
Multiple Time Series Forecasting with Dynamic Graph Modeling
Kai Zhao

Aalborg University
kaiz@cs.aau.dk

Chenjuan Guo*
East China Normal University

cjguo@dase.ecnu.edu.cn

Yunyao Cheng
Aalborg University
yunyaoc@cs.aau.dk

Peng Han
UESTC

penghan_study@foxmail.com

Miao Zhang
HIT Shenzhen, Aalborg University

zhangmiao@hit.edu.cn

Bin Yang
East China Normal University
byang@dase.ecnu.edu.cn

ABSTRACT
Multiple time series forecasting plays an essential role in many
applications. Solutions based on graph neural network (GNN) that
deliver state-of-the-art forecasting performance use the relation
graph which can capture historical correlations among time series.
However, in real world, it is common that correlations among time
series evolve across time, resulting in dynamic relation graph, where
the future correlations may be different from those in history. To
address this problem, we propose multiple time series forecasting
with dynamic graph modeling (MTSF-DG) that is able to learn
historical relation graphs and predicting future relation graphs to
capture the dynamic correlations. We also propose a causal GNN
to extract features from both kinds of relation graphs efficiently.
Then we propose a reasoning network to explicitly learn the variant
influence from historical timestamps to future timestamps for final
forecasting. Extensive experiments on six benchmark datasets show
that MTSF-DG consistently outperforms state-of-the-art baselines,
and justify our design with dynamic relation graph modeling.

PVLDB Reference Format:
Kai Zhao, Chenjuan Guo, Yunyao Cheng, Peng Han, Miao Zhang, Bin Yang.
Multiple Time Series Forecasting with Dynamic Graph Modeling. PVLDB,
17(4): 753 - 765, 2023.
doi:10.14778/3636218.3636230

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhkai/MTSF-DG.

1 INTRODUCTION
Many real-world data sensed from cyber-physical systems (CPS)
can be modeled as the recordings of time-dependent observations,
which form the multiple time series [10, 27, 41]. For example, in
power grid there exist multiple electric time series which record the
energy consumption of different clients [11], and in transport net-
work there exist multiple traffic time series which record the traffic
flows and speeds at different locations across time [5, 26]. Based
on the historical observations, forecasting the future observations
plays an important role in ensuring effective functionality of CPS

*: Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 4 ISSN 2150-8097.
doi:10.14778/3636218.3636230

Table 1: The influence of dynamic relation graphs

Dataset Metric DCRNN DCRNN-D AGCRN AGCRN-D
METR-LA MAE 3.60 3.55 3.58 3.51
PEMS04 24.70 21.03 19.83 19.51

for various applications, such as spotting patterns [2, 15, 17, 18] and
predicting the future behaviors [3, 29, 44]. Thus, we aim at multiple
time series forecasting problem in this paper.

Early methods [20, 34, 48] forecast the future observations by
applying machine learning models on the historical observations,
which aim to learn the temporal dependencies. Some works [23, 43]
study time series forecasting in the traffic domain with different
kinds of Graph Neural Network (GNN) [14, 19, 51] by learning
the correlations among the time series of different locations based
on their spatial distance. More recently, a new trend is to employ
graph learning [42] to learn a relation graph that models correlations
among multiple time series without requiring spatial distance to
enable time series forecasting. For example, DGSL [31] constructs
a relation graph, where time series are considered as nodes, and
two time series are connected by an edge if their observations are
similar in history.

Figure 1(a) illustrates three time series that record traffic flows
in three districts, e.g., a commercial district X1, a residential district
X2 and an industrial district X3. On the peak hours of workdays
t2~ t3, the traffic flows may be more correlated between X2 and X3.
While on the weekends t6, the traffic flows may be more correlated
between X1 and X2. Therefore, multiple historical relation graphs,
e.g.,𝐺1,𝐺2, and𝐺3, are required to model the dynamic correlations
among time series. Similarly, correlations in a future period t𝑓 are
different from those in history, and could be modeled by a future
relation graph 𝐺 𝑓 , as shown in Figure 1(b).

The information of dynamic relation graphs can help multi-
ple time series forecasting, as shown in Table 1 where two traffic
datasets [23] are used. Specifically, DCRNN [23] has a static rela-
tion graph which is constructed by the distance among locations.
AGCRN [1] learns a static relation graph from historical time series
data. However, both studies use the same, static relation graph for
forecasting at different timestamps. DCRNN-D and AGCRN-D use
dynamic relation graphs, which varies across time [13].

Although the state-of-the-art approaches [42, 45] can learn the
relation graph to capture the correlations among multiple time
series, they could only use the historical correlations. As the cor-
relations change across time, the single, historical relation graph
is insufficient to model the dynamic correlations and hinders the
improvement of multiple time series forecasting. However, it is

753

https://doi.org/10.14778/3636218.3636230
https://github.com/zhkai/MTSF-DG
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636230
https://www.acm.org/publications/policies/artifact-review-and-badging-current

X1

X2

X3

�1 �1 �3 ��

t1 t2 t3 tft4 t5 t6

�2 �2 �1

(a) An example of time series for traffic flows at three locations

X1

X2 X3

�2

X1

X2 X3

�1

X1

X2 X3

�3 ��

(b) The dynamic relation graphs

Figure 1: Motivations

X�−2, �

ℎ�−2

X�−1, �

ℎ�−1

encoding decoding

……

X�, �

ℎ�

X�+1 X�+2

……

X�������

(a) RNN based model

X�−2, � X�−1, �

encoding decoding

……

X�, � X�+1 X�+2X�−3, �

……

(b) Transformer based model

X�−2, �

ℎ�−2

X�−1, �

ℎ�−1

encoding decoding

……

X�, �

ℎ�

X�+1 X�+2

……

X�������, � � �

(c) Our reasoning network

Figure 2: Model comparison

non-trivial to model the dynamic relation graphs, and to use his-
torical observations to predict the future observations under the
changeable relation graphs.
Challenge 1: It is challenging to learn the dynamic relation graphs
and extract features from different relation graphs efficiently. Exist-
ing studies can construct a relation graph by learning the similarities
among multiple time series from the known historical observations.
It is possible for ESG [45] to cut the whole historical observations
into sub time-windows, and learn a historical relation graph for
each historical sub time-window using its historical observations.
However, none of the existing methods have demonstrated the abil-
ity to learn a future relation graph for a future time-window, as the
future observations are unknown. Besides, it is difficult to extract
features from different relation graphs efficiently, as the GNN in
these existing methods [8, 45] can only deal with one relation graph
at one timestamp.
Challenge 2: It is challenging to predict the future observations
under the changeable relation graphs. The existing methods use
RNN or Transformer [7] based module to learn temporal depen-
dencies. As shown in Figure 2(a) and 2(b), RNN based models only
model the influence from one timestamp to the next timestamp
explicitly, and Transformer based models only model the influence
among historical timestamps. However, one historical timestamp
may have different influence on future timestamps with regard to
the changeable future relation graphs. The existing methods fail to
model such different temporal dependencies explicitly.

Based on the above analysis, in this paper, we propose a novel
approach MTSF-DG, multiple time series forecasting with dynamic
graph modeling.

For Challenge 1, we cut each time series sample into historical
and future time-windows, for each of which we build a relation
graph distribution. It not only learns the historical relation graph

distribution but also predicts the future relation graph distribution,
by optimizing the correlation coefficients from an empirical co-
variance matrix using a memory network. Further, different from
traditional GNN, which only models with one graph at a time, we
propose a causal GNN, which models the observations with both
historical and future relation graphs into a feature vector efficiently.

For Challenge 2, we propose a reasoning network with the
logical operations and symbolic reasoning procedure to explic-
itly learn how historical timestamps influence future timestamps.
First, we learn feature vectors, say ℎ𝑇−2, ℎ𝑇−1 and ℎ𝑇 , as the rep-
resentations for timestamps 𝑇 − 2, 𝑇 − 1 and 𝑇 . Next as shown
in Figure 2(c), We use a reasoning procedure, e.g., ℎ𝑇−2 → ℎ𝑇−1
and (ℎ𝑇−2 ∧ ℎ𝑇−1) → ℎ𝑇 being TRUE or FALSE, to achieve the
cognition ability [4, 30] of how one historical timestamp𝑇 − 2 may
have different influence on future timestamps 𝑇 − 1 and 𝑇 . In this
way, we model the different temporal dependencies explicitly.

To the best of our knowledge, this is the first work that consid-
ers to predict future relation graphs, and use both historical and
future relation graphs in multiple time series forecasting. And we
summarize contributions as follows. First, we propose to model
dynamic relation graphs and propose a causal GNN to model the
observations with both historical and future relation graphs into
feature vectors efficiently. Second, we propose a reasoning net-
work to explicitly learn how historical timestamps have different
influence on future timestamps. Third, by evaluating on six real-
world benchmark datasets from different domains, we show that
our model consistently outperforms the state-of-the-art baselines.

2 PRELIMINARIES
We formalize the multiple time series forecasting problem and
introduce reasoning. The notations are summarized in Table 2.

754

Table 2: Notations

Notation Explanation
𝐺𝑡 A relation graph which presents the correlations among

time series for timestamp 𝑡
𝑣𝑖𝑡 The feature vector extracted from time series X𝑖𝑡
𝜏 The max previous time steps used in reasoning

★𝐺𝑡
The causal graph neural network using graph 𝐺𝑡

𝑐𝑘 The learnable embedding matrix which denote the relative
time interval with the 𝑘-th previous time step

ℎ𝑖𝑡 The hidden state for 𝑖-th time series at timestamp 𝑡 in the
reasoning network

2.1 Problem Definition
Multiple Time Series Forecasting. The multiple time series is
represented as X ∈ R𝑁×𝐿 , where 𝑁 is the number of time series
and each time series has observations during total 𝐿 timestamps.
We use X𝑡 ∈ R𝑁 to indicate the observations of all time series at
timestamp 𝑡 , useX𝑡 :𝑡+𝑡Δ ∈ R𝑁×𝑡Δ to indicate the observations of all
time series from timestamp 𝑡 to timestamp 𝑡 + 𝑡Δ, use X𝑖𝑡 :𝑡+𝑡Δ ∈ R𝑡Δ
to indicate the observations of the 𝑖-th time series from timestamp
𝑡 to timestamp 𝑡 + 𝑡Δ, and use X𝑖𝑡 ∈ R1 to indicate the observations
of the 𝑖-th time series at timestamp 𝑡 , where 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤
𝑡, 𝑡 + 𝑡Δ ≤ 𝐿.

We formulate multiple time series forecasting problem as follows.
Given a sub-sequence of historical 𝑝 timestamps of observations
from the multiple time series, i.e., X𝑇−𝑝+1:𝑇 , the goal is to predict
the values for the 𝑞 future timestamps, i.e., X𝑇+1:𝑇+𝑞 , where 𝑞 ≥ 1.
Thus, we formulate the multiple time series forecasting problem as
finding a mapping function F as follows:

X̂𝑇+1:𝑇+𝑞 = F𝜃 (X𝑇−𝑝+1:𝑇), (1)

where 𝜃 is the parameters of F , and X̂ denotes the predicted values
of multiple time series.
Relation Graph. The latent correlations among time series at
timestamp 𝑡 is represented as a relation graph 𝐺𝑡 = (V, E,A),
whereV is the set of nodes and each node𝑇𝑆𝑖 ∈ V denotes a time
series so that |V| = 𝑁 , E is the set of edges and each edge 𝑒𝑖, 𝑗 ∈ E
denotes that time series 𝑖 and time series 𝑗 are correlated with each
other, and A ∈ R𝑁×𝑁 is the adjacency matrix. A𝑖 𝑗 = 0 if 𝑒𝑖, 𝑗 ∉ E,
A𝑖 𝑗 ≠ 0 if 𝑒𝑖, 𝑗 ∈ E, and A𝑖 𝑗 is the weight that denotes the degree
of correlation between time series 𝑖 and time series 𝑗 . If 𝑒𝑖, 𝑗 ∈ E,
node 𝑖 and 𝑗 are the first-hop neighbors for each other.

2.2 Reasoning
In this paper, we use propositional logic, which has basic opera-
tions, i.e., conjunction (AND, ∧), negation (NOT , ¬) and material
implication (→), to explicitly learn how historical timestamps have
different influence on future timestamps. For time series forecasting:
Each hidden state is a vector variable, such as ℎ𝑡 which represents
the states of multiple time series at timestamp 𝑡 , similar to the hid-
den state used in RNN. The operation over hidden states is called
an expression, such as (ℎ𝑡−1 ∧ ℎ𝑡) which indicates that multiple
time series have had the states ℎ𝑡−1 and ℎ𝑡 during two timestamps
𝑡 − 1 and 𝑡 . When the expression has the material implication
(→) operation, it is called a Horn clause. The reasoning result of

G

H F

G

H F

do-intervention

(a) The structural causal model (b) After the do-intervention

Figure 3: The do-intervention for node H

(ℎ𝑡−2 ∧ ℎ𝑡−1) → ℎ𝑡 is TRUE can show that the historical states
ℎ𝑡−2 and ℎ𝑡−1 have significant influence on the future state ℎ𝑡 ;
otherwise the reasoning result is FALSE, the historical states ℎ𝑡−2
and ℎ𝑡−1 have little influence on the future state ℎ𝑡 .

3 THE FOUNDATION
In this section, we theoretically analyze the limitation of existing
methods and point out the importance of predicting the future
relation graph distribution for dynamic graph modeling.

Specifically, we use a random variable H to denote a sequence of
historical observations happened in the past 𝑝 timestamps. Random
variable F denotes a sequence of future observations will happen
in the future 𝑞 timestamps. Random variable G denotes dynamic
relation graphs at different timestamps. Then, we can model the
relationship among H, F, andG using a structural causal model [25]
as shown in Figure 3(a), where an arrow indicates that there exists
some influence. For example, the historical observations H influ-
ence the future observations F. Meanwhile, the dynamic relation
graphsG influence the historical observationsH and also the future
observations F.

Existing methods extract the features from historical observa-
tions to forecast future observations. Following the probability
theory, their forecasting process is learning the likelihood of condi-
tional probability 𝑃 (F|H) as:
X̂𝑇+1:𝑇+𝑞 = F𝜃 (X𝑇−𝑝+1:𝑇) = 𝑎𝑟𝑔𝑚𝑎𝑥

F
𝑃 (F|H = X𝑇−𝑝+1:𝑇) . (2)

By applying the Bayes rule, we can see that the dynamic rela-
tion graphs will influence the forecasting results of these existing
methods. By the Bayes rule we can get:
𝑃 (F|H = X𝑇−𝑝+1:𝑇) =∑︁
𝑡 ∈[𝑇−𝑝+1,𝑇+𝑞]

𝑃 (F|H = X𝑇−𝑝+1:𝑇 ,𝐺𝑡)𝑃 (G = 𝐺𝑡 |H = X𝑇−𝑝+1:𝑇),

(3)
where𝐺𝑡 is the possible relation graphs at different timestamps. As
the historical observationsX𝑇−𝑝+1:𝑇 are influenced by the historical
relation graphs 𝐺𝑡 where 𝑡 ∈ [𝑇 − 𝑝 + 1,𝑇], we have:

𝑃 (G = 𝐺𝑡 |H = X𝑇−𝑝+1:𝑇) ≠ 0, ∀𝑡 ∈ [𝑇 − 𝑝 + 1,𝑇],
𝑃 (G = 𝐺𝑡 |H = X𝑇−𝑝+1:𝑇) = 0, ∀𝑡 ∉ [𝑇 − 𝑝 + 1,𝑇] . (4)

Then we can get 𝑃 (F|H = X𝑇−𝑝+1:𝑇) as:∑︁
𝑡 ∈[𝑇−𝑝+1,𝑇]

𝑃 (F|H = X𝑇−𝑝+1:𝑇 ,𝐺𝑡)𝑃 (G = 𝐺𝑡 |H = X𝑇−𝑝+1:𝑇).

(5)
From Equation (5), we can see that 𝑃 (F|H = X𝑇−𝑝+1:𝑇) used

in existing methods which only learn from the historical relation

755

graphs could lead to unsatisfactory forecasting performance once
the distribution of future relation graphs, i.e., 𝐺𝑡 where 𝑡 ∈ [𝑇 +
1,𝑇 + 𝑞], is changed and different from these in history.

To address this problem, we want to predict the future obser-
vations F based on the causal causes H directly. We apply the do-
intervention [25] as shown in Figure 3. We remove the arrow from
G to H (the do-intervention) following Pearl’s back-door crite-
rion [38, 47], which enables us to learn the causal effect from H to
F and from G to F for predicting the future observations. By this,
our time series forecasting is:

𝑃 (F|do(H = X𝑇−𝑝+1:𝑇)) =∑︁
𝑡 ∈[𝑇−𝑝+1,𝑇+𝑞]

𝑃 (F|H = X𝑇−𝑝+1:𝑇 ,𝐺𝑡)𝑃 (G = 𝐺𝑡). (6)

Following Equation (6), to forecast the future observations without
the bias caused by the historical relation graphs, we should learn
the probability distribution of relation graphs for both the historical
and future timestamps, which will be presented in Section 4.1.1, and
then combine the historical observations with all possible relation
graphs to predict the future observations.

4 METHODOLOGY
As shown in Figure 4, we first present the overall framework of our
method, which is based on the encoder-decoder architecture and
consists of four main components, i.e., the embedding layer, the
causal graph layer, the reasoning network and the projection layer.

The encoder takes as inputs the historical observations X𝑡 , with
𝑡 ∈ [𝑇 − 𝑝 + 1,𝑇], and outputs hidden state vectors ℎ𝑡 recurrently,
which is passed to the decoder to predict future hidden states ℎ𝑡 ′ ,
with 𝑡 ′ ∈ [𝑇 + 1,𝑇 + 𝑞], and then to project into the future observa-
tions X̂𝑡 ′ .

Firstly, the embedding layer maps the original inputs, i.e., the his-
torical observations of each time series X𝑡 to the high-dimensional
representation vectors 𝑣𝑡 , with 𝑡 ∈ [𝑇 − 𝑝 + 1,𝑇], which aim to
extract the feature for the observation of each time series at each
timestamp.

To address challenge 1, the causal graph layer contains a dynamic
relation graph learning module and a causal graph neural network.
Specifically, the former learns a historical relation graph distribu-
tion 𝑃𝐺𝐻𝑇

to capture the correlations among time series in the 𝑝
historical timestamps, and predicts a future relation graph distribu-
tion 𝑃𝐺𝐹𝑇

to capture the possible correlations among observations
in the 𝑞 future timestamps. For each timestamp 𝑡 ∈ [𝑇 −𝑝 +1,𝑇 +𝑞],
the causal GNN samples a graph from 𝑃𝐺𝐻𝑇

and 𝑃𝐺𝐹𝑇
, respectively,

and combines them with the feature representation 𝑣𝑡 into a hidden
state 𝑜𝑡 , such that 𝑜𝑡 contains not only features of observations but
also features of their historical and future correlations.

To address challenge 2, the reasoning network learns and out-
puts a feature vector ℎ𝑡 for every timestamp 𝑡 ∈ [𝑇 − 𝑝 + 1,𝑇 + 𝑞],
using the current hidden state 𝑜𝑡 and the previous 𝜏 feature vec-
tors (ℎ𝑡−𝜏 , · · · , ℎ𝑡−2, ℎ𝑡−1). The reasoning network is to identify
in which way the past timestamps have different influence on the
future timestamps.

The projection layer outputs the forecasting observations X̂𝑡 ′ ,
based on the reasoned feature vector ℎ𝑡 ′ , with 𝑡 ′ ∈ [𝑇 + 1,𝑇 + 𝑞].

4.1 The Causal Graph Layer
We first introduce our probabilistic model which can present the
distribution of dynamic relation graphs. It can not only learn the
historical relation graphs but also predict the future relation graphs
with a memory network. Lastly, we introduce our causal GNN,
which combines the representation vector 𝑣𝑡 at timestamp 𝑡 with
the dynamic relation graphs into a hidden state vector 𝑜𝑡 efficiently.

4.1.1 Modeling the dynamic relation graphs. Based on the analysis
in Section 3, we model the dynamic relation graphs by learning
a probability distribution of relation graphs. As the historical and
future relation graph distributions may be different, we model them
separately.

Given the current timestamp 𝑇 , we denote the probability distri-
bution of relation graphs at the historical time-window, which
ranges from timestamp 𝑇 − 𝑝 + 1 to 𝑇 , as 𝐺 ∼ 𝑃𝐺𝐻𝑇

, where 𝐺 is a
possible relation graph at timestamp 𝑡 ∈ [𝑇 − 𝑝 + 1,𝑇]. Similarly,
we denote the probability distribution of relation graphs at the
future time-window, which ranges from timestamp𝑇 + 1 to𝑇 +𝑞,
as 𝐺 ∼ 𝑃𝐺𝐹𝑇

, where 𝐺 is a possible relation graph at timestamp
𝑡 ′ ∈ [𝑇 + 1,𝑇 + 𝑞].

In this work, we apply the parameterized Bernoulli distribu-
tion [31] to model the probability distribution of relation graphs,
i.e., 𝑃𝐺𝐻𝑇

and 𝑃𝐺𝐹𝑇
. Specifically, 𝑃𝐺𝐻𝑇

is defined as follows, for any
two of the 𝑖-th and 𝑗-th time series:

𝑃 (A𝑖 𝑗 = 1) = 𝑃ℎ (𝑖, 𝑗), 𝑃 (A𝑖 𝑗 = 0) = 1 − 𝑃ℎ (𝑖, 𝑗), (7)

whereA is the adjacency matrix for a relation graph𝐺 . Specifically,
𝑃 (A𝑖 𝑗 = 1) is the probability of the 𝑖-th and 𝑗-th time series being
correlated with each other, 𝑃 (A𝑖 𝑗 = 0) is the probability of the
𝑖-th and 𝑗-th time series not correlated with each other, and 0 ≤
𝑃ℎ (𝑖, 𝑗) ≤ 1 is the parameter for Bernoulli distribution, which
models the correlation strength between the 𝑖-th and 𝑗-th time
series in the historical time-window and needs be learned. Similarly,
𝑃𝐺𝐹𝑇

is defined as follows:

𝑃 (A𝑖 𝑗 = 1) = 𝑃𝑓 (𝑖, 𝑗), 𝑃 (A𝑖 𝑗 = 0) = 1 − 𝑃𝑓 (𝑖, 𝑗) . (8)

In the following parts, we introduce how to construct the proba-
bility distribution of relation graphs for the historical time-window
and predict the probability distribution of relation graphs for the fu-
ture time-window, by learning the parameters 𝑃ℎ (𝑖, 𝑗) and 𝑃𝑓 (𝑖, 𝑗)
from the correlation coefficients among the observations of multi-
ple time series, which capture the degree to which two time series
vary together.
Probability distribution of historical relation graphs. For the
observations X𝑇−𝑝+1:𝑇 in the historical time-window, we construct
a historical empirical covariance matrix 𝑆ℎ ∈ R𝑁×𝑁 , to capture the
degree to which two time series vary together, as follows:

𝑆ℎ =
1
𝑝
(X𝑇−𝑝+1:𝑇 − X𝑇−𝑝+1:𝑇) (X𝑇−𝑝+1:𝑇 − X𝑇−𝑝+1:𝑇)

⊤
, (9)

where X𝑇−𝑝+1:𝑇 denotes the mean value for each time series across
these 𝑝 timestamps, and ⊤ is the matrix transpose operation. Then
the normalized historical correlation coefficient matrix 𝜌ℎ ∈ R𝑁×𝑁

can be obtained by:

𝜌ℎ (𝑖, 𝑗) =
𝑆ℎ (𝑖, 𝑗)√︁

𝑆ℎ (𝑖, 𝑖)𝑆ℎ (𝑗, 𝑗)
, for 1 ≤ 𝑖, 𝑗 ≤ 𝑁, (10)

756

……

��−�+1

causal graph layer

 �~����

X1

X2 X3

 �~����

X1

X2 X3

��−�+1 ℎ�−�+1
��

causal graph layer

 �~����

X1

X2 X3

 �~����

X1

X2 X3

�� ℎ�

R
ea

so
ni

ng
 N

et
w

or
k

……

��+1

……

……

……

encoding decoding

causal graph layer

 �~����

X1

X2 X3

 �~����

X1

X2 X3

��+1 ℎ�+1

R
ea

so
ni

ng
 N

et
w

or
k

……

causal graph layer

 �~����

X1

X2 X3

 �~����

X1

X2 X3

��+2 ℎ�+2

R
ea

so
ni

ng
 N

et
w

or
k

X�−�+1

��+2

R
ea

so
ni

ng
 N

et
w

or
k

Embedding Layer Projection Layer

X� X�+1 X�+2

Figure 4: The overall framework

where element 𝜌ℎ (𝑖, 𝑗) ∈ [−1, 1] is the correlation coefficient be-
tween the 𝑖-th and 𝑗-th time series. If 𝜌ℎ (𝑖, 𝑗) is closer to 1 (or -1),
the positive (or negative) correlation between 𝑖-th and 𝑗-th time
series are more significant, and if 𝜌ℎ (𝑖, 𝑗) = 0, the 𝑖-th and 𝑗-th
time series are linearly independent with each other. Next, based
on 𝜌ℎ (𝑖, 𝑗), we can learn the parameters 𝑃ℎ (𝑖, 𝑗). The intuition is as
follows. The the bigger the correlation coefficient |𝜌ℎ (𝑖, 𝑗) | between
the 𝑖-th and 𝑗-th time series is, the more possible that the 𝑖-th and 𝑗-
th time series are correlated with each other, so that the probability
𝑃ℎ (𝑖, 𝑗) is proportional to |𝜌ℎ (𝑖, 𝑗) |. Thus, we obtain the probability
distribution of relation graphs at the historical time-window, i.e.,
𝑃𝐺𝐻𝑇

, as follows:

𝑃 (A𝑖 𝑗 = 1) =
{
𝑃ℎ (𝑖, 𝑗) = |𝜌ℎ (𝑖, 𝑗) | if |𝜌ℎ (𝑖, 𝑗) | ≥ 𝛿
0 if |𝜌ℎ (𝑖, 𝑗) | < 𝛿

,

𝑃 (A𝑖 𝑗 = 0) =
{

1 − 𝑃ℎ (𝑖, 𝑗) = 1 − |𝜌ℎ (𝑖, 𝑗) | if |𝜌ℎ (𝑖, 𝑗) | ≥ 𝛿
1 if |𝜌ℎ (𝑖, 𝑗) | < 𝛿

,

(11)
where threshold 0 ≤ 𝛿 ≤ 1 is a hyper-parameter which controls the
sparsity of the relation graph. If the correlation coefficient between
the 𝑖-th and 𝑗-th time series is smaller than 𝛿 , we set the 𝑖-th and
𝑗-th time series as not correlated.
Probability distribution of future relation graphs. After get-
ting the probability distribution for the historical time-window,
where observations are available, we proceed to predict the proba-
bility distribution for the future time-window. We use the features
𝐸𝑇 ∈ R𝑁×𝑑𝑐 , which are extracted from the historical observations
of multiple time series X𝑇−𝑝+1:𝑇 , to predict the normalized corre-
lation coefficient matrix 𝜌 𝑓 ∈ R𝑁×𝑁 for the future time-window,
and thus we learn the parameter 𝑃𝑓 (𝑖, 𝑗) for the future relation
graphs which is proportional to |𝜌 𝑓 |.

We could only utilize the local features 𝐸𝑇 , which are extracted
from this current historical time-window from 𝑇 − 𝑝 + 1 to 𝑇 , to
predict the future correlation coefficient matrix 𝜌 𝑓 . However, it
prevents an accurate prediction of the future distribution, as the
correlations in the future time-window may be different from those
in this historical time-window [13]. Therefore, we use an additional

memory unit 𝐸 ∈ R𝑁×𝑑𝑐 to preserve the global features, as shown
in Figure 5. The basic idea is that we use a memory unit to record the
correlations that have appeared among multiple time series across
all history, i.e., including timestamps long before this time-window
[𝑇 − 𝑝 + 1,𝑇], which can help to predict the relation graphs for this
future time-window [𝑇 + 1,𝑇 + 𝑞], as correlations that occurred a
long time ago may recur in the future.

Then, by querying the memory unit 𝐸 with the representation
matrix 𝐸𝑇 , we learn an outcome feature matrix 𝐸′ ∈ R𝑁×𝑑𝑐 , to
predict the future correlation coefficient matrix 𝜌 𝑓 . Thus, we are
able to utilize both local and global features. Last, we update the
memory unit 𝐸 by adding the correlations newly learned from the
outcome 𝐸′.

Specifically, we map the historical observations of each time
series X𝑖

𝑇−𝑝+1:𝑇 to a high-dimensional representation vector𝑚𝑖
𝑇
∈

R𝑑
𝑐
:

𝑚𝑖𝑇 = 𝜎 (𝑊𝑐X𝑖𝑇−𝑝+1:𝑇), (12)

where𝜎 is an activation function, and𝑊𝑐 ∈ R𝑑
𝑐×𝑝 is the parameters

to extract the features for predicting the future correlations. We call
𝑚𝑖
𝑇
a local view, as it is time-dependent and is extracted from obser-

vations in the historical time-window. Thus, the local representation
matrix for all time series are 𝐸𝑇 = (𝑚1

𝑇
,𝑚2
𝑇
, · · · ,𝑚𝑁

𝑇
) ∈ R𝑁×𝑑𝑐 .

Then, we use a learnable embedding vector𝑚𝑖 ∈ R𝑑𝑐 to present
each time series 𝑖 across all timestamps. Thus, the memory unit
for all time series are 𝐸 = (𝑚1,𝑚2, · · · ,𝑚𝑁) ∈ R𝑁×𝑑𝑐 , and the
recorded correlations 𝜌 (𝑖, 𝑗) between time series 𝑖 and time series
𝑗 can be obtained by the inner-product similarity between𝑚𝑖 and
𝑚 𝑗 as follows:

𝜌 (𝑖, 𝑗) =𝑚𝑖 ·𝑚 𝑗 . (13)

Next, to predict the correlation coefficient matrix for the future
time-window, we use the local representation matrix 𝐸𝑇 as query to
extract the outcome feature matrix 𝐸′ ∈ R𝑁×𝑑𝑐 from the memory

757

…

query memory outcome
�� � �’

… …

update
w.r.t. Eq. (16)

readout
w.r.t. Eq. (14)

…
inputs

X�−�+1:�

��
1

��
2

��
�

�1

�2

��

Figure 5: The memory network

unit 𝐸 as follows:

𝐸′ = readout (Q,K, 𝐸) = 𝜑 (QK
⊤

√
𝑑𝑐

)𝐸,

Q = 𝐸𝑡𝑊Q, K = 𝐸𝑊K,

(14)

where𝑊Q,𝑊K ∈ R𝑑𝑐×𝑑𝑐 are the parameters for extracting local
and global features, Q,K ∈ R𝑁×𝑑𝑐 are the learned query and key
to readout the features from the memory unit 𝐸, 𝜑 is the softmax
function, and 𝐸′ ∈ R𝑁×𝑑𝑐 is the outcome feature matrix which
has extracted both local and global features. Thus, we predict the
correlation coefficient matrix for the future time-window, by using
the inner-product similarity between the 𝑖-th element and 𝑗-th
element of 𝐸′ as follows:

𝜌 𝑓 (𝑖, 𝑗) = 𝐸′ (𝑖) · 𝐸′ (𝑗) . (15)

Last, we update the memory unit 𝐸 as follows:
𝐸 = 𝛽𝐸 + (1 − 𝛽)𝐸′, (16)

where 0 < 𝛽 < 1 is a hyper-parameter which controls the percent-
age of existing correlations kept in the memory unit.

The memory network can be optimized by minimizing the mean
square error loss function as follows:

L𝑔𝑟𝑎𝑝ℎ =
1

𝑁 × 𝑁
∑︁

1≤𝑖, 𝑗≤𝑁

(
𝜌 𝑓 (𝑖, 𝑗) − 𝜌 𝑓 (𝑖, 𝑗)

)2
, (17)

where:

𝑆𝑓 =
1
𝑝
(X𝑇+1:𝑇+𝑞 − X𝑇+1:𝑇+𝑞) (X𝑇+1:𝑇+𝑞 − X𝑇+1:𝑇+𝑞)

⊤
,

𝜌 𝑓 (𝑖, 𝑗) =
𝑆𝑓 (𝑖, 𝑗)√︃

𝑆𝑓 (𝑖, 𝑖)𝑆𝑓 (𝑗, 𝑗)
, for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 .

(18)

Similar to Equation (11), we can obtain the probability distri-
bution of relation graphs at the future time-window, denoted as
𝑃𝐺𝐹𝑇

.

4.1.2 Causal graph neural network. Based on Equation (6), we
should combine the observations together with the possible histor-
ical and future relation graphs to predict the future observations.
Thus, at each timestamp 𝑡 , with 𝑡 ∈ [𝑇 − 𝑝 + 1,𝑇], we sample a pos-
sible relation graph according to the probability distribution 𝑃𝐺𝐻𝑇

and 𝑃𝐺𝐹𝑇
, respectively. We denote the sampled relation graphs as

𝐺ℎ𝑡 and𝐺 𝑓 𝑡 , and their adjacency matrix asAℎ𝑡 andA𝑓 𝑡 . Then, we
propose a causal GNN to extract feature from the sampled historical

and future relation graphs, and transfer feature vector 𝑣𝑡 , which
contains information of the observations, into the hidden state vec-
tor 𝑜𝑡 . By this, we efficiently integrate the historical observations
with the possible historical and future relation graphs.

As the dynamic relation graphs can contain many possible rela-
tion graphs, the sampled relation graphs 𝐺ℎ𝑡 and 𝐺 𝑓 𝑡 may be dif-
ferent across time. It is difficult for existing GNN methods [19, 36]
to learn with dynamic relation graphs, as they need to learn a set of
different parameters𝑊𝑡,𝑘 ∈ R𝑑𝑒×𝑑𝑒 , for different graphs at different
timestamps as shown in Eq. (19):

𝑜 =

𝐾∑︁
𝑘=0

{(
A𝑡

)𝑘
𝑣𝑊𝑡,𝑘

}
, 𝑓 𝑜𝑟 𝑡 ∈ [𝑇 − 𝑝 + 1,𝑇 + 𝑞], (19)

where 𝐾 is a hyper-parameter which controls the max hop neigh-
bors used in the graph convolution,

Therefore, we need to propose a causal GNN to deal with this
problem. Firstly, using the feature vector 𝑣𝑖𝑡 from the embedding

layer, we learn a feature vector 𝑣𝑖
ℎ𝑡

=𝑊ℎ𝑣
𝑖
𝑡 ∈ R

𝑑𝑒

2 and a feature

vector 𝑣𝑖
𝑓 𝑡

= 𝑊𝑓 𝑣
𝑖
𝑡 ∈ R

𝑑𝑒

2 for timestamp 𝑡 , which are then used
to combine the historical and future relation graphs, respectively.
𝑊ℎ,𝑊𝑓 ∈ R

𝑑𝑒

2 ×𝑑𝑒 are the learnable parameters which capture the
features for historical and future relation graphs, respectively.

Then, We use the 𝑣ℎ𝑡 and 𝑣 𝑓 𝑡 as the input features for GNN on
the historical relation graph 𝐺ℎ𝑡 and the future relation graph 𝐺 𝑓 𝑡 ,
respectively. To be specific, the causal GNN on relation graph 𝐺ℎ𝑡
with input feature 𝑣ℎ𝑡 , i.e., ★𝐺ℎ𝑡

(𝑣ℎ𝑡), is as follows:

𝑜ℎ𝑡 = ★𝐺ℎ𝑡
(𝑣ℎ𝑡) =

𝐾∑︁
𝑘=0

1
𝑘 + 1

{(
Ãℎ𝑡

)𝑘
𝑣ℎ𝑡𝑊𝑘

}
, (20)

where Ãℎ𝑡 is the adjacency matrix normalized by the diagonal
degree matrix 𝐷 :

𝐷𝑖,𝑖 =
∑︁

1≤ 𝑗≤𝑁
Aℎ𝑡 (𝑖, 𝑗), Ãℎ𝑡 = 𝐷

−1Aℎ𝑡 , (21)

and 𝑊𝑘 ∈ R
𝑑𝑒

2 × 𝑑𝑒

2 , with 𝑘 ∈ [0, 𝐾], are the learnable parame-
ters which extract the feature from 𝑘-th hop neighbors into the
output 𝑜ℎ𝑡 ∈ R𝑁× 𝑑𝑒

2 . The same as Equation (20), we can get
𝑜 𝑓 𝑡 = ★𝐺𝑓 𝑡

(𝑣 𝑓 𝑡). And finally, the hidden state vector 𝑜𝑡 ∈ R𝑁×𝑑𝑒

for all time series, which combine the information of the histori-
cal observations with both historical and future relation graphs, is
given by 𝑜𝑡 = (𝑜ℎ𝑡 | |𝑜 𝑓 𝑡).

Thus, instead of learning a set of parameters𝑊𝑡,𝑘 for different
relation graphs at different timestamps 𝑡 ∈ [𝑇 − 𝑝 + 1,𝑇 + 𝑞] with
existing GNN, our causal GNN can use 𝑣ℎ𝑡 and 𝑣 𝑓 𝑡 to deal with the
dynamics across time, and learn unified neural network parameters
𝑊ℎ,𝑊𝑓 and𝑊𝑘 to extract features from any relation graphs. There
are two benefits: (1) It is difficult to train a set of parameters𝑊𝑡,𝑘 ,
which can be seen in Section 5.3. (2) Our causal GNN is more
efficient regarding time and space complexity, which can be seen
in Section 5.5.

4.2 The Reasoning Network
Until now we have got the hidden state 𝑜𝑡 , which only contains
the features at each timestamp 𝑡 separately. Now, we propose a

758

��

ℎ�−�:�−1 ℎ�

reasoning past τ steps for time �

R
NReasoning

Network

➕

……

TRUE

→

weight

TRUE

→

weight

TRUE

→

weight

ℎ�−� �� �� ℎ�−2 �2 �� ℎ�−1 �1 ��

……

×
➕×

×

➕

ℎ�−�
�

➕ ➕

ℎ�−2
� ℎ�−1

�

��−� ��−2 ��−1

Figure 6: The reasoning network will output the hidden state for multiple time series at each timestamp 𝑡 using the previous
states from past 𝜏 steps.

reasoning network as shown in Figure 2(c), which learns a feature
vector ℎ𝑡 from not only the current hidden state 𝑜𝑡 but also its pre-
vious 𝜏 timestamps feature vectors (ℎ𝑡−𝜏 , · · · , ℎ𝑡−2, ℎ𝑡−1), for each
timestamp 𝑡 recurrently. Specifically, ℎ𝑡 contains information of in
which way its past 𝜏 timestamps influence the current timestamp
𝑡 , where 1 ≤ 𝜏 ≤ 𝑝 is a hyper-parameter to controls the previous
timestamps used in the reasoning network which make a trade off
between efficiency and effectiveness. As this is a recurrent progress,
when reasoning for the timestamp 𝑡 to get ℎ𝑡 , we have obtained
ℎ𝑡−𝑘 in previous timestamps, with 1 ≤ 𝑘 ≤ 𝜏 .

As shown in Figure 6, the reasoning network firstly combines
each feature vector ℎ𝑡−𝑘 with a positional embedding 𝑐𝑘 , which
learns the feature to present a relative time interval from each past
timestamp 𝑡 − 𝑘 to the current timestamp 𝑡 , into a feature vector
ℎ𝑐
𝑡−𝑘 . Then, the reasoning network identifies the importance of the
previous timestamp 𝑡 − 𝑘 on the current timestamp 𝑡 by evaluating
the horn clause, i.e., ℎ𝑐

𝑡−𝑘 → 𝑜𝑡 , and outputs the evaluating result
as its importance weight𝑤𝑡−𝑘 . Last, the reasoning network obtains
the feature vector ℎ𝑡 ∈ R𝑁×𝑑𝑒 for the current timestamp 𝑡 , which
is used for forecasting the observations, by integrating all previous
feature vectorsℎ𝑐

𝑡−𝑘 with their importance weightsw𝑡−𝑘 as follows:

ℎ𝑡 =
∑︁

1≤𝑘≤𝜏
w𝑡−𝑘 × ℎ𝑐𝑡−𝑘 + 𝑜𝑡 , (22)

such that ℎ𝑡 contains the feature of how multiple time series get
into the current hidden state 𝑜𝑡 based on the condition of previous
feature vectors (ℎ𝑡−1, ℎ𝑡−2, · · · , ℎ𝑡−𝜏).

Nowwe present the procedure of our reasoning network in more
detail. Firstly, the fact is that under the previous feature vectors
(ℎ𝑡−𝜏 , · · · , ℎ𝑡−2, ℎ𝑡−1) all together, the multiple time series got into
hidden state 𝑜𝑡 for 𝑡 ≤ 𝑇 . Therefore, we can have that (ℎ𝑡−𝜏 ∧ · · · ∧
ℎ𝑡−2∧ℎ𝑡−1) → 𝑜𝑡 is TRUE and (ℎ𝑡−𝜏 ∧· · ·∧ℎ𝑡−2∧ℎ𝑡−1) → ¬𝑜𝑡 is
FALSE, where the conjunction operation∧ joins two feature vectors
that multiple time series had in previous timestamps,→ 𝑜𝑡 = TRUE
means that all the previous feature vectors will result in the current
hidden state 𝑜𝑡 , ¬𝑜𝑡 denotes the opposite of the hidden state 𝑜𝑡 ,
and→ ¬𝑜𝑡 = FALSE means that under the previous feature vectors
(ℎ𝑡−𝜏 , · · · , ℎ𝑡−2, ℎ𝑡−1), the multiple time series will not get into
hidden state ¬𝑜𝑡 .

In order to capture the sequential information of the time depen-
dent previous feature vectors, we introduce a total of 𝜏 learnable
matrices 𝑐1, 𝑐2, · · · , 𝑐𝜏 ∈ R𝑁×𝑑𝑒 , which are used as the positional
embedding [35]. Specifically, each 𝑐𝑘 will learn to model the rel-
ative time interval from the past timestamp 𝑡 − 𝑘 to the current
timestamp 𝑡 . Thus, we can get the time-aware feature vectors:

ℎ𝑐
𝑡−𝑘 = ℎ𝑡−𝑘 + 𝑐𝑘 , for 1 ≤ 𝑘 ≤ 𝜏, (23)

and model the historical sequential information by:

(ℎ𝑐𝑡−𝜏 ∧ · · · ∧ ℎ𝑐𝑡−2 ∧ ℎ
𝑐
𝑡−1) → 𝑜𝑡 is TRUE,

(ℎ𝑐𝑡−𝜏 ∧ · · · ∧ ℎ𝑐𝑡−2 ∧ ℎ
𝑐
𝑡−1) → ¬𝑜𝑡 is FALSE

(24)

where 𝑡 ≤ 𝑇 .
Then, by evaluating whether each horn clause

ℎ𝑐
𝑡−𝑘 → 𝑜𝑡 (25)

is TRUE, we can measure whether the previous feature vector ℎ𝑐
𝑡−𝑘

results in the current hidden state 𝑜𝑡 . To be specific, if ℎ𝑐
𝑡−𝑘 → 𝑜𝑡

is TRUE, we can get that previous feature vector ℎ𝑐
𝑡−𝑘 is the cause

for the multiple time series to get into current state 𝑜𝑡 . On the
other hand, if ℎ𝑐

𝑡−𝑘 → 𝑜𝑡 is FALSE, we can get that previous feature
vector ℎ𝑐

𝑡−𝑘 is not the cause for the multiple time series to get into
current state 𝑜𝑡 .

Now, we model Equations (24) and (25) using our neural rea-
soning network, which achieves the above logic operations, i.e., ¬,
∧ and →, by neural logic modules. First, We use ℎ𝑎, ℎ𝑏 and ℎ𝑐 to
denote any feature vectors, such as ℎ𝑐

𝑡−𝑘 , and each logic operation
is calculated by a neural logic module with fully connected layers
as follows:

¬ℎ𝑎 = −ℎ𝑎
ℎ𝑎 ∧ ℎ𝑏 ∧ · · · ∧ ℎ𝑐 = 𝜎

(
(ℎ𝑎 ⊙ ℎ𝑏 ⊙ · · · ⊙ ℎ𝑐)𝑊𝑎

)
ℎ𝑎 → ℎ𝑏 = 𝜎

(
(ℎ𝑎 | |ℎ𝑏)𝑊𝑖

) (26)

where ℎ𝑎, ℎ𝑏 ∈ R𝑁×𝑑𝑒 denote the feature vectors for calcula-
tion,𝑊𝑎 ∈ R𝑑𝑒×𝑑𝑒 and𝑊𝑖 ∈ R2𝑑

𝑒×𝑑𝑒 are the learnable network
parameters to achieve the logic operations for ∧ and→, and ⊙ is
the Hadamard product which multiply matrix on element-wise.

Thus, all logical expressions, such as Equation (24), can be cal-
culated by the neural modules using Equations (26), step by step.

759

Taking Equation (24), (ℎ𝑐𝑡−𝜏∧· · ·∧ℎ𝑐𝑡−2∧ℎ
𝑐
𝑡−1) → 𝑜𝑡 , as an example,

we can calculate it as follows:
Exp1 = (ℎ𝑐𝑡−𝜏 ∧ · · · ∧ ℎ𝑐𝑡−2 ∧ ℎ

𝑐
𝑡−1)

= 𝜎
(
(ℎ𝑐𝑡−𝜏 ⊙ · · · ⊙ ℎ𝑐𝑡−2 ⊙ ℎ

𝑐
𝑡−1)𝑊𝑎

)
Exp+ = Exp1 → 𝑜𝑡 = 𝜎

(
(Exp1 | |𝑜𝑡)𝑊𝑖

) (27)

where Exp+ ∈ R𝑁×𝑑𝑒 is the final outcome of logical expression
(ℎ𝑐𝑡−𝜏 ∧ · · · ∧ ℎ𝑐

𝑡−2 ∧ ℎ
𝑐
𝑡−1) → 𝑜𝑡 . In the same way, we can get the

final outcome of logical expression (ℎ𝑐𝑡−𝜏∧· · ·∧ℎ𝑐𝑡−2∧ℎ
𝑐
𝑡−1) → ¬𝑜𝑡

as Exp− ∈ R𝑁×𝑑𝑒 .
Then, another neural module, denoted as isT (), is used to evalu-

ate whether an expression Exp𝑎 is TRUE or FALSE by:

isT (Exp𝑎) = sigmoid (Exp𝑎𝑊𝑟), (28)

where Exp𝑎 ∈ R𝑁×𝑑𝑒 denotes the outcome of a logical expres-
sion, such as Exp+, for the TRUE/FALSE evaluation,𝑊𝑟 ∈ R𝑑𝑒×1
is the learnable parameter to evaluate the logical expression, and
isT (Exp𝑎) is the evaluation result. The sigmoid function makes sure
that the evaluation result is between 0 and 1, where isT (Exp𝑎) = 0
means that the logical expression is FALSE and isT (Exp𝑎) = 1
means that the logical expression is TRUE.

Thus, to satisfy the truth denotes by Equation (24), we have the
logical regularization, which is achieved by minimizing the loss
function as below:

L𝑟𝑒𝑔 = {1 − isT (Exp+)} + isT (Exp−) (29)

where isT (Exp+) being 1 denotes that with the previous feature vec-
tors (ℎ𝑡−𝜏 , · · · , ℎ𝑡−2, ℎ𝑡−1) the multiple time series actually got into
hidden state 𝑜𝑡 , and isT (Exp−) being 0 denotes that the multiple
time series did not get into hidden state ¬𝑜𝑡 .

Next, we can measure whether the previous feature vector ℎ𝑐
𝑡−𝑘

results in the current hidden state 𝑜𝑡 , by:

Exp𝑡−𝑘 = (ℎ𝑐
𝑡−𝑘 → 𝑜𝑡) = (ℎ𝑐

𝑡−𝑘 | |𝑜𝑡)𝑊𝑖 , (30)

w𝑡−𝑘 = isT (Exp𝑡−𝑘), (31)

where w𝑡−𝑘 is the importance weight. The more the w𝑡−𝑘 is close
to 1, the more possible the previous feature vector ℎ𝑐

𝑡−𝑘 is the cause
for the multiple time series to get into current state 𝑜𝑡 .

Lastly, the reasoning network get the feature vector ℎ𝑡 ∈ R𝑁×𝑑𝑒

for the current timestamp 𝑡 by integrating all previous feature vec-
tors ℎ𝑐

𝑡−𝑘 with their importance weights w𝑡−𝑘 using Equation (22).
In this way, the reasoning network is able to explicitly learn how

historical timestamps have different influence on future timestamps
with different horn clauses.

4.3 The Projection Layer
We use the zero matrix 𝑣𝑇+1, 𝑜𝑇+1 ∈ R𝑁×𝑑𝑒 to present the initial
hidden states of the multiple time series for the first future times-
tamp𝑇 +1, which denote the beginning of forecasting on the future
observations. Then, after the reasoning network outputs the feature
vector ℎ𝑇+1 based on the initial hidden state 𝑜𝑇+1 and the past 𝜏
feature vectors (ℎ𝑡−𝜏+1, · · · , ℎ𝑡−1, ℎ𝑡), the projection layer outputs
the forecasting observations X̂𝑇+1 ∈ R𝑁×1 as follows:

X̂𝑇+1 = ℎ𝑇+1𝑊𝑝 , (32)

Table 3: The statistics of datasets

Dataset N L Split 𝑝 𝑞

METR-LA 207 34,272 7:1:2 12 12
PEMS-BAY 325 52,116 7:1:2 12 12
PEMS04 307 16,992 6:2:2 12 12
PEMS08 170 17,856 6:2:2 12 12
Solar-Energy 137 52,560 6:2:2 168 1
Electricity 321 26,304 6:2:2 168 1

where𝑊𝑝 ∈ R𝑑𝑒×1 is the network parameter mapping the feature
vectors to the observations of time series. Next, the new feature
vector 𝑣𝑇+2 for next timestamp𝑇 + 2 is obtained from the predicted
observations X̂𝑇+1 as follows:

𝑣𝑇+2 = X̂𝑇+1𝑊𝑛, (33)

where𝑊𝑛 ∈ R1×𝑑𝑒 is the learnable parameter to extract feature
from the predicted observations. In this way, we can predict the
observations for all the 𝑞 future timestamps, X̂𝑇+1:𝑇+𝑞 , recurrently.

4.4 The Objective Function
We use the objective function to enable model learning with gradi-
ent descent. Take the mean absolute error (MAE) as example:

L𝑀𝐴𝐸 =
1

𝑁 × 𝑞
����X̂𝑇+1:𝑇+𝑞 − X𝑇+1:𝑇+𝑞

����1, (34)

where
����𝑀 ����1 = ∑

𝑖, 𝑗 |𝑀𝑖, 𝑗 |.
Overall, thememory network is optimized byminimizing Eq. (17),

and the embedding layer, the causal GNN, the reasoning network
and the projection layer is optimized by minimizing Eq. (35):

L = L𝑀𝐴𝐸 + 𝜆L𝑟𝑒𝑔, (35)

where 𝜆 is a hyper-parameter controls the importance of logical
regularization.

5 EXPERIMENTS
In this section, we empirically evaluate MTSF-DG on real-world
benchmark datasets to justify our model. We introduce the mul-
tiple time series forecasting datasets, evaluation metrics and the
competitor baselines first. Then we present the main results, and
analyze our model with more details and ablation studies.

5.1 Experimental Settings
5.1.1 Datasets. We use a series of benchmark datasets from traffic
and energy domains to evaluate the performance of multiple time
series forecasting:
• METR-LA and PEMS-BAY: Both datasets are traffic speed time

series datasets, released by Li et al. [23]. The METR-LA dataset
contains the traffic speed measured by 207 sensors on the high-
ways of Los Angeles County ranging from Mar. 2012 to Jun. 2012.
The PEMS-BAY dataset contains the traffic speed measured by
325 sensors in the Bay Area ranging from Jan. 2017 to May 2017.

• PEMS04 and PEMS08: Both datasets are traffic flow time series
collected from the Caltrans Performance Measurement System
(PEMS), released by Bai et al. [1]. The PEMS04 dataset contains
the traffic flow measured by 307 sensors in the San Francisco Bay

760

Table 4: Accuracy of traffic domain forecasting

Data 𝑞 Metric DCRNN GWave AGCRN MTGNN STFGNN Cformer FEDFormer MSDR ESG MTSF-DG

METR
-LA

3rd
MAE 2.77 2.69 2.83 2.69 2.70 2.69 2.89 2.71 2.68 2.62
RMSE 5.38 5.15 5.45 5.18 5.35 5.17 5.51 5.18 5.15 5.11
MAPE 7.30% 6.90% 7.56% 6.86% 7.21% 6.88% 7.63% 7.08% 6.93 6.78%

6th
MAE 3.15 3.07 3.20 3.05 3.10 3.05 3.27 3.09 3.06 2.98
RMSE 6.45 6.22 6.55 6.17 6.36 6.18 6.56 6.33 6.19 6.13
MAPE 8.80% 8.37% 8.79% 8.19% 8.60% 8.21% 8.87% 8.57% 8.20% 8.14%

12th
MAE 3.60 3.53 3.58 3.49 3.51 3.48 3.69 3.50 3.49 3.39
RMSE 7.60 7.37 7.41 7.23 7.46 7.27 7.66 7.33 7.23 7.16
MAPE 10.50% 10.01% 10.13% 9.87% 10.05% 9.86% 10.44% 9.98% 9.96% 9.58%

PEMS
-BAY

3rd
MAE 1.38 1.30 1.35 1.32 1.34 1.31 1.47 1.32 1.31 1.28
RMSE 2.95 2.74 2.83 2.79 2.81 2.75 3.02 2.84 2.74 2.67
MAPE 2.90% 2.73% 2.87% 2.77% 2.84% 2.72% 2.96% 2.77% 2.76% 2.63%

6th
MAE 1.74 1.63 1.69 1.65 1.66 1.63 1.81 1.64 1.63 1.57
RMSE 3.97 3.70 3.81 3.74 3.76 3.69 4.01 3.78 3.71 3.63
MAPE 3.90% 3.67% 3.84% 3.69% 3.83% 3.66% 3.99% 3.68% 3.69% 3.56%

12th
MAE 2.07 1.95 1.96 1.94 1.98 1.93 2.06 1.94 1.92 1.85
RMSE 4.74 4.52 4.52 4.49 4.52 4.45 4.78 4.51 4.42 4.35
MAPE 4.90% 4.63% 4.67% 4.53% 4.73% 4.49% 4.88% 4.55% 4.52% 4.40%

PEMS
04 1∼12

MAE 24.70 19.16 19.83 19.32 19.83 19.50 23.48 19.29 19.47 18.67
RMSE 38.12 30.46 32.26 31.57 31.88 32.00 37.27 31.54 31.66 30.17
MAPE 17.12% 13.26% 12.97% 13.52% 13.02% 13.07% 15.44% 12.89% 13.30% 12.64%

PEMS
08 1∼12

MAE 17.86 15.13 15.95 15.71 16.64 15.88 17.24 15.11 15.70 14.80
RMSE 27.83 24.07 25.22 24.62 26.22 25.07 26.93 24.42 24.81 23.68
MAPE 11.45% 10.10% 10.09% 10.03% 10.60% 10.17% 11.21% 9.93% 10.07% 9.54%

Area ranging from Jan. 2018 to Feb. 2018. The PEMS08 dataset
contains the traffic flow measured by 170 sensors in the San
Bernardino Area ranging from Jul. 2016 to Aug. 2016.

• Solar-Energy: The Solar-Energy dataset contains the solar power
production records collected from 137 PV plants in the Alabama
State in 2007, released by Lai et al. [20].

• Electricity: The Electricity energy dataset contains the electricity
consumption records collected from 321 clients from 2012 to
2014, released by Lai et al. [20].
The detailed statistics of these datasets are shown in Table 3,

where 𝑁 is the number of time series and 𝐿 is the total number of
timestamps. We follow the same train-validation-test splits as in
the original papers [1, 20, 23], as shown in the “Split” column. More
details about datasets can be seen in the Appendix.

5.1.2 Evaluation Metrics. Following the evaluation methodology
in existing works [1, 20, 23], we use mean absolute error (MAE),
root mean squared error (RMSE), mean absolute percentage error
(MAPE) to evaluate the accuracy of multi-step forecasting, and use
Root Relative Squared Error (RRSE) and Empirical Correlation Co-
efficient (CORR) to measure the accuracy of single-step forecasting.
For MAE, RMSE, MAPE, and RRSE, lower values indicate higher
accuracy, while larger CORR values indicate higher accuracy.

5.1.3 Baselines. We compare MTSF-DG with baseline methods
summarized as follows:
• Methods without relation graphs. VAR-MLP: It is an auto-

regressive model using multilayer perception (MLP) [48]. GP:
It uses Gaussian Process to model time series [34]. LSTNet: It
combines convolutional neural network (CNN) with RNN to

learn temporal dependencies [20]. TPA: It is a naive Transformer
model [32]. FEDFormer: It uses frequency-enhanced Transformer
to extract trend and periodic features [33]. Crossformer: It is
the state-of-art Transformer based model, which uses a cross-
dimension attention to learn the historical correlations among
time series, without learning graphs [49].

• Methods with a pre-defined graph. DCRNN: It proposes dif-
fusion graph convolutions to extract spatial dependencies [23].
GWave: It proposes 1D dilated CNN and combines with diffusion
graph convolutions [43]. AGCRN: It proposes adaptive recurrent
graph convolution network [1]. MSDR: It proposes attention
based graph convolutions and multi-step RNN [24].

• Methods learn relation graphs. MTGNN: It learns a static
relation graph that models similarities among multiple time se-
ries, and uses graph convolutions and CNN for forecasting [42].
DGTS: It constructs a static relation graph based on the Euler
distances among multiple time series, and uses recurrent graph
convolutions for forecasting [31]. STFGNN: It constructs a static
relation graph based on the Dynamic Time Warping similari-
ties [16] among multiple time series [22]. ESG: It cuts the his-
torical observations into sub time-windows, learns a historical
relation graph for each time-window separately, and use RNN
for forecasting [45].

We report results from the original papers if baselines conduct ex-
periments on the dataset with the same setting. For the rest, we
have carefully tuned the hyper-parameters based on the recommen-
dations from their original papers.

761

Table 5: Accuracy of energy domain forecasting

Dataset Solar-Energy Electricity
𝑞 𝑞

Method Metric 3rd 12th 3rd 12th

VAR-MLP RRSE 0.1922 0.4244 0.1393 0.1557
CORR 0.9829 0.9058 0.8708 0.8192

GP RRSE 0.2259 0.5200 0.1500 0.1621
CORR 0.9751 0.8518 0.8670 0.8394

LSTNet RRSE 0.1843 0.3254 0.0864 0.1007
CORR 0.9843 0.9467 0.9283 0.9077

TPA RRSE 0.1803 0.3234 0.0823 0.0964
CORR 0.9850 0.9487 0.9439 0.9250

MTGNN RRSE 0.1778 0.3109 0.0745 0.0916
CORR 0.9852 0.9509 0.9474 0.9278

DGTS RRSE 0.1791 0.3144 0.0767 0.0925
CORR 0.9852 0.9501 0.9470 0.9275

Crossformer RRSE 0.1772 0.3089 0.0741 0.0905
CORR 0.9859 0.9511 0.9474 0.9291

FEDFormer RRSE 0.1788 0.3141 0.0769 0.0924
CORR 0.9852 0.9498 0.9465 0.9280

ESG RRSE 0.1708 0.3073 0.0718 0.0898
CORR 0.9865 0.9519 0.9494 0.9321

MTSF-DG RRSE 0.1692 0.3025 0.0701 0.0882
CORR 0.9874 0.9533 0.9502 0.9339

Table 6: Ablation studies

Dataset PEMS04 PEMS08
Method MAE RMSE MAPE MAE RMSE MAPE
MTSF-DG 18.67 30.17 12.64% 14.80 23.68 9.54%

w/o memory 18.68 30.27 12.79% 14.82 23.69 9.58%
w/o causal GNN 18.72 30.23 12.76% 14.85 23.73 9.59%

𝐺ℎ𝑡 only 18.98 30.59 12.93% 15.07 23.97 9.85%
𝐺 𝑓 𝑡 only 18.93 30.51 12.91% 14.93 23.95 9.77%

w Transformer 18.91 30.44 12.83% 14.98 23.93 9.69%

5.2 Overall Comparison.
Tables 4 and 5 present the accuracy of MTSF-DG and the baselines
on all datasets. We randomly repeat each method 5 times and report
the average result. We use bold to highlight the best accuracy, which
significantly outperforms the underline second best accuracy.

Key observations are as follows. Firstly, MTSF-DG consistently
outperforms the state-of-the-art baseline methods on all datasets.
It demonstrates that MTSF-DG is able to learn the dynamic corre-
lations among multiple time series and use them to improve the
forecasting performance.

Secondly, from Table 5 we observe that the MTGNN, DGTS,
ESG and MTSF-DG methods, which can learn the relation graph(s)
for multiple time series, perform better when comparing to VAR-
MLP, GP, LSTNet, TPA and FEDFormer, which cannot capture
the relations among multiple time series. Crossformer learns the
correlations among time series with Cross-Transformer, which also
performs better when comparing to VAR-MLP, GP, LSTNet, TPA
and FEDFormer. It demonstrates that capturing the relations among
multiple time series is important for multiple time series forecasting.

Table 7: Parameter sensitivity

Dataset PEMS04 PEMS08
𝜏 MAE RMSE MAPE MAE RMSE MAPE
2 19.83 31.21 12.91% 15.63 25.12 10.00%
3 19.20 30.77 12.73% 15.03 24.23 9.76%
4 18.67 30.17 12.64% 14.80 23.68 9.54%
5 18.69 30.22 12.65% 14.79 23.73 9.52%
12 18.72 30.25 12.69% 14.82 23.76 9.60%

Table 8: Runtime and total parameters used

Dataset PEMS04 PEMS08

Method Runtime
(s/epoch)

Parameters
(K)

Runtime
(s/epoch)

Parameters
(K)

DCRNN 226 371 159 371
DGTS 262 381 179 378
MSDR 618 1174 438 1174
ESG 378 1205 255 1205

MTSF-DG 217 803 151 799
w/o causal GNN 298 1270 194 1205

Thirdly, we observe that our MTSF-DG method is also superior
when comparing to the other graph based methods, which use a
single relation graph or only learn historical relation graphs, to
enhance the forecasting accuracy. This is due to the fact that the
baselines cannot capture the dynamic correlations among multiple
time series which may change across time and be different in the
future, where different future relation graphs may influence the
future observations differently. A single relation graph or the his-
torical relation graph will bias the forecasting. GWave, MTGNN,
STFGNN, MSDR and ESG can only have the second best accuracy
on some datasets. There does not exist a single baseline method
that consistently outperforms others, which suggests that a single
relation graph or the historical relation graph is insufficient for mul-
tiple time series forecasting. In contrast, our MTSF-DG can learn
the historical and future correlations dynamically, and consistently
outperforms baseline methods.

Lastly, MTSF-DG achieves the best accuracy compared to Trans-
former based models. This suggests that our reasoning network is
also good at learning temporal dependencies by explicitly learn-
ing how historical timestamps have different influence on future
timestamps. This enables MTSF-DG to get more high performance
compared to TPA, FEDFormer and Crossformer.

5.3 Ablation Studies.
We conduct ablation studies to validate the effectiveness of our key
components that contribute to the improvements. In particular, we
compare MTSF-DG with the following variants:
• w/o memory network: This variant does not use the memory

network for predicting the future relation graph distribution. It
directly uses the local features 𝐸𝑇 .

• w/o causal GNN: This variant does not use the causal GNN. It
use the existing GNN on the sampled historical relation graph
and future relation graph at each timestamp with Eq. (19), and
learn a set of parameters𝑊𝑡,𝑘 .

762

(a) Dynamic correlations between time series 1 and 10 (b) Heatmap for 𝑃𝐺𝐻𝑇
before T (c) Heatmap for 𝑃𝐺𝐹𝑇

after T

Figure 7: Case study

Figure 8: The static graph from DGTS

• 𝐺ℎ𝑡 only: This variant does not use causal graph layer. It applies
the existing GNN [43] on the sampled historical relation graph
𝐺ℎ𝑡 only.

• 𝐺 𝑓 𝑡 only: This variant does not use causal graph layer. It applies
the existing GNN [43] on the sampled future relation graph 𝐺 𝑓 𝑡
only.

• w Transformer: This variant does not use reasoning network. It
uses Transformer [35] to model with the hidden states.
Table 6 shows the accuracy of different variants on PEMS04 and

PEMS08 datasets. For the other datasets, the results show similar
trends. From Table 6 we observe that: (1) MTSF-DG achieves bet-
ter accuracy comparing to its variant w/o memory network. This
demonstrates the effectiveness of the proposed memory network
for predicting the future relation graph distribution. It can improve
the forecasting accuracy by providing more accurate future cor-
relations among multiple time series. (2) The information from
different hops are not equally important. The near hop neighbors
are more important to present the correlations among time series.
(3) The existing GNN which learns a set of parameter will suffer
from over-fitting and performs worse. (4) Simply using the exist-
ing GNN [23, 43] with a single historical relation graph or future
relation graph will lower the performance significantly. This result
is consistent with our analyses in Section 3, suggesting that our
causal GNN, which can learn with historical relation graph and fu-
ture relation graph jointly, is more effective in multiple time series
forecasting. (4) MTSF-DG with reasoning network outperforms the
variant with Transformer, which justifying that the Transformer,

which only model the influence among historical timestamps, is
insufficient to accurately forecast future observations under change-
able future relation graphs. However, our reasoning network is able
to do so, as it can explicitly learn how historical timestamps have
different influence on future timestamps.

5.4 Parameter Sensitivity
We evaluate the impact of the hyperparameter, i.e., 𝜏 , which con-
trols the max previous timestamps used in the reasoning network.
The experimental results are shown in Table 7. If we use more
previous timestamps in the reasoning network up to 4 timestamps,
the MTSF-DG model performs better. The reason is that for the
traffic prediction task we need to learn the temporal influence for a
long range. When the value of 𝜏 changes to 5 and 12, the accuracy
results are relatively stable.

5.5 Runtime and Total Parameters Used
For our dynamic graph learning, the time complexity is 𝑂 (𝑁 2𝑑).
For causal GNN, the time complexity is 𝑂 (𝐾𝑁 2𝑑). For reasoning
network, the time complexity is 𝑂 ((𝑝 + 𝑞)𝑁𝑑). We also show the
overall runtime and the number of total parameters used for differ-
ent methods in Table 8.

We can see that MTSF-DG is better than these baseline methods
regarding the runtime. We can also see that the time and space
complexity of MTSF-DG is smaller than MSDR, ESG and the variant
w/o causal GNN. Our model is only worse than DCRNN and DGTS
regarding the number of total parameters used. This is because
DCRNN and DGTS use only one relation graph for all timestamps,
and our model need more space to learn the dynamic relation
graphs.

5.6 Case Study
To show the superiority of our dynamic graph modeling, we give
the case study on METR-LA dataset and visualize in Figure 7. From
Figure 7(a), we can see that the time series 1 and 10 are more
correlated to each other during the first 40 timestamps and the 80-
120 timestamps, and are less correlated during the 40-80 timestamps.
At timestamp T = 80, if we use the 12 historical observations to
predict the 12 future observations, these dynamic correlations are
captured by the probability distribution of historical relation graphs

763

Table 9: Comparisons between representative methods.

Method Dynamic relation graphs in encoder Dynamic relation graphs in decoder
[7, 20, 32–34, 37, 39, 48, 49] ×, only use historical observations ×
[1, 9, 12, 22, 24, 31, 40, 42, 46] ×, only a static relation graph ×

[8, 45]
√
, but only historical relation graphs ×

MTSF-DG
√ √

𝑃𝐺𝐻𝑇
and the probability distribution of future relation graphs 𝑃𝐺𝐹𝑇

,
as shown in Figure 7(b) and Figure 7(c). However, the baseline DGTS
can only learn a static, historical relation graph as shown in Figure 8,
which cannot capture the correlation between time series 1 and 10
that sometimes occurs. By learning such dynamic relation graphs
for historical and future time-window, our MTSF-DG can improve
the forecasting performance.

6 RELATEDWORK
We review existing works on time series forecasting and graph
learning, and summary them in Table 9. We also compare reasoning
network with RNN and Transformer based models in Figure 2.

6.1 Time Series Forecasting
Early methods try to utilize the statistical methods, e.g., Auto-
Regressive model (AR) [48] and Gaussian Process model (GP) [34],
to forecast on time series, which model the future observations
as the linear combination of the nearby historical observations,
called the temporal dependencies. Some works [32, 37] proposed
to utilize RNN [6], TCN [21] or attention network [35] for time
series forecasting by modeling dependencies using more historical
observations. LSTNet [20] employs 1D CNN and RNN to capture
temporal dependencies. N-BEATS [28] uses fully connected MLP
and residual blocks to predict the trend and periodicity. Times-
net [39] propose a 2D CNN to capture temporal dependencies and
periodic frequency. Triformer [7] proposes a Transformer based
time series forecasting model with linear complexity attention. FED-
Former [33] uses frequency-enhanced Transformer to extract trend
and periodic features. Crossformer [49] uses a cross-dimension
attention to implicitly learn the historical correlations among time
series without graphs.

However, these methods only use historical observations to pre-
dict future observations, and cannot use a relation graph to capture
correlations among time series explicitly.

Then, there have been a lot of GNN basedmethods for traffic time
series forecasting [9, 12, 46]. One kind of correlations among multi-
ple time series can be the spatial distance among different locations,
which naturally form a spatial graph. The GNN based methods
capture spatial dependencies by aggregating features [36, 50] from
the neighbors on the spatial graph. DCRNN [23] proposes diffusion
graph convolutions to extract spatial dependencies and use GRU for
forecasting. AGCRN proposes adaptive recurrent graph convolution
network to capture node-specific features for each time series [1].
Graph WaveNet [43] combines diffusion graph convolutions with
gated dilated TCN.

However, these methods need a pre-defined graph to present
correlations among time series in advance, and they cannot model
the dynamic relation graphs.

6.2 Graph Learning
Most recently, a new trend is to employ graph learning [13] to
learn relation graphs that models correlations among multiple time
series without requiring spatial distance in advance, to enable uni-
versal multiple time series forecasting. MTGNN [42], STFGNN [22]
and DGSL [31] construct a static relation graph, where time series
are considered as nodes, and two time series are connected by an
edge if their observations are similar measured by the Cosine dis-
tances, Euler distances or Dynamic Time Warping distances [16].
AutoCTS [40] automatically search from RNN, TCN, GNN and at-
tention network, to build a better deep neural network to learn a
static relation graph and predict future observations.

EnhanceNet [8] and ESG [45] cut the historical observations into
sub time-windows, and construct a historical relation graph which
is used in each time-window separately.

However, EnhanceNet and ESG are incapable of learning the
dynamic correlations for the future timestamps. Besides, they only
use dynamic historical relation graphs in encoder to extract the in-
variant temporal dependencies from historical observations, which
is used to predict the observations for all future timestamps simul-
taneously. They fail to use the dynamic relation graphs in decoder
and cannot learn the different temporal dependencies. But our
MTSF-DG can learn the dynamic correlations for the future times-
tamps using the memory network, and learn the different temporal
dependencies using the reasoning network in both encoder and
decoder.

7 CONCLUSION
We present MTSF-DG for multiple time series forecasting. We pro-
pose to learn historical relation graphs, and predict future rela-
tion graphs to capture the dynamic correlations with the memory
network, by optimizing the relation graph distributions from an
empirical covariance matrix. Then we propose a causal GNN to
extract features from both historical and future relation graphs
efficiently. Lastly, we propose a reasoning network to explicitly
learn how historical timestamps have different influence on future
timestamps with the logical operations and symbolic reasoning
procedure, and predict the future observations based on reasoning
the future feature vectors. Experiments on six benchmark datasets
demonstrate the superiority of our method. In future work, it is
of interest to extend MTSF-DG to other time series tasks, such as
abnormality detection and prediction.

ACKNOWLEDGMENTS
This work was partially supported by Independent Research Fund
Denmark under agreements 8022-00246B and 8048-00038B, and the
VILLUM FONDEN under agreement 40567.

764

REFERENCES
[1] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive Graph

Convolutional Recurrent Network for Traffic Forecasting. In NeurIPS. 11465–
11475.

[2] David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang,
and Christian S. Jensen. 2022. Unsupervised Time Series Outlier Detection with
Diversity-Driven Convolutional Ensembles. Proc. VLDB Endow. 15, 3 (2022),
611–623.

[3] David Campos, Miao Zhang, Bin Yang, Tung Kieu, Chenjuan Guo, and Christian S.
Jensen. 2023. LightTS: Lightweight Time Series Classification with Adaptive
Ensemble Distillation. Proc. ACM Manag. Data 1, 2 (2023), 171:1–171:27.

[4] Hanxiong Chen, Shaoyun Shi, Yunqi Li, and Yongfeng Zhang. 2021. Neural
Collaborative Reasoning. InWWW. 1516–1527.

[5] Yunyao Cheng, Peng Chen, Chenjuan Guo, Kai Zhao, Qingsong Wen, Bin Yang,
and Christian S. Jensen. 2024. Weakly Guided Adaptation for Robust Time Series
Forecasting. Proc. VLDB Endow. (2024).

[6] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In EMNLP. 1724–1734.

[7] Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and
Shirui Pan. 2022. Triformer: Triangular, Variable-Specific Attentions for Long
Sequence Multivariate Time Series Forecasting. In IJCAI. 1994–2001.

[8] Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, and Sinno Jialin
Pan. 2021. EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time
Series Forecasting. In ICDE. 1739–1750.

[9] Razvan-Gabriel Cirstea, Bin Yang, Chenjuan Guo, Tung Kieu, and Shirui Pan.
2022. Towards Spatio- Temporal Aware Traffic Time Series Forecasting. In ICDE.
2900–2913.

[10] Razvan-Gabriel Cirstea, Bin Yang, and Chenjuan Guo. 2019. Graph Atten-
tion Recurrent Neural Networks for Correlated Time Series Forecasting.. In
MileTS19@KDD.

[11] Sayda Elmi and Kian-Lee Tan. 2021. DeepFEC: Energy Consumption Prediction
under Real-World Driving Conditions for Smart Cities. InWWW. ACM / IW3C2,
1880–1890.

[12] Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. 2021. Spatial-
Temporal Graph ODE Networks for Traffic Flow Forecasting. In KDD. 364–373.

[13] David Hallac, Youngsuk Park, Stephen P. Boyd, and Jure Leskovec. 2017. Network
Inference via the Time-Varying Graphical Lasso. In SIGKDD. 205–213.

[14] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NeurIPS. 1024–1034.

[15] Nicola Jones. 2017. Howmachine learning could help to improve climate forecasts.
Nature 548 (2017), 379.

[16] Eamonn J. Keogh and Michael J. Pazzani. 2001. Derivative Dynamic Time Warp-
ing. In SDM. 1–11.

[17] Tung Kieu, Bin Yang, Chenjuan Guo, Razvan-Gabriel Cirstea, Yan Zhao, Yale
Song, and Christian S. Jensen. 2022. Anomaly Detection in Time Series with
Robust Variational Quasi-Recurrent Autoencoders. In ICDE. 1342–1354.

[18] Tung Kieu, Bin Yang, Chenjuan Guo, Christian S. Jensen, Yan Zhao, Feiteng
Huang, and Kai Zheng. 2022. Robust and Explainable Autoencoders for Unsu-
pervised Time Series Outlier Detection. In ICDE. 3038–3050.

[19] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[20] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling
Long- and Short-Term Temporal Patterns with Deep Neural Networks. In SIGIR.
ACM, 95–104.

[21] Colin Lea, Michael D. Flynn, René Vidal, Austin Reiter, and Gregory D. Hager.
2017. Temporal Convolutional Networks for Action Segmentation and Detection.
In CVPR. 1003–1012.

[22] Mengzhang Li and Zhanxing Zhu. 2021. Spatial-Temporal Fusion Graph Neural
Networks for Traffic Flow Forecasting. In AAAI. 4189–4196.

[23] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion Convolutional
Recurrent Neural Network: Data-Driven Traffic Forecasting. In ICLR.

[24] Dachuan Liu, Jin Wang, Shuo Shang, and Peng Han. 2022. MSDR: Multi-Step
Dependency Relation Networks for Spatial Temporal Forecasting. In KDD. ACM,
1042–1050.

[25] Glymour Madelyn, Judea Pearl, and Nicholas P. Jewell. 2016. Causal inference in
statistics: A primer. John Wiley & Sons.

[26] Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Zheng Kai, Feiteng Huang,
Jiandong Xie, and Christian S. Jensen. 2024. A Unified Replay-based Continuous

Learning Framework for Spatio-Temporal Prediction on Streaming Data. ICDE
(2024).

[27] Luís Moreira-Matias, João Gama, Michel Ferreira, João Mendes-Moreira, and
Luís Damas. 2013. Predicting Taxi-Passenger Demand Using Streaming Data.
IEEE TITS 14, 3 (2013), 1393–1402.

[28] Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. 2020. N-
BEATS: Neural basis expansion analysis for interpretable time series forecasting.
In ICLR.

[29] Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. Anytime
Stochastic Routing with Hybrid Learning. Proc. VLDB Endow. 13, 9 (2020), 1555–
1567.

[30] Meng Qu and Jian Tang. 2019. Probabilistic Logic Neural Networks for Reasoning.
In NeurIPS. 7710–7720.

[31] Chao Shang, Jie Chen, and Jinbo Bi. 2021. Discrete Graph Structure Learning for
Forecasting Multiple Time Series. In ICLR.

[32] Shun-Yao Shih, Fan-Keng Sun, andHung-Yi Lee. 2019. Temporal pattern attention
for multivariate time series forecasting. Machine Learning 108, 8-9 (2019), 1421–
1441.

[33] Zhou Tian, Ma Ziqing, Wen Qingsong, Wang Xue, Sun Liang, and Jin Rong.
2022. FEDformer: Frequency Enhanced Decomposed Transformer for Long-term
Series Forecasting. In ICML. 27268–27286.

[34] Felipe A. Tobar, Thang D. Bui, and Richard E. Turner. 2015. Learning Stationary
Time Series using Gaussian Processes with Nonparametric Kernels. In NeurIPS.
3501–3509.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS. 5998–6008.

[36] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR, 2018.

[37] Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei
Xiao. 2023. MICN: Multi-scale Local and Global Context Modeling for Long-term
Series Forecasting. In ICLR.

[38] Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru Sun. 2020. Visual
Commonsense R-CNN. In CVPR. 10757–10767.

[39] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng
Long. 2023. TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis. In ICLR.

[40] Xinle Wu, Dalin Zhang, Chenjuan Guo, Chaoyang He, Bin Yang, and Christian S.
Jensen. 2022. AutoCTS: Automated Correlated Time Series Forecasting. Proc.
VLDB Endow. 15, 4 (2022), 971–983.

[41] Xinle Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang, and Christian S.
Jensen. 2023. AutoCTS+: Joint Neural Architecture and Hyperparameter Search
for Correlated Time Series Forecasting. Proc. ACM Manag. Data 1, 1 (2023),
97:1–97:26.

[42] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. Connecting the Dots: Multivariate Time Series Forecasting with
Graph Neural Networks. In KDD. 753–763.

[43] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In IJCAI. 1907–
1913.

[44] Sean Bin Yang, Chenjuan Guo, and Bin Yang. 2022. Context-Aware Path Ranking
in Road Networks. TKDE 34, 7 (2022), 3153–3168.

[45] Junchen Ye, Zihan Liu, Bowen Du, Leilei Sun, Weimiao Li, Yanjie Fu, and Hui
Xiong. 2022. Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting. In KDD. 2296–2306.

[46] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Con-
volutional Networks: A Deep Learning Framework for Traffic Forecasting. In
IJCAI. 3634–3640.

[47] Zhongqi Yue, Hanwang Zhang, Qianru Sun, and Xian-Sheng Hua. 2020. Inter-
ventional Few-Shot Learning. In NeurIPS.

[48] Guoqiang Peter Zhang. 2003. Time series forecasting using a hybrid ARIMA and
neural network model. Neurocomputing 50 (2003), 159–175.

[49] Yunhao Zhang and Junchi Yan. 2023. Crossformer: Transformer Utilizing Cross-
Dimension Dependency for Multivariate Time Series Forecasting. In ICLR.

[50] Kai Zhao, Ting Bai, Bin Wu, Bai Wang, Youjie Zhang, Yuanyu Yang, and Jian-Yun
Nie. 2020. Deep adversarial completion for sparse heterogeneous information
network embedding. InWWW. 508–518.

[51] Kai Zhao, Yukun Zheng, Tao Zhuang, Xiang Li, and Xiaoyi Zeng. 2022. Joint
Learning of E-commerce Search and Recommendation with a Unified Graph
Neural Network. InWSDM. 1461–1469.

765

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Problem Definition
	2.2 Reasoning

	3 The foundation
	4 Methodology
	4.1 The Causal Graph Layer
	4.2 The Reasoning Network
	4.3 The Projection Layer
	4.4 The Objective Function

	5 EXPERIMENTS
	5.1 Experimental Settings
	5.2 Overall Comparison.
	5.3 Ablation Studies.
	5.4 Parameter Sensitivity
	5.5 Runtime and Total Parameters Used
	5.6 Case Study

	6 RELATED WORK
	6.1 Time Series Forecasting
	6.2 Graph Learning

	7 CONCLUSION
	Acknowledgments
	References

