, 56] and dedicated venues [4].

The Need for Distribution. With the undebatable data growth
trend and the complexity of analytical tasks, the ability to scale out
and distribute the reasoning workload across multiple workers is a
vital feature of modern reasoning engines. While state-of-the-art
studies show the effectiveness of parallel evaluation techniques
primarily based on the shared memory and the message passing
paradigms with pure Datalog [20, 21, 37, 50, 57, 60, 61, 63], exis-
tential quantification and the need for ontological reasoning with
Datalog± present complex challenges, unaddressed by current lit-
erature and existing techniques. This work deals with them.

4614

https://doi.org/10.14778/3704965.3704970
https://github.com/prometheuxresearch/VadalogParallel-Experiments
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704970
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 2: A portion of the chase for Example 1.1.

Motivating Example. To enable ontological reasoning, the Dat-
alog

± languages augment the expressivity of Datalog by adding
advanced features, such as existential quantification, while introduc-
ing syntactic limitations to guarantee tractability [28]. Intuitively,
ontological reasoning consists in answering a conjunctive query

(CQ) 𝑄 over a database 𝐷 , augmented with new tuples derived by
the application of a set of Datalog± rules Σ. Consider an example:

Example 1.1. The database 𝐷 models an “exposure network” (Fig-

ure 1), where financial entities 𝑥 : (1) are represented as nodes and have

a default probability 𝑝 (FinEntity(x, p)); (2) receive loans from finan-

cial entities𝑦 with a credit risk lgd (Loan(𝑥,𝑦, lgd)); (3) receive securi-
ties of percentage𝑤 , issued by financial entities 𝑦 (Security(𝑥,𝑦,𝑤)).
𝐷={Loan(A,D, 0.7), Loan(A, E, 0.4), Loan(H , F , 0.55), Loan(C, I , 0.55),
Loan(H , F , 0.55), Loan(D, F , 0.5), FinEntity(A, 0.6), FinEntity(C, 0.55),
Security(E,D, 0.4), Security(D, F, 0.4), Security(I ,H , 0.6)}.
Entities are affected by default events 𝑑 triggered by other entities 𝑧

(Dflt(𝑥, 𝑧, 𝑑)). 𝐷 is augmented with a set Σ of rules, which encodes the

conditions to propagate the default events throughout the network.

FinEntity(𝑎, 𝑝), 𝑝 > 0.5→ ∃𝑑 Dflt(𝑎, 𝑎, 𝑑) (𝜎1)
Dflt(𝑏, 𝑎, 𝑑1), Loan(𝑏, 𝑐, lgd), lgd ≥ 0.5→ ∃𝑑2 Dflt(𝑐, 𝑎, 𝑑2) (𝜎2)
Dflt(𝑏, 𝑎, 𝑑1), Security(𝑏, 𝑐, 𝑠), 𝑠 ≥ 0.3→ ∃𝑑2 Dflt(𝑐, 𝑎, 𝑑2) (𝜎3)

We assume that an entity 𝑎 with a default probability (𝑝) greater than

50% initiates a default event 𝑑 (𝜎1). Similarly, if 𝑐 granted a loan to a

defaulting entity 𝑏 with a high credit risk lgd, then it defaults on its

debt (𝜎2). Finally, 𝑐 defaults on its debt, if it owns more than 30% of

the securities issued by a defaulting entity 𝑏 (𝜎3).

Rules in Σ are function-free Horn clauses, potentially including
existential quantification. They are known as Tuple-Generating De-
pendencies (TGDs) and are of the form∀x 𝝓 (x) → ∃z 𝝍 (y, z), where
𝝓 (x) (the body) and 𝝍 (y, z) (the head) are conjunctions of atoms
over a relational schema S. The semantics of TGDs is defined with
an algorithmic tool known as the chase procedure [41]. Intuitively
speaking, the chase expands 𝐷 with new facts by applying the
TGDs in Σ until a fixpoint is reached, introducing freshly generated
labelled nulls that act as placeholders for existential quantification.

Let us now analyze our stress test via an ontological reasoning
task. For example, we are interested in extracting the entities whose
default has been initiated by the default of at least two other entities.

In other terms, given 𝐷 and Σ, we want to answer the CQ 𝑄 :
q(𝑎) ← Dflt(𝑎, 𝑏, 𝑑1),Dflt(𝑎, 𝑐, 𝑑2), 𝑏 ≠ 𝑐 .
The chase of 𝐷 under Σ is illustrated in Figure 2, where the entailed
the facts Dflt(F ,A, 𝜈6) and Dflt(F,C, 𝜈9) witness that 𝑎 = 𝐹 is the
desired defaulting entity, as an answer to 𝑄 .

As a base question, we wonder: can the computational workload
to build the chase be split amongst two independent processors
𝑃1 and 𝑃2? If the relations Loan and Security are replicated in 𝑃1
and 𝑃2, then we could differentiate computation of facts for Dflt by
filtering the applications of 𝜎1, for instance, as follows.

Example 1.2. The next distribution plan computes the chase for

the involved financial entities: processor 𝑃1 handles the larger entities

(e.g., 𝐴 in Figure 2) and 𝑃2 the smaller ones (e.g., 𝐶).

FinEntity(𝑎, 𝑝), Large(𝑎), 𝑝 > 0.5→ ∃𝑑 Dflt(𝑎, 𝑎, 𝑑) (→ 𝑃1)
FinEntity(𝑎, 𝑝), Small(𝑎), 𝑝 > 0.5→ ∃𝑑 Dflt(𝑎, 𝑎, 𝑑) (→ 𝑃2)

It is immediate to observe that when the scale of our stress test
grows, and so does the cardinality of FinEntity, such a parallel
execution has an incremental performance gain over the serial
execution. Moreover, adopting a finer-grained distribution would
shorten execution times by achieving a uniform workload balance
among workers, for instance using a hashing criterion based on the
values of 𝑎 to distribute facts for FinEntity(𝑎, 𝑝).
Distribution Properties. A distribution plan is hinged on parti-

tioning properties, which play a crucial role in both the efficiency of
the plan itself and the correctness of the computation.

First, we need a form of non-redundancy in the computation. For
instance, the distribution plan in Example 1.2 shows that the two
processors 𝑃1 and 𝑃2 produce distinct facts, i.e., non-redundant for
answering 𝑄 . For the TGDs in Example 1.1, all facts involving a
specific entity are always produced by the same processor. Such
property holds for Σ independently of the underlying database
instance. For instance, the large entity A occurs only in the facts
generated by processor 𝑃1. Instead, the small financial entity C
occurs exclusively in the facts generated by processor 𝑃2.

Second, we wish for a form of completeness of the parallel compu-

tation. For example, no TGD in Σ should be triggered by conjunc-
tions of facts in different partitions. In our example, the facts can
be derived only by joining Dflt with Loan or Security, which are
replicated in all processors, or from FinEntity itself. This implies
that our distribution plan produces two “independent” subsets of
facts, in parallel. When merged, this set is equivalent to the set of
facts produced by a serial execution, thus upholding correctness.

Conversely, an improper partitioning of the data would result in
either an unbalanced workload or an unbalanced/incorrect result.
Challenges. Ensuring non-redundancy is challenging with existen-
tial quantification. Labelled nulls are unknown values generated at
runtime, which makes it hard to define partitioning strategies based
on constant values known beforehand. For instance, in Example
1.1, if we partition by the third term of Dflt, then Dflt(d,a,𝜈3) and
Dflt(d,a,𝜈7) will be redundantly produced by 𝑃1 and 𝑃2. Ensuring
termination is also challenging. In the presence of TGDs with recur-
sion and existential quantification, the chase can produce infinitely
many labelled nulls, such as in Example 1.1. Based on the specific
Datalog± language (e.g., Warded [28], Shy [39], and Guarded [15]),
several terminating variants of the chase have been proposed. They

4615

feature specific applicability conditions, which control when a chase
step, namely, the “firing” of a rule, can take place so as to avoid non-
termination. The applicability condition checks whether a fact will
be generated in the chase for example by preempting the creation
of homomorphic facts—i.e., there exists a constant-preserving map-
ping between the terms of the two facts exists. This task is affected
by distribution since homomorphic facts can be produced in differ-
ent processors. For instance, in Example 1.1, the fact Dflt(F ,A, 𝜈10)
is homomorphic to Dflt(F ,A, 𝜈6).

Existing Parallel Paradigms for Datalog. Numerous studies
delve into the parallel evaluation of simple Datalog rules [49, 58–60].
In this context, several parallel Datalog frameworks have emerged
(e.g., decomposability, load sharing, etc.), to guarantee different
forms of non-redundancy and completeness properties. However,
they are ineffective in the context of Datalog± due to the presence
of existential quantification in TGDs. In fact, these frameworks
are based on the Set Semantics, namely, they consider two facts
equivalent (and thus, one is superfluous/duplicated) if they refer
to the same predicate and share the same constants in the same
positions. As evident, the Set Semantics ignores the labelled nulls
within the facts and thus, violates the TGD applicability conditions
governing chase steps – a fact is generated even if it is homomorphic
to another one in𝐷 – hampering the chase termination. This cannot
work in general in the context of TGDs; the facts containing labelled
nulls in the chase are never equivalent, yet they are redundant
according to chase step applicability.

Homomorphically Decomposable TGDs. In this paper, we iden-
tify the new class of homomorphically decomposable TGDs. As a
key feature, homomorphically decomposable TGDs are such that
there always exists a partitioning criterion for 𝐷 such that two
processors never generate two homomorphic facts. This makes our
class particularly suitable for distributed reasoning. This is the case
of Example 1.2, where the applicable chase steps in each processor
only depend on chase steps applied by the same processor. In other
terms, all pairs of facts for Dflt generated in different processors are
not homomorphic. This guarantees the generation of independent
and non-overlapping chase instances while preserving the correct-
ness of the serial chase execution. Each instance can be generated
by a single processor from a subset of facts in 𝐷 and the processors
can perform local termination checks without any communications.

Building on this notion, the paper offers several contributions:

• The characterization of homomorphically decomposableTGDs.
• A sufficient condition for homomorphic decomposability as

well as a partitioning strategy of the input database.
• A concrete application of our techniques toWardedDatalog

± [28],
an expressive and tractable language of the Datalog± family.

• The implementation of such notions in Vadalog Parallel, a new
system for distributed ontological reasoning adopting the Vada-
log language, an extension of Warded Datalog± with features of
practical utility.

• A full-scale experimental evaluation of Vadalog Parallel in a
variety of real-world and synthetic scenarios.

Overview. The remainder of this paper is organized as follows. In
Section 2, we provide the background. In Section 3, we discuss the

related work. In Section 4, we introduce homomorphic decompos-
ability. In Section 5, we illustrate the architecture of Vadalog Parallel.
Section 6 covers experimental evaluation. Section 7 concludes the
paper. Further examples and proofs are in the Appendix [11].

2 BACKGROUND

Let us start by laying out the preliminary notions.
Relational Foundations and Homomorphisms. Let C, N, and V
be disjoint countably infinite sets of constants, (labelled) nulls and
variables, respectively. They are known also as terms. A (relational)

schema S is a finite set of predicates with associated arities. An
atom is an expression 𝑅(𝑣), where 𝑅 ∈ S is of arity 𝑛 ≥ 0 and 𝑣

is an 𝑛-tuple of terms. A database (instance) 𝐷 over S associates
to each relation symbol in S a relation of the respective arity over
the domain of constants and nulls. We denote as dom(𝐷) the set of
constants in 𝐷 . Relation members are called tuples or facts.

Given two atoms 𝑎1 and 𝑎2, we define a homomorphism from 𝑎1
to 𝑎2, a constant preserving mapping ℎ such that ℎ(𝑎1) = 𝑎2. If ℎ is
a bijection, 𝑎1 and 𝑎2 are isomorphic. This can be extended to sets
(or conjunctions) of atoms and facts.
CQs andDependencies.A conjunctive query (CQ)𝑄 over a schema
S is an implication 𝑞(x) ← 𝝓 (x, y), where 𝝓 (x, y) is a conjunction
of atoms over S, 𝑞(x) is an n-ary predicate that does not occur in
S, and x and y are vectors of terms. A Boolean conjunctive query

(BCQ) is a CQ of arity zero. A CQ or a BCQ 𝑄 is satisfied in 𝐷 if
there exists a homomorphism ℎ from the atoms in 𝝓 (x, y) to the
facts in 𝐷 , i.e., ℎ(𝝓 (x, y)) ⊆ 𝐷 . A set of Datalog± rules Σ is a set
of tuple-generating dependencies (TGDs). A TGD is a first-order
implication ∀x 𝝓 (x) → ∃z 𝝍 (y, z), where 𝝓 (x) (the body) and
𝝍 (y, z) (the head) are conjunctions of atoms over S and boldface
variables denote vectors of variables, with y ⊆ x. We write these
existential rules as 𝝓 (x) → ∃z 𝝍 (y, z), using commas to denote
conjunction of atoms in 𝝓 (x) and 𝝍 (y, z). We denote the set of body
and head variables of 𝜎 as body(𝜎) and head(𝜎) and as pred(Σ) the
set of all predicates in Σ.
The Chase. The chase [41] expands 𝐷 with facts inferred by ap-
plying a set of TGDs Σ to 𝐷 into a database chase(𝐷, Σ), possibly
containing labelled nulls. A chase execution builds the universal
model for 𝐷 and Σ, i.e., for every database 𝐵 that is a model for 𝐷
and Σ, there is a homomorphism mapping chase(𝐷, Σ) to 𝐵. Given a
database 𝐷 , a TGD 𝜎 : 𝝓 (x) → ∃z 𝝍 (y, z) is applicable to 𝐷 if there
exists a homomorphism 𝜃 such that 𝜃 (𝝓 (x)) ⊆ 𝐷 . Then, the TGD
chase step adds the fact 𝜃 ′ (𝝍 (y, z)) to𝐷 , if not already in or already
added to 𝐷 , where 𝜃 ′ ⊇ 𝜃 is a homomorphism that extends 𝜃 by
mapping the variables of z (if non-empty) to newly created labelled
nulls. The chase iteratively applies the TGDs chase steps until a
fixpoint is reached, which may lead to an infinite sequence of chase
step applications. The chase graph G(𝐷, Σ) is a directed graph hav-
ing nodes labelled after facts from chase(𝐷, Σ) and having an edge
from a node a to b if b derives from a by the application of a chase
step (e.g., Figure 2 for Example 1.1). The chase tree T (𝑓 , 𝐷, Σ) of a
fact 𝑓 is the subgraph of G containing all the nodes and edges from
which 𝑓 can be reached, excluding 𝑓 itself and its incoming edges.
Warded Datalog

±
and Vadalog.We define as 𝑝 [𝑖] be the term

in the 𝑖-th position of a predicate 𝑝 and refer to it as position and as
exist(𝜎) the set of existentially quantified variables of 𝜎 . A position

4616

𝑝 [𝑖] is affected if: (i) the variable 𝑣 ∈ exist(𝜎) and 𝑣 appears in
position 𝑝 [𝑖]; (ii) the variable 𝑣 ∈ body(𝜎) ∩ head(𝜎), 𝑣 appears
only in affected positions in body(𝜎) (i.e., it is harmful) and in
position 𝑝 [𝑖] in head(𝜎) (i.e., it is dangerous). A TGD 𝜎 ∈ Σ is
warded if all the dangerous variables 𝑣 ∈ body(𝜎) appear in a single
body atom, theward, which shares only non-harmful variables with
other body atoms. A set of TGDs Σ is Warded if all the TGDs in Σ
are warded. After normalization steps [9], query answering on 𝐷

under Σ can be performed over a finite variant of the chase that
produces the same facts as the infinite chase [13].

Vadalog extends Warded Datalog± with features of practical
utility [13]. For the experiments dealt with in this paper, we are
interested in monotonic aggregations [51]. Rules including aggrega-
tions have the following form (and for simplicity, we only consider
a single aggregate, but the presence of several ones could be eas-
ily accommodated): 𝝓 (x), 𝑣 = aggr(𝑞) → ∃z 𝝍 (y, z, 𝑣). Intuitively,
aggregations operate as stateful record-level operators that keep
an updated version and return the current aggregate at each invo-
cation. The value of the variable 𝑣 is computed by incrementally
aggregating the values of 𝑞 over the distinct groups identified by
the values of x. Note that 𝑞 is an algebraic expression with variables
from x and constants as arguments.

3 RELATEDWORK

To the best of our knowledge, our research is the first to investi-
gate parallel algorithms for ontological reasoning with Datalog±.
The previous literature only focused on the parallel evaluation of
pure Datalog [2, 26, 37, 58–60, 63], i.e., without existential quan-
tification. Some initial work studied highly parallelizable Datalog
fragments, NC in data-complexity [21, 36]. The notion of decom-
posability was initially introduced and defined for Datalog sirups,
programs with a single intensional predicate [60]. A study show-
cased the undecidability of determining whether a Datalog program
is decomposable [59] and proposed a general approach for paral-
lel Datalog evaluation based on the idea of data reduction, which
involves creating copies of rules to enable parallel evaluation by
multiple processors. A related concept, the load sharing scheme [58],
offers a relaxed version of decomposability and is applicable to
a broader range of Datalog programs. Under this scheme, even
non-decomposable Datalog programs can be evaluated in parallel
without requiring inter-processor communication. Another study
defined a sufficient syntactic condition to find decomposable Data-
log programs based on the notion of generalized pivoting [49]. In
addition to decomposability, in the literature, several parallel frame-
works have been defined for Datalog, which allow for different
forms of inter-processor communication, via either shared-nothing
or shared-memory paradigms [26, 59]. A recent theoretical frame-
work [37] for Datalog implicitly defines the evaluation strategy in
terms of the policies adopted by the processors to consume facts
or produce new ones. The related parallel Datalog systems are
analyzed in detail in Section 6.

4 VADALOG PARALLEL

In this section, we provide the theoretical foundations and algo-
rithms that underpin our approach to distributed reasoning.

Technique Overview. Given a set of TGDs Σ, a BCQ 𝑄 , and a
database 𝐷 , our approach operates as follows: initially, we extract
𝑘 “disjoint” sets of TGDs Σ0, · · · , Σ𝑘−1 from Σ; namely, each TGD
set contains the same number of rules and structure as Σ, and
constructs the chase starting from a partition of facts in 𝐷 . These
sets exhibit the following favorable distribution properties.
(1) The value of 𝑘 can be arbitrarily chosen independently of 𝐷 .
(2) The chase constructed by each Σ𝑖 from 𝐷 only contains facts

that cannot be derived by the chase of any other Σ 𝑗 , with 𝑖 ≠ 𝑗

(non-redundancy).
(3) No fact derivation is missing compared to the standard chase

execution of Σ over 𝐷 , i.e.., the union of all chase instances
coincides with the standard chase (completeness).

We then construct the chase of each Σ𝑖 in parallel from 𝐷 and com-
bine the results to answer 𝑄 . We demonstrate that this technique
yields identical results to directly evaluating 𝑄 and Σ over 𝐷 .

4.1 Restricted Sets of TGDs

We name as evaluable atom a comparison condition with standard
built-in comparison operators (e.g., =,≠, <, >, ≤, ≥), including usual
algebraic expressions defined over the body variables of a TGD in
the left- and right-hand side. Typically, a real number is used in the
right-hand side. For instance, 𝑝 > 0.5, lgd ≥ 0.5 and 𝑠 ≥ 0.3 in Ex-
ample 1.1 are evaluable atoms. We name restricted TGD a TGD that
contains an evaluable atom in the body. Given a TGD 𝜎 , the TGD
obtained by adding an evaluable atom to it is a restricted copy of 𝜎 .
Thanks to evaluable atoms, we can limit the applicability of TGDs.
Given a database 𝐷 , a restricted TGD 𝜎 : 𝝓 (x), 𝝃 (w) → ∃z 𝝍 (y, z),
where 𝝃 (w) (withw ⊆ x) is the evaluable atom defined over a set of
symbols T (with S∩T = ∅), is applicable to 𝐷 if there exists a homo-
morphism 𝜃 from body(𝜎) to𝐷 such that 𝜃 (𝝓 (x)) ⊆ 𝐷 and 𝜃 (𝝃 (w))
is satisfied. In practice, given𝑘 processors, to define evaluable atoms,
we will simply use hash functions Π(w) = hash(w) 𝑚𝑜𝑑 𝑘 . Then,
for a TGD 𝜎 and a set of processors 𝑘 , the restricted copies of 𝜎 can
be defined straightforwardly as in the following example.

FinEntity(𝑎, 𝑝),Π(𝑎) = 0→ ∃𝑑 Dflt(𝑎, 𝑎, 𝑑) (𝜎0)
. . .

FinEntity(𝑎, 𝑝),Π(𝑎) = 𝑘 − 1→ ∃𝑑 Dflt(𝑎, 𝑎, 𝑑) (𝜎𝑘−1)

We can compactly represent a set of restricted TGDs whose evalu-
able atoms have the same left-hand side and real numbers corre-
sponding to processors 𝑖 in the right-hand side (with 0 ≤ 𝑖 < 𝑘) as a
single parametric restricted TGD, by adding a conjunct Partition(w),
defined as follows in a piecewise fashion, and depending on the
executing processor 𝑖 .

Partition(w) =

true if Π(w) = 𝑖, with 𝑖 < 𝑘 .
false otherwise.

(1)

In our example, we would have FinEntity(𝑎, 𝑝), Partition(𝑎). The
set Σ𝑖 obtained by replacing in Σ all the restricted TGDs with their
restricted copy for processor 𝑖 is named restricted set.

4.2 Homomorphically Decomposable TGDs

In general, a restricted set such that the induced chase instances
are non-redundant and complete does not always exist.

4617

Figure 3: Homomorphically Decomposable TGDs.

Example 4.1. Two banks (Bank) in the same country (SameCoun-

try) are supervised by the same National Central Bank (NCB).

𝐷={Bank(A), Bank(B), SameCountry(A,C), SameCountry(B,C)}

Bank(𝑥), Partition(𝑥) → ∃𝑐𝑏 NCB(𝑐𝑏, 𝑥) (𝜎1)
NCB(𝑐𝑏, 𝑥), SameCountry(𝑥,𝑦) → NCB(𝑐𝑏,𝑦) (𝜎2)

By letting 𝑘 = 2, we have that processor 𝑖 = 0 generates the first chase

instance with the facts NCB(A, 𝜈1) by applying 𝜎0
1 and NCB(C, 𝜈2)

by 𝜎2; and processor 𝑖 = 1 creates the second chase instance containing
the facts NCB(B, 𝜈3) by applying 𝜎1

1 and NCB(C, 𝜈4) by 𝜎2.

In this case, the distribution induced by Partition(𝑥) is redundant, in
fact, it is sufficient that two different banks (Bank(A) and Bank(B))
share the country with the same bank (Bank(C)) to generate homo-
morphically equivalent facts in different processors (e.g.,NCB(C, 𝜈2)
and NCB(C, 𝜈4) with 𝜈3 → 𝜈4 and vice-versa).

Intuitively, we say that a set of TGDs Σ is homomorphically

decomposable if there exist 𝑘 > 1 restricted sets of Σ that give rise
to 𝑛 chase instances that are non-overlapping and complete.

Definition 4.2 (Homomorphically Decomposable TGDs). A set of

TGDs Σ is homomorphically decomposable if there exist 𝑘 > 1 re-

stricted sets of TGDs Σ0, . . . , Σ𝑘−1 of Σ such that all the following

conditions are satisfied.

• Non-triviality. There exists at least a database 𝐷 such that for

each 𝑖 ∈ {0, . . . , 𝑘 − 1}, we have chase(𝐷, Σ𝑖) ≠ ∅.
• Non-mappability (i.e., non-redundancy). For every database 𝐷

and for every pair 𝑖, 𝑗 ∈ {0, . . . , 𝑘 − 1} with 𝑖 ≠ 𝑗 , there does not

exist a homomorphism 𝜃 mapping a fact 𝑓1 ∈ chase(𝐷, Σ𝑖) to
𝑓2 ∈ chase(𝐷, Σ 𝑗), i.e., 𝜃 (𝑓1) = 𝑓2 with 𝑓1 ∉ 𝐷 and 𝑓2 ∉ 𝐷 .

• Homomorphic Equivalence (i.e., completeness). For every data-

base𝐷 and for all 𝑖 ∈ {0, . . . , 𝑘−1}, chase(𝐷, Σ) and𝑛
𝑖=1 chase(D,

Σ𝑖) are homomorphically equivalent.

The TGDs of Example 4.1 are not homomorphically decomposable:
the non-mappability condition does not hold as NCB(C, 𝜈3) maps
to NCB(C, 𝜈4). The TGDs of Example 1.1 are homomorphically de-
composable, shown by the independent chase instances in Figure 2.

Partitioning the Chase.We now study important chase partition-
ing properties that directly descend from the notion of homomor-
phic decomposability. Given𝐷 , Σ and a finite set of 𝑘 processors 𝑃 , a
chase partitioning is a total surjective function Ω : chase(𝐷, Σ) → 𝑃

that maps each 𝑓 ∈ chase(𝐷, Σ) to a processor of 𝑃 .
We argue that for a set of homomorphically decomposable TGDs

Σ, it is always possible to define an eligible chase partitioning, that
is, a partitioning such that each fact 𝑓 and all its chase predecessors,
except for those in 𝐷 , are assigned to the same processor. It is the
case of Figure 2, where the chase tree of Dflt(F ,C, 𝜈9) contains
nodes for the facts Dflt(H ,C, 𝜈8), Dflt(I ,C, 𝜈5), and Dflt(C,C, 𝜈2).

Definition 4.3 (Eligible Chase Partitioning). Consider a database
𝐷 , a set of TGDs Σ and a set of processors 𝑃 = {0, . . . , 𝑘 − 1}
with 𝑘 ≥ 2. An eligible partitioning is a chase partitioning Ω such
that if Ω(𝑓) = 𝑖 with 𝑓 ∈ chase(𝐷, Σ) and 𝑖 ∈ 𝑃 , then, for each
𝑓𝑖 ∈ T (𝑓 , 𝐷, Σ)/𝐷 we have that Ω(𝑓𝑖) = 𝑖 .

We capture this property in the following theorem that descends
from the definition of homomorphically decomposable TGDs.

Theorem 4.4. Consider a set of TGDs Σ, a non-empty 𝐷 and set

of processors 𝑃 = {0, . . . , 𝑘 − 1} with 𝑘 ≥ 2, if Σ is homomorphically

decomposable then there exists at least an eligible partitioning Ω of

chase(𝐷, Σ) into 𝑃 .

Note that the existence of an eligible partitioning is a necessary
but not sufficient condition for homomorphic decomposability. For
instance, in Example 4.1, although there is an eligible chase par-
titioning for Σ, facts belonging to different chase instances are
homomorphically mappable, thus not satisfying Definition 4.2.

4.3 Characterization of Homomorphically

Decomposable TGDs

While the problem of determining if a set of TGDs Σ is homomor-
phically decomposable turns out to be undecidable, we introduce a
sufficient syntactic condition, which moves from the observation
that not all the sets of homomorphically decomposable TGDs are
suitable for a distributed evaluation. In fact, in some cases, the par-
titions induced by the restricted sets Σ𝑖 are unbalanced and some
processors take most of the workload. In other cases, the partitions
are fixed and processors cannot be scaled up.

Example 4.5. Consider the following set Σ of homomorphically

decomposable TGDs, modeling the interactions between methods of

different classes (Calls) in a Java project.

Call(𝑥,𝑦),Call(𝑦, 𝑥) → ∃𝑑 Dependency(𝑑, 𝑥,𝑦) (𝜎1)
Dependency(𝑑, 𝑥, 𝑥) → ∃𝑟 SimpleRecursion(𝑥, 𝑑, 𝑟) (𝜎2)

Two methods of different classes 𝑥 and 𝑦 have a cyclic dependency

(Dependency) if they invoke (Call) each other (𝜎1). We detect simple

recursions (𝑟), i.e., a method invokes itself via self-dependencies (𝜎2).

We can construct two restricted sets by adding the evaluable atoms
𝑥 = 𝑦 and 𝑥 ≠ 𝑦 to the body of 𝜎1. In this case, the number of
partitions is fixed and cannot be scaled up when the volume of 𝐷
grows. The facts derived by 𝜎2 are generated only by the restricted
set containing 𝑥 = 𝑦 in the body of 𝜎1, while the remaining facts 𝐷 ,
having 𝑥 ≠ 𝑦 will never trigger 𝜎2.

4618

Balancing theWorkload.We can define a subset of homomorphi-
cally decomposable TGDs whose evaluation can be always scaled
up with an increasing size of 𝐷 (and dom(𝐷)). For such TGD sets,
we can identify an arbitrary number of restricted sets—depending
on the number of processors available—that induce an eligible par-
titioning of the chase with 𝑘 , evenly distributed, chase instances.

Example 4.6. Consider a network modeling academic collaboration

among researchers (Res), connected by collaborative relationships (CR).

We aim to identify influential researchers who exert influence over

collaborations between institutions.

Res(𝑥),CR(𝑥,𝑦), Partition(𝑥,𝑦) → ∃𝑘𝑟 Influence(𝑘𝑟, 𝑥, 𝑥,𝑦) (𝜎1)
Influence(𝑘𝑟, 𝑥,𝑦, 𝑧),CR(𝑧,𝑦) → Influence(𝑘𝑟, 𝑥, 𝑧,𝑦) (𝜎2)

If researcher 𝑥 (Res) has a collaborative relationship with researcher

𝑦, then 𝑦 is influenced (Influence) by a key researcher 𝑘𝑟 via 𝑥 (𝜎1). If
researcher 𝑧 is influenced by the key researcher 𝑘𝑟 of 𝑥 via a collabo-

rative relationship with 𝑦, and 𝑧 has a collaborative relationship with

researcher 𝑦, then also 𝑦 is influenced by 𝑘𝑟 via 𝑧 (𝜎2).

From the partitioning in Example 4.6, we observe that the 𝑘 re-
stricted sets of Σ defined by Partition give rise to 𝑘 chase instances,
each handling exactly a fixed set of constants determined by the
initial partitioning of CR(𝑥,𝑦) in 𝐷 . Actually, constants never prop-
agate across instances. The number of 𝑘 processors can be scaled
up with the growing size of dom(𝐷), balancing the workload.
Eligible Propagation: a Sufficient Condition.We observe that
the favourable partitioning conditions of Example 4.6, are always
satisfied whenever there is a set of variables that never bind to
labelled nulls, namely, are harmless and propagate from the body to
the head of all TGDs of Σ via the same set of non-affected positions.
This condition implies that all the facts generated by the chase
sequences induced by the 𝑘 restricted TGDs copies differ for at
least a constant, and no homomorphism can be found between the
facts generated by different sequences. The harmlessness property
of the propagated variable is crucial as the presence of a labelled null
bound to the propagated variable may invalidate non-mappability.

In Example 4.6, in the TGD 𝜎1, the variable 𝑥 is propagated from
Researcher[0] and CR[0] to Influence[1] and Influence[2], while 𝑦
is propagated from CR[1] to Influence[3]. On the contrary, in 𝜎2 the
variable 𝑥 is propagated from Influence[1] to Influence[1], 𝑦 from
Influence[2] to Influence[3] and 𝑧 vice-versa.

To formalize our sufficient condition, we define an eligible prop-

agation position for a harmless variable 𝑣 ∈ body(𝜎) ∩ head(𝜎), as
a non-affected position where 𝑣 appears in a predicate of 𝜎 .

Theorem 4.7 (Eligible Propagation). Given a set of TGDs Σ
over a schema S, we have that Σ is homomorphically decomposable if

for each predicate 𝜌 of Σ, there exists at least one eligible propagation
position 𝜌 [𝑖] shared by all the occurrences of 𝜌-atoms in every 𝜎 ∈ Σ.

The homomorphically decomposable TGDs in Example 1.1 satisfy
Theorem 4.7 with the shared eligible propagation position Dflt[0]
as well as the TGDs in Example 4.6, with positions Influence[1],
Influence[2], and Influence[3]. On the contrary, there is no shared
eligible propagation position for the TGDs in Example 4.5.

Algorithm 1 summarizes a technique that uses Theorem 4.7 to
decide whether a set of TGDs Σ is homomorphically decomposable.

We use two different dictionary structures: (i) 𝑃𝑜𝑠 maps a TGD
𝜎 ∈ Σ and an atom 𝛼 in 𝜎 to a set of positions (line 2); (ii) Θ
maps the predicates in 𝑝𝑟𝑒𝑑 (Σ)/S to the set of eligible propagation
positions in Σ (line 10). The algorithm exploits also three predefined
functions: (i) harmful(𝜎, Σ) to derive the harmful variables in 𝜎

(line 7); (ii) position(𝑥, 𝛼) and (iii) vars(𝑥) to extract the positions
of a variable 𝑥 in an atom 𝛼 and the set of variables appearing in 𝛼 ,
respectively (line 8,9 and 7).

Algorithm 1 Algorithm for Homomorphic Decomposability.

1: function EligiblePropagation(Σ)
2: Pos = ∅ ⊲ dictionary of TGDs and atoms
3: for all 𝜎 ∈ Σ do

4: 𝜙 is the head atom of 𝜎
5: for all atoms 𝛼 in the body of 𝜎 do

6: for all 𝑥 ∈ vars(𝛼) do ⊲ x is harmless and propagated
7: if 𝑥 ∉ harmful(𝜎 , Σ) ∧ 𝑥 ∈ vars(𝜙) then
8: Pos[(𝜎 , 𝛼)] = positions(𝑥 , 𝛼) ⊲ x positions in 𝛼
9: Pos[(𝜎 , 𝜙] = positions(𝑥 , 𝜙) ⊲ x positions in 𝜙
10: Θ = ∅ ⊲ dictionary of predicates and positions
11: for all 𝜎 ∈ Σ do

12: for all 𝜌 ∈ pred (Σ) in 𝜎 do

13: for all atoms 𝛼 in 𝜎 s.t. the predicate of 𝛼 is 𝜌 do

14: if 𝜌 ∉ Θ.keys then ⊲ if predicate 𝜌 not yet found
15: Θ[𝜌] = Pos[(𝜎 , 𝛼)]
16: else

17: Θ[𝜌] = Θ[𝜌] ∩ Pos[(𝜎 , 𝛼)] ⊲ shared positions
18: if ∃𝜌 s.t. 𝜌 ∈ pred (Σ)/S and Θ[𝜌] is empty then

19: return false

20: return true

After iterating over the TGDs Σ to obtain all the eligible propa-
gation positions of each atom in the body or in the head (line 3-10),
the algorithm checks if, for each predicate 𝜌 ∈ 𝑝𝑟𝑒𝑑 (Σ)/𝑆 in 𝜎

(i.e., intensional predicate), there exists at least one shared position
between all the atoms referring to 𝜌 (line 10-20). If there exists
an atom 𝛼 in the body of 𝜎 that does not propagate any harmless
variable, 𝑃𝑜𝑠[(𝜎 , 𝛼)] is empty. The algorithm complexity is PTIME,
by varying |Σ| and the arities of the predicates in pred(Σ).
Partitioning the Database. Our sufficient condition suggests a
partitioning strategy for 𝐷 . Given a set of TGDs Σ over a schema S,
we define as body-ground TGDs the TGDs in Σ′ ⊆ Σ whose body is
composed only of atoms referring to predicates in 𝑆 (i.e., extensional
atoms). Note that (i) for each set of TGDs Σ, there exists at least
one body-ground TGD, and (ii) not having dependencies on other
rules, body-ground TGDs are evaluated first in the chase.

From the syntactical structure of Σ′ we can define the parti-
tioning of 𝐷 across the processors as follows: we consider the
extensional atoms in each 𝜎 ∈ Σ′; we construct an evaluable atom
Partition(x) on the set of variables x appearing in shared eligi-
ble propagation positions in head(𝜎′), i.e., the positions satisfying
Theorem 4.7 for Σ. This implies that the positions 𝑝 [𝑖] of every
extensional predicate 𝜌 in the body of 𝜎′ where the variables in x
appear can be used as a partitioning criterion to initially distribute
the facts of 𝐷 across all the processors. For instance, in the body-
ground TGD 𝜎1 of Example 4.6, variables 𝑥 and 𝑦 in the eligible
propagation positions Influence[1], Influence[2] and Influence[3]
appear also in Researcher[0], CR[0] and CR[1]. The vector of con-
stants in these positions (i.e., partitioning positions) can be used to
define a distribution key of the facts in 𝐷 .

4619

4.4 Homomorphic Decomposability and

Warded TGDs

Homomorphic decomposability sustains efficient distribution tech-
niques and therefore scalability. Nevertheless, for an arbitrary set of
TGDs, homomorphic decomposability does not imply decidability
or tractability of the query answering task. We adopt a practical
approach and concentrate on a specific TGD fragment, namely
Warded Datalog±, a language exhibiting tractable query answering
and very high expressive power, being then suitable for a variety of
applications. In this section, we explore the case of Warded TGDs
that are also homomorphically decomposable, which, in our experi-
ence, covers many practical scenarios. However, in Section 4.5, we
discuss a fallback technique we apply for a distributed evaluation
of Warded TGDs that are not homomorphically decomposable.

We have seen in Section 2 that with Warded TGDs, query an-
swering on 𝐷 under Σ can be equivalently performed over a finite
chase. We name such variant chase𝑤 (Algorithm 2). Operationally,
an instance of chase𝑤 is initialized with 𝐷 and augmented with
new facts obtained by activating TGDs of Σ only if such facts are
not isomorphic to others already in chase

𝑤 .

Algorithm 2 Isomorphic Chase for Warded TGDs.
1: function chase𝑊 (𝐷, Σ)
2: 𝐼 = 𝐷

3: for all 𝜎 ∈ Σ and x ∈ 𝐼 to which 𝜎 applies do ⊲ for all TGDs
4: if check_isomorphism(𝐼 , 𝜎 (x)) then

5: 𝐼 = 𝐼 ∪ {𝜎 (x) } ⊲ new fact found
6: return 𝐼

In our distributed framework we consider sets of Warded TGDs
for which the homomorphic decomposability property holds. Our
results directly apply: within each processor, we execute chase𝑤
and thus do not generate isomorphic facts, ensuring a form of local
termination. Thanks to homomorphic decomposability, no pairs
of facts in different partitions are homomorphic and thus they are
not isomorphic, guaranteeing the correctness of query answering
thanks to the properties of Warded TGDs.

Algorithm 3 provides the full procedure (Parallel-Evaluate)
to perform ontological reasoning with a set of Warded TGDs Σ
enjoying homomorphic decomposability. It adopts the dictionary
structure computed in Algorithm 1, mapping predicates to their
corresponding partitioning positions. An empty database 𝐷𝑖 is ini-
tialized in each processor (line 5). The facts referring to extensional
predicates 𝜌 (𝐷) appearing in non-body ground TGDs are repli-
cated for every 𝐷𝑖 in 𝑃 with the function Replicate (line 6-7). The
function DistributedByKey assigns the facts referring to exten-
sional predicates in body-ground TGDs based on the values in the
positions in Θ(𝜌) (line 8-9). Each processor executes Algorithm 2
for Σ (i.e., chase𝑤) starting from its assigned 𝐷𝑖 and performing
local isomorphic checks. The instances 𝐼𝑖 are then merged into a
single one to answer 𝑄 (lines 10-11).

Theorem 4.8 (Correctness). Consider a set of Warded TGDs

Σ, a database 𝐷 and set of processors 𝑃 = {0, . . . , 𝑘 − 1}, if Σ is

homomorphically decomposable, then, for every BCQ 𝑄 , it holds that

Parallel-Evaluate(𝐷, Σ, 𝑄)=true iff chase(𝐷, Σ) |= 𝑄

Algorithm 3 Distributed evaluation of H.D. Warded TGDs.

1: function Parallel-Evaluate(𝐷, Σ,𝑄)
2: Let Σ′ be the body-ground TGDs of Σ
3: Let 𝑃 = {0, . . . , 𝑘 − 1} be the set of processors
4: for all 𝑖 ∈ 𝑃 run in parallel do

5: 𝐷𝑖 = ∅
6: for all 𝜌 ∈ S appearing in Σ/Σ′ bodies do
7: 𝐷𝑖 = 𝐷𝑖 ∪ Replicate(𝜌 (𝐷), 𝑖)
8: for all 𝜌 ∈ S appearing in Σ′ bodies do
9: 𝐷𝑖 = 𝐷𝑖 ∪ DistributeByKey(𝜌 (𝐷),Θ(𝜌), 𝑖)
10: 𝐼 = 𝐼 ∪ chase𝑊 (𝐷𝑖 , Σ)
11: return𝑄 (𝐼) ⊲ If𝑄 is satisfied in 𝐼

4.5 Non-homomorphically Decomposable

Warded TGDs

While homomorphic decomposability offers an intuitive and ef-
ficient partitioning strategy, as we shall see also in experimental
settings, to guarantee the broadest applicability, we complement
our approach with a technique to support the distributed evaluation
of any Warded set of TGDs, that is, also when homomorphic de-
composability does not apply. To this end, we introduce Distributed
Warded Seminaive Evaluation (DW-SNE), a Map-Reduce evaluation
strategy conceived as a variant of seminaive evaluation (SNE) [1],
that supports chase𝑤 and is tailored for distributed settings.

Our distributed variant prevents the generation of isomorphic
facts by considering, at each iteration, only the set of facts that
are not isomorphic to facts already produced by any processor in
previous iterations. When no processor produces new facts, the
algorithm terminates by producing chase

𝑤 (𝐷, Σ) as the union of
the facts generated by each processor.

The DW-SNE splits the construction of chase𝑤 (𝐷, Σ) into a
pipeline of Map-Reduce steps which takes 𝐷 in input. At the begin-
ning of every step, facts are moved to the same processor according
to the partitioning criteria foreseen by the mentioned operation.
When Σ is recursive, a subset of the steps of the pipeline is repeated
considering the delta facts until no new isomorphic facts are gen-
erated. To perform the labelled null creation, deduplication and
difference in a parallel fashion, each fact stored in a distributed
dataset, contains two additional meta-fields: (1) A reasoning key

representing the fact-identity. Isomorphic facts have equivalent
keys to perform deduplication and different operations in the DW-
SNE. The keys are used to move facts into the same processor and
can be created on the fly by renaming the labelled nulls contained
in the fact. (2) The provenance encoding a fact rooted chase tree.
The provenance value is unique in the chase and can be used to
efficiently generate fresh symbols on the fly to support existential
quantification without coordinating with other processors.

5 SYSTEM ARCHITECTURE

We introduce the novel system Vadalog Parallel, implementing
homomorphic decomposability and DW-SNE. For the specification
of TGDs, the system adopts the Vadalog language [13].

Architecture Description.Given a CQ𝑄 :𝑞(x) ← 𝝓 (x, y), a set of
TGDs Σ and a database 𝐷 , the process of evaluating𝑄 over 𝐷 under
Σ is composed of 4 phases, each managed by a dedicated functional
module (represented in Figure 4). In terms of distribution, phases

4620

Figure 4: Architecture of the Vadalog Parallel System.

(1)-(3) are database-independent and executed by the cluster master
node. The execution phase (4) is performed by all the processors.
(1) The compiler performs the syntactic checks on𝑄 and Σ to verify

if they are compliant with the Vadalog grammar.
(2) The logic optimizer performs normalization steps (e.g., splitting

n-ary joins into sequences of binary joins) and checks that Σ is
Warded and homomorphically decomposable, by Algorithm 1.

(3) The planner creates the execution plan for Σ and 𝑄 : Replicated
Streaming Pipeline, if Σ is homomorphically decomposable, DW-
SNE otherwise. Both are explained next in this section.

(4) The execution engine evaluates 𝑄 based on the execution plan
built by the previous module and writes the output facts satisfy-
ing 𝑄 into external sources (e.g., HDFS).

Replicated Streaming Pipeline (RSP). This distributed evalu-
ation model applies when Σ is homomorphically decomposable
and is based on Algorithm 3. To encode its chase instance, each
processor builds and executes an independent execution streaming

pipeline from the dependency graph of the predicates of Σ. In each
pipeline, the atoms correspond to filters, connected by pipes that
denote the input-output transformations applied by the TGDs. Data
flow from source filters, the extensional atoms, to the target, the
atoms in the query body 𝝓, while undergoing the transformations
performed by the TGDs (e.g., selections, projections, joins, value
inventions). The termination checks are performed via local hash
tables implementing a form of isomorphism check for the generated
facts. This strategy allows for activating only the chase steps re-
quired to answer 𝑄 from a single restricted copy of Σ. The labelled
null generation process is performed by adopting different fresh
symbols in each processor exploiting the constants occupying the
partitioning positions concatenated with a processor-local incre-
mental index (Section 4.4). For the extensional predicates in the
body of non-exit (join) TGDs, replicated in each processor, we build
a hash index on the corresponding join keys. When all the proces-
sors reach a fixpoint, the output facts are collected by the master
processor to compute the final answer to 𝑄 .
DW-SNE. This model applies when Σ is not homomorphically de-
composable. Our DW-SNE implementation follows the template

method pattern [38]: we create abstract interfaces offering SQL-like
operations to manipulate distributed data structures (i.e., Spark
Dataset) [47], where each record is associated with a fact plus its

metadata (e.g., reasoning key and provenance). The main algorithm
consists of a possibly iterative sequence of such operations com-
posed via interface procedures. Under the hood, the operations of-
fered by the interfaces exploit Spark Dataset, i.e., a shared-memory
abstraction implementing in-memory Map-Reduce data transfor-
mations. Several recursion-aware optimizations are incorporated
to limit redundant computations, minimize the memory footprint,
and reduce the exchange of data across processors. The execution
exploits both the logical and physical optimization performed by
Catalyst, a state-of-art optimizer embedded in Spark. The memory
footprint benefits from the serialization and encoding mechanism
of Spark’s data structures. We enabled an efficient auto-clearing
caching mechanism to break and store intermediate results.

6 EXPERIMENTS

We validate homomorphic decomposability and the architecture of
our system by showing that it exhibits high scalability and outper-
forms the existing parallel Datalog-based systems in both synthetic
and real-world scenarios. Our experiments leverage a variety of
ontologies and datasets, both synthetic and real-world, to compre-
hensively evaluate various dimensions of the system performance.

Benchmarks and Hardware Setup. In Section 6.1, we evaluate
the impact of specific properties of wardedness on the performance
of our executionmodels RSP and DW-SNE (Section 5). In Section 6.2,
we compare our system with other distributed or parallel Datalog-
based systems on various graph traversal problems. In Section 6.3,
we compare with other TGD-based systems. In Section 6.4, we stress
the scalability of our system and show that by resource scale-up, it
outperforms ad-hoc implementations in data-intensive problems.

For shared-memory systems and implementations, we used a
c5d.metal AWS instance with Ubuntu v20, having 96 cores, 192GB
RAM, and 900GB SSD NVMe. For shared-nothing systems and im-
plementations, we used an AWS cluster with six nodes. Each node
is a c5d.4xlarge instance with Ubuntu v20 with 16 cores, 32GB RAM,
and 400GB SSD NVMe. For comparative experiments, we ensured
equivalence in resources of the two configurations.

6.1 iWarded: Synthetic Scenarios

We examine the performance impact of wardedness and the input
database 𝐷 with homomorphic decomposability. Our experiments
show that, in the average case when the constants in dom(𝐷) are
evenly distributed among the facts in 𝐷 , the speed-up of an evalua-
tion model based on non-communicating processors (i.e., RSP) is
considerable. Instead, when a set of constants is highly concentrated
in the partitioning positions of body atoms in body-ground TGDs,
an evaluation strategy based on inter-processors communication
(i.e., DW-SNE) is preferable to mitigate computational bottlenecks.
To generate the testing scenarios, we used iWarded [7], a generator
of Warded benchmarks.

Scenarios and Datasets.We created 8 scenarios, each composed
of a database and 20 TGDs, with different parameters for linear/join
TGDs, recursive TGDs, existentials, and eligible propagation posi-
tions (parameters in Figure 5). The input databases contain 100k
facts each, constructed with different selectivity values (Sel) for
the partitioning positions of the body atoms of body-ground TGDs

4621

(Pos). This measure highly affects the load balance factor of the par-
titioning and greater selectivity implies more balanced partitions.
We also considered 10 CQs generated with iWarded (Figure 5).

Scen. L/⊲⊳ TGDs L/⊲⊳ rec rec len ∃ TGDs Pos Sel

SynthA 10/10 3/3 3 10 1 0.90
SynthB 10/10 3/3 3 10 1 0.01
SynthC 10/10 3/3 3 10 1 0.3
SynthD 0/20 0/10 2 0 5 0.95
SynthE 0/20 0/10 2 10 5 0.95
SynthF 20/0 10/0 5 10 3 0.85
SynthG 10/10 5/5 2 10 10 0.99
SynthH 10/10 5/5 10 10 10 0.99

Figure 5: iWarded parameters of the synthetic scenarios.

Results. In Figure 6, we report the execution times for each sce-
nario, considering RSP and DW-SNE. For SynthA, SynthB, and
SynthC, the impact of selectivity on RSP performance becomes
evident: RSP exhibits significant slowdowns with low selectivity
values, where the facts repeatedly have the same constant, which
unbalances the workload. In contrast, the uniform execution times
for DW-SNE in SynthA, SynthB, and SynthC show that selectivity
does not influence its performance. This depends on the absence of
pre-defined partitioning in the input instance. For the remaining
scenarios, we observe a consistent trend for both RSP and DW-SNE.
In particular, RSP consistently outperforms DW-SNE, being from
2x to 10x faster. We observe the shortest times with both RSP and
DW-SNE in SynthF, which has linear TGDs, hence highlighting the
impact of join operations. Remarkably, despite having a selectivity
of 0.85, RSP surpasses the speed of scenarios with higher selectivity,
primarily due to the absence of join TGDs. This trend is further
supported by the performance of SynthD and SynthE, which feature
join TGDs and no linear rules and are the slowest scenarios after
SynthF. The suboptimal performance of both execution models on
SynthF can be attributed to the recursive length value, where all
the recursive TGDs are entwined in the same dependency cycle.
SynthG has the same parameters as SynthF, except for a recursive
length of 2, which has a notable impact on the execution dynamics
and makes Vadalog Parallel on SynthG much faster.

6.2 Comparison with Parallel Datalog Systems

The majority of the existing parallel Datalog-based systems in the
literature support pure Datalog enriched with standard and mono-
tonic aggregations, but none of them supports ontological query

Figure 6: Experiment results for iWarded Scenarios.

answering tasks under Datalog±. Thus, to compare our system with
other existing parallel tools, we only focus on pure Datalog and
monotonic aggregation scenarios.
Systems Tested. We selected both shared-nothing systems such as
BigDatalog [50] andMyria [32], and shared-memory ones, such as
Soufflè [48] and RecStep [25]. We excluded from the comparison
Cog [34], DCDatalog [61], DeALS-MC [62], and LogicBlox [29]
due to unavailability for direct benchmarking.

BigDatalog is a distributed system based on the parallel SNE. It
uses ad-hoc implementations of Spark distributed datasets, and new
operators designed and optimized for recursive Datalog queries
(also known as SetRDD). Myria is another shared-nothing dis-
tributed system supporting iterative queries with aggregates; it
features incremental computations with both synchronous and
asynchronous query evaluation. Soufflè is a high-performance
Datalog engine for large-scale program analysis that employs sev-
eral optimization techniques such as efficient program synthesis,
specialized parallel data structures for indexing and compression,
and automatic index selection. RecStep is a general-purpose Data-
log engine built on top of QuickStep [46], an efficient in-memory
parallel RDBMS. It supports Datalog with both stratified negation
and aggregation, namely, a language fragment that can express a
wide variety of data processing tasks.
Scenarios and Datasets.We selected five relevant ontologies mod-
eling graph-related problems described in Figure 7-(1-5).
(1) Same Generation (SG) computes all the node pairs (𝑥,𝑦) in a

directed graph, such that there exist a source node 𝑝 and two
distinct paths connecting 𝑝 to 𝑥 and 𝑝 to 𝑦, respectively.

(2) Transitive Closure (TC) computes all the node pairs (𝑥,𝑦) in a
graph such that 𝑦 is reachable from 𝑥 via at least one path.

(3) Triangle Counting (Tri-C) computes the number of distinct “trian-
gle” components in an undirected graph, i.e., given three distinct
nodes 𝑥 , 𝑦 and 𝑧, there exists a path of length 3 from 𝑥 to itself,
traversing the nodes 𝑦 and 𝑧 (and vice-versa).

(4) All Shortest Paths (ASP) computes all the shortest paths from a
node 𝑥 to a node 𝑦 in a directed weighted graph. We consider a
random weight of the edges ranging from 1 to 8.

(5) Non-2-Colorability (N2C) is a mutual recursive set of TGDs that
computes all the node pairs (𝑥,𝑦) that are connected via odd
(Odd) and even (Even) length paths in a graph. By the BCQ
Q← Odd(𝑥, 𝑥) we check whether the graph is not 2-colorable.

We evaluate such ontologies on synthetic and real-world graphs
(Figure 8). The synthetic scenarios consist of many graph topologies,
generated with networkX [31]: Tree17 is a tree of height 17, where
the degree of each non-leaf node is randomly between 2 and 4;
Grid150 and Grid250 are grid graphs of 150× 150 and 250× 250 size,
respectively. The Gn-p graphs are n-vertex graphs generated by
randomly connecting pairs of nodes with a 0.002 probability. As real-
world datasets, we selected four graphs of scientific collaboration
networks [52] and LiveJournal [53]

Although the input graphs are not considerable, the size of the
chase can be quadratic in the number of nodes.
Results. The outcomes are in Figure 9. In homomorphically de-
composable scenarios, such as TC, ASP, and N2C, Vadalog Paral-
lel consistently outperforms its counterparts, exhibiting a perfor-
mance gain of up to 10000x. The highest speedup is observed when

4622

Ontology Name TGD Sets Query H. Decom.

(1) Same Generation (SG) Arc(𝑝, 𝑥),Arc(𝑝, 𝑦), 𝑥 ≠ 𝑦 → SG(𝑥, 𝑦) (𝜎1)
Arc(𝑎, 𝑥), SG(𝑎,𝑏),Arc(𝑏, 𝑦) → SG(𝑥, 𝑦) (𝜎2)

Q(𝑥, 𝑦) ← SG(𝑥, 𝑦) N/A

(2) Transitive Closure (TC) Arc(𝑥, 𝑦) → TC(𝑥, 𝑦) (𝜎1)
TC(𝑥, 𝑦),Arc(𝑦, 𝑧) → TC(𝑥, 𝑧) (𝜎2) Q(𝑥, 𝑦) ← TC(𝑥, 𝑦) Arc[0]

(3) Triangle Counting (Tri-C) Arc(𝑥, 𝑦),Arc(𝑦, 𝑧),Arc(𝑧, 𝑥), 𝑥 < 𝑦, 𝑦 < 𝑧 → T(𝑥, 𝑦, 𝑧) (𝜎1)
T(𝑥, 𝑦, 𝑧), 𝑐 = mcount(1) → CountT(𝑐) (𝜎2) Q(𝑥) ← CountT(𝑥) N/A

(4) All Shortest Paths (ASP) Arc(𝑥, 𝑦,𝑑), 𝑑𝑚 = mmin(𝑑) → ASP(𝑥, 𝑦,𝑑𝑚) (𝜎1)
ASP(𝑥, 𝑦,𝑑1),Arc(𝑦, 𝑧,𝑑2), 𝑑𝑚 = mmin(𝑑1 + 𝑑2) → ASP(𝑥, 𝑧,𝑑𝑚) (𝜎2) Q(𝑥, 𝑧, 𝑤) ← ASP(𝑥, 𝑧, 𝑤) Arc[0]

(5) Non-2-Colorability (N2C)
Edge(𝑥, 𝑦) → Odd(𝑥, 𝑦) (𝜎1)

Odd(𝑥, 𝑦), Edge(𝑦, 𝑧) → Even(𝑥, 𝑧) (𝜎2)
Even(𝑥, 𝑦), Edge(𝑦, 𝑧) → Odd(𝑥, 𝑧) (𝜎3)

Q← SG(𝑥, 𝑥) Edge[0]

(6) Close Links (CL)
Own(𝑥, 𝑦, 𝑤), tw = msum(𝑤) → MCL(𝑥, 𝑦, 𝑡𝑤) (𝜎1)

MCL(𝑥, 𝑦, 𝑤1),Own(𝑦, 𝑧, 𝑤2), 𝑡𝑤 = msum(𝑤1 · 𝑤2) → MCL(𝑥, 𝑧, 𝑡𝑤) (𝜎2)
MCL(𝑥, 𝑦, 𝑡𝑤), tw ≥ 0.2→ CL(𝑥, 𝑦) (𝜎3)

Q(𝑥, 𝑦) ← CL(𝑥, 𝑦) Own[0]

(7) Company Control (CCTR)

Own(𝑥, 𝑦, 𝑤), 𝑥 ≠ 𝑦 → ControlledShares(𝑥, 𝑦, 𝑦, 𝑤) (𝜎1)
Control(𝑥, 𝑦),Own(𝑦, 𝑧, 𝑤), 𝑥 ≠ 𝑧 → ControlledShares(𝑥, 𝑧, 𝑦, 𝑤) (𝜎2)

ControlledShares(𝑥, 𝑧, 𝑦, 𝑤), 𝑡𝑤 = msum(𝑤) → TControlledShares(𝑥, 𝑧, 𝑡𝑤) (𝜎3)
TControlledShares(𝑥, 𝑧, 𝑡𝑤), tw > 0.5→ Control(𝑥, 𝑧) (𝜎4)

Q(𝑥, 𝑦) ← Control(𝑥, 𝑦) Own[0]

(8) Person with Significant Control
(PSC)

KeyPerson(𝑥, 𝑝), Person(𝑝) → PSC(𝑥, 𝑥, 𝑝) (𝜎1)
Company(𝑥) → ∃𝑝 PSC(𝑥, 𝑥, 𝑝) (𝜎2)

Control(𝑦, 𝑥), PSC(𝑦, 𝑧, 𝑝) → PSC(𝑥, 𝑧, 𝑝) (𝜎3)
Q(𝑥, 𝑧, 𝑝) ← PSC(𝑥, 𝑧, 𝑝) KeyPerson[0]

Company[0]

(9) Strong Links (SL)

KeyPerson(𝑥, 𝑝), Person(𝑝) → PSC(𝑥, 𝑥, 𝑝) (𝜎1)
Company(𝑥) → ∃𝑝 PSC(𝑥, 𝑥, 𝑝) (𝜎2)

Control(𝑦, 𝑥), PSC(𝑦, 𝑧, 𝑝) → PSC(𝑥, 𝑧, 𝑝) (𝜎3)
PSC(𝑥, 𝑧, 𝑝), PSC(𝑦, 𝑧, 𝑝), 𝑥 ≠ 𝑦, 𝑤 = mcount(1), 𝑤 > 3→ SL(𝑥, 𝑦, 𝑤, 𝑧) (𝜎4)

Q(𝑥, 𝑦, 𝑤, 𝑧) ← SL(𝑥, 𝑦, 𝑤, 𝑧) KeyPerson[0]
Company[0]

Figure 7: Benchmark Ontologies for the Experimental Evaluation. The column H. Decom. shows the partitioning positions of

body atoms in body-ground TGDs of Σ. If Σ is not homomorphically decomposable we write N/A.

Scenarios Nodes Edges Type

Tree17 1,631,318 1,631,319 Synthetic
Grid150 22,500 44,700 Synthetic
Grid250 62,500 124,500 Synthetic
G5K 5000 24,978 Synthetic
G10K 10,000 50,057 Synthetic
G20K 20,000 200,229 Synthetic
G40K 40,000 798,979 Synthetic
Hep-Ph 12,008 237,010 Real-world
Hep-Th 9,877 51,971 Real-world

Cond-Mat 23,133 186,936 Real-world
Astro-Ph 18,772 396,160 Real-world

LiveJournal 4,847,572 68,993,773 Real-world

Figure 8: Synthetic and Real-world graph parameters.

comparing Vadalog Parallel with other shared-nothing systems,
including BigDatalog andMyria. BigDatalog is optimized for
Datalog decomposable programs, leveraging SetRDD in the SNE for
set-difference and deduplication operations through zipPartitions

functions. This operation involves merging the facts of correspond-
ing partitions on the same processor. However, the performance
drawback of this mechanism lies in the necessity for processors to
await the completion of a single Spark transformation in each recur-
sion round. On the other hand, Vadalog Parallel executes different
streaming pipelines in parallel, where all the operations executed
by distinct processors are completely independent. A pipeline ex-
ecution is embedded into a single Spark mapPartition operation.
The performance gap between Vadalog and shared-memory sys-
tems is reduced compared to shared-nothing systems, particularly
with Soufflè, which exhibits slightly superior performance in non-
homomorphically decomposable scenarios, such as SG and Tri-C.
However, in scenarios like TC, ASP, and N2C, Vadalog Parallel
is 2x to 100x faster than Soufflè. This enhanced performance
wrt shared-nothing systems is due to the optimizations employed
in systems like Soufflè, which uses a specialized data structure
called Brie [35], known for its effective compression capabilities for
high-density relations. Nevertheless, the cost of maintaining these

indexes becomes relevant with higher chase cardinalities (≈ 1000
mln), as observed in N2C on Grid150 and G40K, TC on Grid250,
where Vadalog Parallel outperforms Soufflè and the other systems.

6.3 Related TGD-based Tools

This section delves into the benefits of parallel evaluation to perform
ontological reasoning tasks with TGDs.

Reasoners Tested. We look at the scenarios and reasoners of
ChaseBench [14], a comprehensive benchmark for Datalog± sys-
tems implementing the chase. We select the top-performing ones.

RDFox [43] is a high-performance RAM-based Datalog engine,
implementing a parallel, non-distributed variant of the seminaive
chase. It only supports existentials underw-acyclicity condition [24].

LLunatic [27] is a Datalog-based system that can handle data
exchange tasks. It supports certain query answering under weak
acyclic TGDs and runs on top of PostgreSQL.

DLV∃ [40] is a disjunctive RAM-based Datalog system support-
ing CQ-answering under Shy TGDs with the parsimoniuos chase. It
also employs the SNE to materialize the chase and answer the CQ.

Scenarios and Datasets.We select scenarios from ChaseBench
with many existential quantifications and join TGDs. The TGD
sets in our scenarios are weakly acyclic, shy, and also warded.
STB-128 and ONT-256 are data exchange scenarios generated with
iBench [6], a popular tool for benchmarking TGDs. STB-128 is a
data mapping scenario composed of 167 TGDs with 150k source
instances; ONT-256 is composed of 529 TGDs with 1m source in-
stances. We considered 20 CQs. Doctors and DoctorsFD is a non-
recursive data integration task from the schema mapping literature.
We used source instances of 10K, 100K, 500K, and 1M facts and
ran 9 CQs. LUBM [30] is a widely adopted benchmark from the
university domain. We used source instances of 90K, 1M, 12M, and
120M facts. We ran 14 queries and averaged the answering time.
The execution times comprise input loading, chase, result export,
and queries. We run Vadalog Parallel with a different number of

4623

Ontology Dataset Chase Size Vadalog Par. BigDatalog Myria Soufflè RecStep

(1) SG

Hep-Th

Grid150

G5K

G20K

74.618.689
2.295.050
10.427.944
279.694.744

71s
36s
34s
153s

911s
2530s
195s
6873s

1378s
1600s
1386s
7700s

55s
16s
15s
130s

1345s
61s
65s

16149s

(2) TC

Tree17

Grid250

G40K

Astro-Ph

23.381.118
984.328.125
529.405.185
320.520.848

5s
41s
92s
73s

150s
4244s
5865
3748s

36s
2162s
7316s
4320s

14s
638s
240s
160s

55s
2820s
5620s
6270s

(3) Tri-C

Cond-Mat

Hep-Ph

Astro-Ph

LiveJournal

173.361
3.358.499
1.351.441
112.319.229

18s
20s
24s
115s

26s
30s
27s
150s

120s
146s
153s
7253s

3s
6s
5s
135s

TOE
TOE
TOE
TOE

(4) ASP

G5K

G10K

G20K

Grid150

1.880.768
5.496.016
80.765.694
131.675.775

2s
1s
9s
6s

260s
289s
8780s
25140s

ONW
ONW
ONW
ONW

12s
13s
105s
202s

ONW
ONW
ONW
ONW

(5) N2C

Tree17

Grid250

G40K

Hep-Th

23.381.118
984.328.125
1.013.868.830
149.238.388

11s
40s
203s
13s

104s
9693s
53150s
1688s

132s
9743s
53650s
1831s

13s
700s
480s
93s

53s
2288s
9699s
537s

Figure 9: Execution time comparisonwith other Datalog systems (TOE: “Time

out exceeded”; ONW: “Ontology not working”).

Scenario Cores Speed-up

Doctors (1 mln) 64 x10
DoctorsFD (1 mln) 64 x10
STB-128 (150k) 64 x9

Ontology-256 (1 mln) 64 x4
LUBM (120 mln) 64 x10

Ont. Dataset CPU GPU

(1) SG

Hep-Th

Grid150

G5K

G20K

101s
70s
66s
210s

35s
27s
25s
78s

(3) Tri-C

Cond-Mat

Hep-Ph

Astro-Ph

LiveJournal

51s
55s
61s
163s

6s
9s
11s
20s

Figure 10: Vadalog Parallel speed-up

(top table) and CPUs vs GPUs compar-

ison (bottom table).

Figure 11: Experiment results for TGD-based tools.

processors (in Figure 11 VP-n stands for Vadalog Parallel with n

processors) and RDFox with 32 cores.

Results.Vadalog Parallel efficiently distributes theworkload among
all processors, demonstrating a noteworthy performance enhance-
ment from 1 processor (VP-1) to 64 processors (VP-64) in all scenar-
ios and outperforming the other systems. In Figure 10 (top table) we
report the speed-up of Vadalog Parallel, namely, the ratio between
the execution times with 1 processor and 64 processors. LLunatic
exhibits the poorest performance in all the scenarios except for
DoctorsFDs and STB-128. The performance gap between LLunatic
and the other systems is evident in Doctors and LUBM, where it
exceeds the 1200 seconds timeout. This can be attributed to the cost
of continuous disk accesses in contrast to RAM-based chase imple-
mentations. DLV∃ cannot scale the workload for larger inputs as it
is based on a centralized SNE and exhibits the worst performance
on DoctorsFD (1 mln) and LUBM (120 mln). RDFox uses a parallel
model [42] in which each processor autonomously consumes facts
from 𝐷 . It employs dynamic scheduling of the TGD applications,
assigned to a processor as soon as it becomes available. The gener-
ated facts are then stored in a centralized indexed RDF storage. This
evaluation demonstrates notable efficiency gains in the Doctors
and STB-128 scenarios. However, RDFox struggles in DoctorsFD
and LUBM, particularly when dealing with larger input sizes. We
attribute these inefficiencies to the concurrent update process of the
RDF storage, which becomes susceptible to race conditions (lock)
as the size of 𝐷 and the number of TGDs substantially grow.

6.4 Validation on Production Scenarios

In this section, we experiment Vadalog Parallel to solve complex
real-world problems from industrial settings of our partners. We
show that thanks to homomorphic decomposability, our system
outperforms other parallel and distributed implementations by 10x
or 100x in terms of execution time and memory footprint.
Scenario 1: Close Links (CL). Given an ownership graph, this
ontology (Figure 7-(6)) models the existence of a direct or indirect
link between companies, based on a high overlap of shares 𝑡𝑤 .
Scenario 2: Company Control (CCTR). This scenario (Figure 7-
(7)) consists in determining who takes decisions in a company, that
is, who controls the majority of its votes.
Scenario 3: PSC and Strong Links (SL). The ontology Persons

with Significant Control (PSC) (Figure 7-(8,9)) identifies the set of the
persons that directly or indirectly have some control over a com-
pany. We then compute the Strong Links (SL), i.e., two companies
that share more than 𝑁 PSC of the same company 𝑧.
Scenario 4: Propagation of Defaults (DP). This ontology (Exam-
ple 1.1) simulates the consequences of defaults given the network
of financial exposures in which the companies are involved.
Parallel Baselines and Datasets.We compare our system with
ad-hoc efficient implementations of the problems in scenarios:
(1) Spark [47] denotes the SparkSQL implementations featuring
caching of the delta relations produced in each iteration, storing
intermediate checkpoints and forcing the broadcast joins, replicat-
ing the extensional datasets in every processor. (2) Flink [19] is a
Flink-based implementation adopting the ad-hoc Flink’s DataSet

4624

Figure 12: Experiment results for Production Scenarios.

construct DeltaIteration, that efficiently supports iterative incre-
mental computations. It maintains a single incremental DataSet
across the iterations and we use it only for scenarios 3 and 4.
(3) Postgres Parallel is SQL-based and parallel implementation in
PostgreSQL [54] adopting parallel SNE with materialized views and
implementing labelled nulls and the isomorphic chase. (4) Parallel
Java Stream is a high-performance graph-based implementation
using parallel Java streams with the ForkJoinPool framework, it
constructs the query answer exploiting parallel graph visits.

For CL, CC we selected as input the knowledge graph of the Ital-
ian companies [8] having person-company and company-company
shareholding relationships, counting 7 mln nodes and 6.8 mln edges.
For PSC and SL we use real-world data extracted from DBpedia [22]
about companies (100k), persons (1 mln), company-control relation-
ships (50k) and company key persons (10k). For DP we constructed
an artificial weighted network of financial entities interacting via
loans or security relationships (2 mln). We also vary the input sizes.

Results. Vadalog Parallel outperforms all the ad-hoc implementa-
tions in all scenarios up to 100x in terms of execution time (less
than 20 seconds for CL, CCTR, PSC and SL, and less than 150
seconds for DP on all input sizes), as shown in Figure 12-(c-g).
The only solution with comparable performance is Java Stream
Parallel as it is based on a parallel algorithm which does not
require any communication exchanged among the threads. Java
Streams adopts the work-stealing technique. This is possible only
for multi-threaded implementations in the same JVM and cannot
be used in a distributed environment. Despite its low overhead,
Java Stream Parallel is inefficient in terms of memory footprint
compared to Vadalog Parallel and goes out of memory (OOM) when
the generated facts are considerable, as in the case of DP, with about
1000 mln of output facts and more than 250 GB of memory used
(Figure 12-(a,f)). Vadalog Parallel adopts the efficient serialization
mechanism of Spark SQL and uses, as processor-local data struc-
tures, the optimized collections from the fast-util library [55]. Flink
exhibits the slowest performance for scenarios not implemented
with DeltaIteration and experiences timeouts in both the CL
and DP scenarios. Although it is marginally faster than Spark and

Postgres Parallel in PSC and SL, scenarios with smaller query
answer sizes, Flink lags behind other solutions in DP, the most
computationally intensive task, despite benefiting from the recur-
sion optimization of DeltaIteration. On the other hand, Spark
outperforms all other implementations in the most data-intensive
scenarios (except for Vadalog Parallel and Java Stream Parallel),
such as DP and CL. However, its performance is hindered by the
continuous communication overhead required in each recursion
round for the deduplication operations. Postgres Parallel out-
performs Flink and Spark on smaller datasets for efficient updates
of indexed tables, but its performance degrades on larger datasets
due to the demanding task of continuously updating concurrent
indexes for recursive and aggregation predicates.
This implementation only uses secondary memory and stands out
for its efficiency in terms of memory footprint (Figure 12-(a,b)).

Scaling up with GPUs. For non-homomorphically decomposable
TGD sets evaluated via DW-SNE, requiring fact exchanges between
processors, our system leverages GPUs through Spark-Rapids [45],
NVIDIA’s GPU-accelerated Spark core, optimizing shuffle efficiency.
We benchmarked using Spark-RAPIDS 24.02.0 and CUDA 12.0 on an
Amazon EC2 AMI p3.16xlarge machine with 64 vCPUs, 8 NVIDIA
V100 GPUs (16 GB memory each), and 488 GB RAM. Results in Fig-
ure 10 (bottom table) show up to a 6x speedup over CPU execution.

7 CONCLUSION

In this paper, we introduced Vadalog Parallel, a novel framework
designed for distributed reasoning with Datalog±. Looking at exten-
sions, we aim to expand Vadalog Parallel in extending its expressive
power by capturing other advanced reasoning features, such as the
distributed evaluation of Equality-generating Dependencies (EGDs)
and distributed temporal reasoning.

ACKNOWLEDGMENTS

This work has been supported by the Vienna Science and Tech-
nology Fund (WWTF) [10.47379/VRG18013, 10.47379/NXT22018,
10.47379/ICT2201]. The Vadalog Parallel system as presented here
is the intellectual property of Prometheux Limited.

4625

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley.

[2] Foto N. Afrati and Jeffrey D. Ullman. 2012. Transitive Closure and Recursive
Datalog Implemented on Clusters. In EDBT.

[3] Tommaso Alfonsi, Luigi Bellomarini, Anna Bernasconi, and Stefano Ceri.
2022. Expressing Biological Problems with Logical Reasoning Languages. In
RuleML+RR.

[4] Mario Alviano and Andreas Pieris (Eds.). 2022. 4th International Workshop on

the Resurgence of Datalog in Academia and Industry.
[5] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and
Implementation of the LogicBlox System. In SIGMOD.

[6] Patricia C. Arocena, Boris Glavic, Radu Ciucanu, and Renée J. Miller. 2015. The
iBench Integration Metadata Generator. In PVLDB.

[7] Paolo Atzeni, Teodoro Baldazzi, Luigi Bellomarini, and Emanuel Sallinger. 2022.
iWarded: A Versatile Generator to Benchmark Warded Datalog+/–Reasoning. In
International Joint Conference on Rules and Reasoning.

[8] Paolo Atzeni, Luigi Bellomarini, Michela Iezzi, Emanuel Sallinger, and Adriano
Vlad. 2020. Augmenting Logic-based Knowledge Graphs: The Case of Company
Graphs.. In KR4L@ ECAI.

[9] Teodoro Baldazzi, Luigi Bellomarini, Emanuel Sallinger, and Paolo Atzeni. 2021.
EliminatingHarmful Joins inWardedDatalog+/-. In International Joint Conference
on Rules and Reasoning.

[10] Pablo Barceló and Reinhard Pichler (Eds.). 2012. Datalog in Academia and Ind.

[11] Luigi Bellomarini, Davide Benedetto, Matteo Brandetti, Emanuel Sallinger,
and Adriano Vlad. 2024. Appendix. https://drive.google.com/file/d/
1ZSMFUrEMmDrFYHR7C_RiQJoZ29gn2G_L/view?usp=sharing [Online; July-
2024].

[12] Luigi Bellomarini, Daniele Fakhoury, Georg Gottlob, and Emanuel Sallinger. 2019.
Knowledge Graphs and Enterprise AI: The Promise of an Enabling Technology.
In ICDE.

[13] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog
System: Datalog-based Reasoning for Knowledge Graphs. VLDB.

[14] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik,
Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017. Benchmarking
the chase. In SIGMOD.

[15] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase:
Query Answering under Expressive Relational Constraints. Journal of Artificial
Intelligence Research.

[16] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. A general datalog-
based framework for tractable query answering over ontologies. In PODS.

[17] Andrea Calì, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette, and Andreas
Pieris. 2010. Datalog+/-: A Family of Logical Knowledge Representation and
Query Languages for New Applications. In LICS.

[18] Andrea Calì, G. Gottlob, and A. Pieris. 2012. Towards more expressive ontology
languages: The query answering problem. Journal of Artificial Intelligence.

[19] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering.

[20] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always Wanted
to Know About Datalog (And Never Dared to Ask). In IEEE Transactions on

Knowledge and Data Engineering.
[21] Stavros S. Cosmadakis and Paris C. Kanellakis. 1986. Parallel Evaluation of

Recursive Rule Queries. In SIGMOD.
[22] DBpedia. 2023. DBpedia tables. http://wiki.dbpedia.org/services-resources/

downloads/dbpedia-tables. [Online; 27-Dec-2023].
[23] Owen P Dwyer, Teodoro Baldazzi, Jim Davies, Emanuel Sallinger, and Adriano

Vlad. 2023. Reasoning over Health Records with Vadalog: a Rule-based Approach
to Patient Pathways. In RuleML+RR.

[24] Ronald Fagin, Phokion G Kolaitis, Renée J Miller, and Lucian Popa. 2005. Data
exchange: semantics and query answering. Theoretical Computer Science (2005).

[25] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos Koutris,
and Jignesh M. Patel. 2019. Scaling-up in-Memory Datalog Processing: Observa-
tions and Techniques. In VLDB.

[26] Sumit Ganguly, Avi Silberschatz, and Shalom Tsur. 1990. A Framework for the
Parallel Processing of Datalog Queries. In SIGMOD.

[27] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2014.
That’s All Folks! LLUNATIC Goes Open Source. In PVLDB.

[28] Georg Gottlob and Andreas Pieris. 2015. Beyond SPARQL under OWL 2 QL
Entailment Regime: Rules to the Rescue. In IJCAI.

[29] Todd J Green, Dan Olteanu, and Geoffrey Washburn. 2015. Live programming in
the LogicBlox system: A MetaLogiQL approach. In VLDB.

[30] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for
OWL knowledge base systems. Journal of Web Semantics.

[31] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In 7th Python in Science

Conference.
[32] Daniel Halperin, Victor Teixeira de Almeida, et al. 2014. Demonstration of the

Myria big data management service. In SIGMOD.
[33] Aidan Hogan et al. 2022. Knowledge Graphs. In ACM Computing Surveys.
[34] Muhammad Imran, Gábor E Gévay, and Volker Markl. 2020. Distributed graph

analytics with datalog queries in flink. In Software Foundations for Data Interop-

erability and Large Scale Graph Data Analytics.
[35] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2019. Brie:

A specialized trie for concurrent datalog. In 10th International Workshop on

Programming Models and Applications for Multicores and Manycores.
[36] Paris C. Kanellakis. 1986. Logic programming and parallel complexity. In ICDT.
[37] Bas Ketsman, Aws Albarghouthi, and Paraschos Koutris. 2020. Distribution

Policies for Datalog. In Theory of Computing Systems.
[38] Craig Larman et al. 1998. Applying UML and patterns. Prentice Hall Upper Saddle

River.
[39] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. 2012.

Efficiently Computable Datalog∃ Programs. In Principles of Knowledge Represen-

tation and Reasoning.
[40] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. 2019.

Fast Query Answering over Existential Rules. In ACM Transaction on Computa-

tional Logic.
[41] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. 1979. Testing Implica-

tions of Data Dependencies. In ACM Transactions on Database Systems.
[42] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. 2015. Incremental

update of datalog materialisation: the backward/forward algorithm. In AAAI

Conference on Artificial Intelligence.
[43] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. 2014.

Parallel materialisation of datalog programs in centralised, main-memory RDF
systems. In AAAI Conference on Artificial Intelligence.

[44] Walaa Eldin Moustafa, Vicky Papavasileiou, Ken Yocum, and Alin Deutsch. 2016.
Datalography: Scaling datalog graph analytics on graph processing systems. In
IEEE.

[45] Nvidia. 2023. NVIDIA RAPIDS Accelerator for Apache Spark. https://resources.
nvidia.com/en-us-spark. [Online; 25-May-2024].

[46] Jignesh M Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quickstep: A
data platform based on the scaling-up approach. In VLDB.

[47] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and
Joshua Zhexue Huang. 2016. Big data analytics on Apache Spark. International
Journal of Data Science and Analytics.

[48] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On
fast large-scale program analysis in datalog. In 25th International Conference on

Compiler Construction.
[49] Jürgen Seib and Georg Lausen. 1991. Parallelizing Datalog Programs by General-

ized Pivoting. In PODS.
[50] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,

and Carlo Zaniolo. 2016. Big Data Analytics with Datalog Queries on Spark. In
SIGMOD.

[51] Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. 2015. Optimizing recursive
queries with monotonic aggregates in DeALS. In International Conference on

Data Engineering.
[52] Stanford University. 2007. Stanford Large Network Dataset Collection: Collabo-

ration Network. https://snap.stanford.edu/data/#canets. [Online; Dec-2023].
[53] Stanford University. 2008. Stanford Large Network Dataset Collection: LiveJour-

nal. https://snap.stanford.edu/data/soc-LiveJournal1.html. [Online; Dec-2023].
[54] Michael Stonebraker and Lawrence A Rowe. 1986. The design of Postgres. In

ACM Sigmod Record.
[55] Unimi. 2023. Fastutil. http://fastutil.di.unimi.it/. [Online; 27-Dec-2023].
[56] Victor Vianu. 2021. Datalog Unchained. In PODS.
[57] Yisu Remy Wang, Mahmoud Abo Khamis, Hung Q Ngo, Reinhard Pichler, and

Dan Suciu. 2022. Optimizing recursive queries with progam synthesis. In Inter-

national Conference on Management of Data.
[58] O. Wolfson. 2000. Sharing the Load of Logic-Program Evaluation. In First Inter-

national Symposium on Databases in Parallel and Distributed Systems.
[59] Ouri Wolfson and Aya Ozeri. 1990. A New Paradigm for Parallel and Distributed

Rule-Processing. In International Conference on Management of Data.
[60] Ouri Wolfson and Avi Silberschatz. 1988. Distributed Processing of Logic Pro-

grams. In SIGMOD.
[61] Jiacheng Wu, Jin Wang, and Carlo Zaniolo. 2022. Optimizing Parallel Recursive

Datalog Evaluation on Multicore Machines. In SIGMOD.
[62] Mohan Yang and Carlo Zaniolo. 2014. Main memory evaluation of recursive

queries on multicore machines. In International Conference on Big Data.
[63] Weining Zhang, Ke Wang, and Siu-Cheung Chau. 1995. Data Partition and

Parallel Evaluation of Datalog Programs. In IEEE Trans. Knowl. Data Eng.

4626

https://drive.google.com/file/d/1ZSMFUrEMmDrFYHR7C_RiQJoZ29gn2G_L/view?usp=sharing
https://drive.google.com/file/d/1ZSMFUrEMmDrFYHR7C_RiQJoZ29gn2G_L/view?usp=sharing
http://wiki.dbpedia.org/services-resources/downloads/dbpedia-tables
http://wiki.dbpedia.org/services-resources/downloads/dbpedia-tables
https://resources.nvidia.com/en-us-spark
https://resources.nvidia.com/en-us-spark
https://snap.stanford.edu/data/##canets
https://snap.stanford.edu/data/soc-LiveJournal1.html
http://fastutil.di.unimi.it/

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Vadalog Parallel
	4.1 Restricted Sets of TGDs
	4.2 Homomorphically Decomposable TGDs
	4.3 Characterization of Homomorphically Decomposable TGDs
	4.4 Homomorphic Decomposability and Warded TGDs
	4.5 Non-homomorphically Decomposable Warded TGDs

	5 System Architecture
	6 Experiments
	6.1 iWarded: Synthetic Scenarios
	6.2 Comparison with Parallel Datalog Systems
	6.3 Related TGD-based Tools
	6.4 Validation on Production Scenarios

	7 Conclusion
	Acknowledgments
	References

