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ABSTRACT
This paper argues for better concurrency control to support mam-
moth transactions, which read and write to many items. While
these requests are prevalent on graph data, few systems support
them efficiently. Currently, developers must make the uncomfort-
able choice between accepting dismal performance or abandoning
transactional semantics. Applications deserve better: we believe
that inherent graph properties provide a path forward to designing
efficient concurrency control that preserves strong isolation.
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1 INTRODUCTION
This paper observes that long running read-write, or mammoth
transactions are underserved by existing concurrency control proto-
cols and benchmarks. Yet, these requests are increasingly prevalent
in graph workloads.

In large part, mammoths have been overlooked by modern sys-
tems. Traditionally, databases categorize workloads as either OLAP
(read-only, long running) or OLTP (write-intensive, short-lived).
HTAP systems [23, 24, 28, 49, 52, 54, 57, 59], which serve both work-
loads, make similar assumptions: analytical transactions are long
running and read-only whereas read-write transactions are short.
These systems presume that long running read-write transactions
are rare and choose to not support them due to the significant
challenges in doing so efficiently (Section 3).

However, the increasingly popular graph data model challenges
these assumptions. This model enables applications developers to
intuitively express complex business logic as graph queries [21,
30, 35, 42]. As a result, developers can easily design transactions
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that span large parts of the underlying graph. For instance, mam-
moths are frequently generated by graph analytics workloads, such
as pattern matching, in applications for fraud detection, network
analytics, and access control [36, 39, 60]. These transactions also
result from cascading deletes, schema changes [4, 61], and graph-
processing algorithms like community detection [56]. We provide
several real-world case studies from graph databases and large
social networks in Section 2.

Supporting mammoth transactions with high performance and
strong isolation guarantees is difficult because these requests af-
fect large portions of the graph. Consequently, they can block the
progress of many other transactions and have outsized impact on
overall system performance. We find that naively running mam-
moth transactions under existing concurrency control methods
yields unsatisfactory results. To illustrate, we evaluate Neo4j, a
leading graph database, on a variety of mammoth transactions (Sec-
tion 3). We observe that throughput drops by up to 4.7× during the
execution of a single mammoth. To the best of our knowledge, no
system that stores graph data supports general mammoth transac-
tions with high performance.

Despite the prominence of these transactions on graph data,
state-of-the-art approaches that explicitly address these requests
are limited. At best, systems implement ad hoc mechanisms that are
restricted to specific use cases. For instance, TAO, Meta’s graph data
store, applies a special case algorithm that does not use two-phase
commit for large write-only transactions [29]. In the worst (and
most common) case, users must give up on transactional semantics.
Neo4j’s Graph Data Science library [17] and MemGraph’s MAGE
graph processing library [14] both allow users to run computation-
ally expensive graph algorithms but provide no isolation guarantees
for writes to the database.

Consequently, application developers are currently left to deal
with mammoths themselves: they must either carefully craft appli-
cation logic around these transactions to manually preserve consis-
tency or accept the downsides of weaker guarantees. As conversa-
tions with engineers from Neo4j reveal, application workarounds
(e.g., use of locking primitives or validation procedures outside of
the data store) are unwieldy, error-prone, and significantly increase
development burden [25, 66]. The lack of isolation can result in
data corruption and other undesirable side effects.

We believe that graph data stores can and should do better. Con-
trary to the relational model, graphs have inherent structure and
maintain invariants that enable more efficient concurrency control.
For instance, graph edges can be stored in a sorted adjacency list
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to prevent random traversals and thus minimize the risk of dead-
locks [43]. Moreover, transactional semantics can build on existing
consistency guarantees in the graph (e.g., no duplicate edges). To-
gether, these properties can help us design efficient concurrency
control protocols for mammoth transactions with strong isolation
(e.g., Read Committed, Snapshot Isolation, and Serializability).

In the rest of this paper, we study mammoths in detail and pro-
pose paths forward for supporting them. We first characterize com-
mon use cases (Section 2) before demonstrating that running even
a single mammoth under Read Committed isolation significantly
degrades performance (Section 3). Next, we summarize existing
approaches for mammoths (Section 4) and outline opportunities to
speed up these transactions (Section 5).

2 A NEW ICE AGE: THE EMERGENCE OF
MAMMOTHS

Mammoth transactions, defined as long running requests that con-
tain at least one write, are common in the graph model (Section 2.1)
and can be divided into two types: 1) balanced mammoths with
many reads and writes and 2) unbalanced mammoths that read
many objects but write to only a few. While there are many real-
world use cases (Section 2.2), we find that few benchmarks capture
these requests (Section 2.3).

2.1 The Graph Data Model
Under the graph datamodel, developers typically access data through
a higher level query language that simplifies graph traversal and in-
tentionally hides what operations are sent to the data store. Further-
more, graph data is often highly connected and regularly contains
supernodes, which have a high number of incident edges. Together,
these factors drastically increase the frequency of mammoths.

First, we explain how high level query languages induce mam-
moth transactions. These frameworks make it easy to express many
common graph-processing algorithms by deliberately hiding the
complex series of traversals and updates sent to an underlying store.
For instance, the Cypher query language, which is used Amazon
Neptune [8], Memgraph [15], and Neo4j [62], provides native sup-
port for traversing the graph with methods such as MATCH (searches
for patterns) and MERGE (matches existing nodes and adds edges
between them, or creates new nodes and connects them) [47].

Consequently, even seemingly simple queries can result in large
read and write sets on highly interconnected data. As a concrete
example, consider a request to find the shortest path between two
nodes in a network. The breadth-first search (BFS) needed to answer
this query could lead to a mammoth transaction if the network is
large (e.g., nodes connected to the Internet). Moreover, application
actions that appear as read-only can trigger writes. For example, a
MATCH call is often used paired with a predicate to update a select
group of nodes. In short, the flexibility and abstraction provided by
the graph model causes engineers to unerringly create mammoths.

Furthermore, supernodes, with their many neighbors and high
centrality, increase contention and complicate supporting mam-
moth transactions [60]. If a supernode is naively locked by a mam-
moth, concurrency over the entire graph is significantly reduced.

2.2 Mammoth Case Studies
In this section, we describe a range of case studies based on our
experience with Neo4j deployments and graph usage at a large
social network. We split mammoth transactions into two categories
based on their read to write ratio (by writes, we refer to inserts,
updates, and deletes). While some of the use cases we describe
could be implemented without transactional semantics, application
workarounds often have undesirable effects (Section 4.3).

2.2.1 Balanced Mammoths. Balanced mammoths have read and
write sets of roughly equal size. Note that we include bulk inserts
here since these requests typically check for existence before inser-
tion. We summarize two application use cases below.

Large-scale deletions. Timely deletion has become increasingly
important with the rise of data privacy laws, such as the EU’s
GDPR [12]. In the graph setting, deletion is even more challenging,
given how interconnected user data is. If a social media user asks for
their account and all relevant data to be deleted, the corresponding
request must remove not only all data linked to their user node but
also data with several degrees of connection (e.g., all their comments
on their friends’ posts). For isolation, all data should appear to be
removed atomically (a friend should not be able to see their photos
after they have deleted their account). Essentially, this deletion is a
mammoth transaction touching a sizable piece of the social graph.

Systems today offer limited support for these operations. They
only guarantee that data is deleted within a number of days (e.g., 90
days for Google [10] andMeta [19]). Deletions are usually broken up
into multiple asynchronous jobs, increasing the risk of user-visible
consistency anomalies.

Managing visibility. Next, we describe several examples based
on real use cases of Neo4j. Social network users often want to
constrain the visibility of certain posts. If a user wants to make all
their posts from 2020 visible to only themselves, the application
would need to find all these posts by traversing the social graph and
changing their visibility status. Similarly, role-based access control
(RBAC) systems are often modeled as graphs and encounter an
analogous request pattern (though at a smaller scale): mass updates
of granted/denied privileges for a given role and set of entities. In
both cases, the atomicity and consistency provided by transactions
are essential for these requests (e.g. once a visibility update has been
acknowledged, another user should not be able to view their posts
from 2020). The lack of such guarantees can allow malicious users
to leverage race conditions to trigger security vulnerabilities [72].

2.2.2 Unbalanced Mammoths. These transactions contain many
reads but few writes.

Identifying fake accounts. To detect anomalous social net-
work behavior, applications need to run complex queries that touch
many nodes [70, 76]. Consider a social networking application that
seeks to identify bots by checking user interactions. While most
of the application’s requests are read-only transactions, if a social
network user is found to have too much activity (likely a bot rather
than a real person), this user’s internal profile needs to be flagged
for review, resulting in writes at the end of the long running trans-
action. Transactional semantics are necessary to avoid missing a
fake account or mistakenly flagging it multiple times.

905



0 25 50 75
Time (s)

2K

4K

6K

�
ro

uh
gp

ut
(tx

n/
s)

Figure 1: Red lines indicate the start/end of a balanced mam-
moth, which greatly hampers system throughput.

Patternmatching. Pattern matching is a graph-processing algo-
rithm that also generates unbalanced mammoth transactions [56]:
the application performs many reads in the process of finding rele-
vant nodes/edges and then writes the relevant results. This request
pattern is found in many real-world applications, such as fraud
detection, network analytics, and access control [36, 39, 60]. Given
its widespread usage, Cypher [42] and GQL [35], popular graph
query languages, both provide a specific API (MATCH) to simplify
application queries. As a concrete example, an access control man-
ager could generate an unbalanced mammoth to verify which files
in a (potentially large) project are viewable by a given user. This
request must traverse over all files (while concurrent requests that
add or delete files execute) and atomically authorize the user for
all relevant files. Without transactional guarantees, the user may
obtain incorrect file permissions.

2.3 The Lack of Benchmarks
Despite the prevalence of mammoth transactions in industry, we
are aware of only a single benchmark that includes these requests.
The vast majority of HTAP benchmarks [23, 24, 31, 33] combine
some OLTP queries (e.g., TPC-C [68]) with the read-only portion
of an OLAP workload (e.g., TPC-H [69]). Only OLxPBench [50],
a recent benchmark, recognizes the need for “real-time” queries:
read-write transactions with analytical reads (these are equivalent
to the unbalanced mammoths that we identify in Section 2.2.2). The
authors find that throughput decreases by up to 5.9× on a state-of-
the-art HTAP system [49] when such requests are executed.

Among graph benchmarks, many focus on analytics or web serv-
ing without any transactions [2, 3, 22, 27, 71]. LDBC [37], a standard
graph database benchmark, contains complex read queries inter-
spersed with short read requests and insert operations. Though
the benchmark recently added a cascading delete, it lacks com-
plex read-write transactions with arbitrarily large read/write sets.
TAOBench [29], a benchmark based on Meta’s social graph work-
loads, contains a limited subset of large write transactions.

In evaluating mammoth transactions, users are sensitive to more
than just peak performance. From conversations with graph data-
base users, we find that users desire predictability, reliability, and
bounded retries, which are rarely evaluated by existing benchmarks.
For production systems, robustness is a crucial metric; customers
expect stable performance regardless of other requests. While fail-
ures within a limited window are acceptable, large disparities in
behavior are not. Towards this end, users are open to sometimes
severe tradeoffs (see Section 4.3) to achieve these properties.
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Figure 2: Red lines indicate the start/end of an unbalanced
mammoth, which harms system throughput.

3 EVALUATING A MODERN GRAPH
DATABASE

In this section, we evaluate the performance of Neo4j [62], a popular
graph database, on balanced and unbalanced mammoth transac-
tions. Neo4j’s default isolation level is Read Committed, though
applications can manually acquire explicit write locks to improve
isolation. We run Neo4j Enterprise 5.4.0 and our client drivers on
Azure Standard D48ds_v5 (48 vCPUSs, 192 GiB RAM) virtual ma-
chines. We use the LDBC social network dataset [74] with 10K
Person nodes and 346K Knows edges for our baseline graph. No-
tably, the number of friendship edges (friendship degree) generated
per Person is skewed following a power law distribution based
on the Meta graph (thus, certain Person nodes are supernodes).
Our baseline workload consists of an equal ratio of OLTP-style
read-only and read-write transactions that access or update data on
Person nodes. We add both balanced and unbalanced mammoth
transactions and measure the drop in throughput.

3.1 Balanced Mammoths
Our balanced mammoth is inspired by community detection algo-
rithms [56], which traverse part of the graph before writing back
computation results. This transaction calculates a Person’s impor-
tance score, which captures their influence on the social graph. To
compute this score for a given node, the transaction traverses the
graph via depth-first search up to a configurable depth (three in our
experiment) and records the scores of connected nodes. Then, the
transaction updates the scores of all nodes in the query. This mam-
moth conflicts with the short read-only and read-write transactions
that access and update these scores. Transactional guarantees are
necessary to avoid Lost Update anomalies.

As Figure 1 shows, throughput drops by 1.9x when a single
balanced mammoth transaction starts executing at the 28s mark.
Since Neo4j locks the node of each write in a transaction, other
requests struggle to make progress once the mammoth begins.
After the long running request completes at 57s, the throughput of
the system recovers. This slowdown would be even more severe
if read locks were also acquired for Serializability. In the current
setup, the relative slowdown corresponds to the ratio of read-write
transactions in the workload since the mammoth blocks writes.
For the experiment in Figure 1, we run a 50/50 ratio of read-only
to read-write transactions. With a 10/90 ratio, we get up to a 4.7x
slowdown (we omit the corresponding chart due to lack of space).
While we evaluate the impact of a single mammoth transaction,
performance is worse if multiple mammoths are run in parallel.
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3.2 Unbalanced Mammoths
To quantify the impact of unbalanced mammoths, we augment the
Read 4 query of the LDBC Business Intelligence workload [65]. This
transaction focuses on finding the top commenters in online forums
per country. We extend this request by adding operations at the
end of the transaction to update the status of each Person that has
been identified as a top poster.

As Figure 2 shows, Neo4j performs better on unbalanced mam-
moths than balanced ones as it does not hold read locks (all the
reads in these transactions can proceed without blocking other
requests). However, when writes execute at the end of the mam-
moth, there is a noticeable slowdown (1.3x) in throughput for other
transactions, as many must wait until the mammoth commits.

While we quantify only throughput loss in these experiments,
mammoth transactions can impact physical resources as well. The
size of these requests can cause heavy page cache pollution, in-
creasing latency for all subsequent reads.

3.3 Discussion
Our findings demonstrate that there is limited support for efficiently
executing mammoth transactions. While modern graph databases
provide some transactional semantics, no system explicitly sup-
ports mammoths. Instead, most recommend smaller transaction
sizes for better performance and offer only limited isolation lev-
els. Neo4j [62], Neptune [8], and TigerGraph [20] support Read
Committed while ArangoDB [9], DGraph [11] and Memgraph [15]
provide Snapshot Isolation (SI). Running mammoths at higher iso-
lation levels is even more challenging. For instance, executing the
mammoths from our experiments on Memgraph proved impossible
as they always aborted when attempting to commit due to conflicts
with concurrent short transactions.

4 EXISTING APPROACHES FOR MAMMOTH
TRANSACTIONS

In this section, we describe existing approaches to handling mam-
moth transactions. Most research solutions require user interven-
tion: application developers must explicitly designate a transaction
as long running and often perform extra work for the underly-
ing system to efficiently process these requests. While there are
some specialized protocols that enable fast mammoths of certain
types, these methods do not apply to general workloads. In practice,
we find that applications developers take ad hoc approaches to
supporting mammoth transactions.

4.1 User Intervention
The problem of long-lived transactions (LTTs), first introduced in
1981 [45], is well studied in relational systems. However, many of
the existing solutions are impractical for graph data.

Transaction decompositionMany approaches seek to break
up large transactions into smaller pieces. Nested transactions en-
able applications to split operations into sub-transactions that can
commit or abort independently [53]. Often implemented using
“savepoints” [6, 13, 16, 18], these subtransactions provide additional
concurrency and reduce retries at the cost of poor behavior under
high load. For instance, an excessive number of savepoints caused
an outage at Amazon on Prime Day 2018 [5]. Similarly, sagas [44]

allow long running transactions to run as a series of smaller trans-
actions interleaved with other requests but require applications to
provide commutative compensating transactions for transparent
recovery. For large graph traversals, this constraint would incur
prohibitively large overheads.

Semantic concurrency control. Other work focuses on lever-
aging semantic information to increase concurrency. Altruistic
locking introduces a Donate method for applications to release
locks held by a long running transaction before commit to free up
resources [63]. Escrow transactions, a form of semantic concur-
rency control designed specifically for LLTs, enable commutative
operations to execute without blocking other requests [58].

All of these approaches require the users to carefully understand
how their transactions will interact with the storage system and
the data, which is difficult even in the relational model. Given the
use of high level graph frameworks, the lack of transparency into a
graph data store makes it even harder for users to manually specify
low level operation semantics.

Lazy execution. Deferred, or “lazy”, execution recognizes that
database state can differ from what has been promised to a client,
as long as the state is reconciled when the client explicitly requests
it [38, 75]. Consequently, a commit decision can be returned before
a transaction is fully executed. To ensure aborts do not occur after
a promise to commit is made, past work assumes the full read/write
set of each transaction is available (i.e., operating on a deterministic
database [38]) or requires the application to specify which opera-
tions can be deferred through a custom programming interface [75].
Both these assumptions are challenging for large graph traversals.

To the best of our knowledge, no work explicitly addresses mam-
moth transactions in the graph setting. Most research efforts for
the relational model focus on read-only transactions [51, 75]. Mühe
et al. [55] propose tentatively executing large transactions on a con-
sistent snapshot of the system before validating writes to provide
both Snapshot Isolation and Serializability. While validation works
well for low contention (which the paper focuses on), high conflicts
are pervasive in the graph setting due to supernodes.

4.2 Specialized Protocols
Schema changes and large-scale deletes, both of which generate
mammoth transactions, are often handled using specialized solu-
tions. Schema changes represent a restricted form of balanced mam-
moths with a limited number of state transitions. While modern dis-
tributed databases, such as Google’s F1 [61] and CockroachDB [4],
implement efficient protocols for these large-scale changes, they
leverage specific definitions of consistency that do not apply to
general transactions. On the other hand, large-scale deletions are
primarily handled through long running asynchronous jobs that
do not block ongoing requests but also offer no transactional guar-
antees. To trigger these deletions, developers are required to an-
notate their queries to specify the targeted retention periods of
data [32, 64]. With the right concurrency control, we do not need to
surface this complexity to applications and can efficiently remove
data at the system level.
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4.3 Ad Hoc in Practice
Based on interviews with Neo4j and social network engineers, we
describe how mammoths are executed on production systems. Cur-
rently, application developers are confronted with two undesirable
choices: 1) build ad hoc concurrency control primitives at the ap-
plication level to ensure transactional isolation (e.g., use locking
primitives or validation procedures outside of the data store) or 2)
manually handle the data anomalies that can arise in the absence
of strong isolation guarantees. These workarounds are often in-
efficient, hard to debug, and in general, complicate the developer
process [25, 66]. For example, one common approach is to “stop-
the-world” by taking a snapshot of the entire graph database before
making it read-only. Mammoth writes are then applied to the snap-
shot before this updated version replaces the existing database state.
Glaringly, no writes can occur while the mammoth executes, even
on keys that the large transaction does not touch. Alternatively,
developers choose to manage versioning themselves by storing
metadata and filtering queries accordingly. While this approach en-
ables more concurrency, it requires that extra predicates be applied
to all requests. Overall, these workarounds are inefficient because
they require application programmers to reason about concurrency
without full visibility into the underlying system.

On the other hand, not ensuring any guarantees causes seri-
ous issues: the lack of transactional semantics can lead to data
corruption. For instance, requests could easily violate reciprocal
consistency [73], which requires that the data on the pair of edges
between two nodes be updated atomically.

Clearly, supporting mammoth transactions is a challenging prob-
lem. In the next section, we propose approaches to achieve strong
isolation for mammoths without hampering performance.

5 TOWARDS SPEEDY MAMMOTHS
Applications on graph data increasingly desire efficient mammoth
transaction execution. We believe that it is possible to leverage
inherent graph properties and domain-specificworkloads to achieve
strong isolation without sacrificing performance.

5.1 Borrowing From Relational Systems
Techniques for concurrency control on relational systems can in-
spire solutions for graph data.

Locking. Given how finer-grained locking has enabled greater
concurrency in the relational model [46], we can naturally extend
these techniques to the graph by applying locks at the structural
(node and edge) and data (attribute) levels. We consider two tech-
niques: finer-grained graph locking and graph lock escalation. Prop-
erty graphs associate each node/edge with a set of property-value
pairs called attributes [21]. For example, a Person node on the social
graph could have three attributes: Birthday, Contact_Info, and
Location. A mammoth transaction may only update an attribute
on a node (changing a user’s Location) or modify the structure
without altering data (inserting an Friend edge does not affect any
of the attributes on a Person node). Thus, the transaction needs to
only lock the attributes or structures it is modifying. Based on our
experience at Neo4j, changing only the structure or an attribute is
a frequent request pattern. Implementing finer-grained locks will
enable greater efficiency without losing transactional semantics.
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Figure 3: Community locks result in fewer total locks com-
pared to range locks.

Lock escalation is another promising technique. In a relational
system, locks are typically applied at varying granularity (e.g., row,
range, table, etc.) depending on the number that needs to be ac-
quired. For graph data, communities (large subgraphs of highly
interconnected nodes) and motifs (small subgraphs often accessed
together within the same query) provide straightforward bound-
aries around which we can implement locks. These coarser-grained
locks can prevent unnecessary waits and aborts for larger requests.
For instance, if a mammoth transaction happens to access several
nodes in a community, it is likely that other nodes in the same
community will also be accessed, so the system can escalate the
individual node locks to a community level lock.

We evaluate the potential benefits of lock escalationwith a simple
experiment. We generate a graph with 100K nodes and assign each
node to a range and a community based on its unique id. Ranges
are contiguous groups of ids (e.g., the first range includes node 1
to node 99). For communities, nodes are randomly assigned to one
(i.e., each community will contain a set of node ids that may not
align with the sequential order of ids). With lock escalation, each
operation of a transaction automatically grabs higher level locks
after a threshold has been reached (e.g., after 5K locks are held in
MySQL [1]). We measure how many additional node level locks this
translates to for 10 operations after this threshold has been met (we
assume 5K locks have already been acquired). We pessimistically
select a probability of 85% that each operation will access a node
in the same community as the previous one (for many classes of
graph data, this is likely an underestimate [34]).

To measure the impact of different lock escalation strategies,
we compare range and community level locks. There are an equal
number of each though range locks span contiguous sets of node
ids while community locks only pertain to the nodes of the com-
munity. Figure 3 shows the number of additional locks averaged
over 1K transactions. Range locks always cause more locks to be
held in total since they do not leverage information about access
patterns (which community locks take advantage of). When there
are more communities, the number of locks held decreases under
both schemes since these coarse-grained locks cover fewer nodes.
By leveraging graph information, we can reduce the impact of
concurrency control while maintaining strong isolation.

Hotspots. Relational systems have extensively optimized for
hotspots. Their analogues in the graph context are supernodes,
which link to many other nodes and can affect their query per-
formance [60]. We believe that research on mitigating hotspots
for transactions [48, 67] can be extended to the graph setting. For
example, LDSF, a hotspot-aware transaction scheduling algorithm,
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prioritizes transactions that block many others [67]. One could
design a similar algorithm that prioritizes transactions touching
nodes with higher outdegrees. Addressing supernodes separately is
already common practice in industry: Neo4j implements a relaxed
locking algorithm for nodes with more than 50 edges [7].

5.2 Taking Advantage of Graph Features
Despite the challenges that the graph setting presents, there are
also additional opportunities resulting from the graph’s inherent
structures and properties. As a running example, we consider the
social network graph from Section 3, which has Person nodes and
Knows edges to represent friendships.

Graph-specific data structures. A range of work has shown
that optimizing domain-specific data structures is promising for
improving concurrency control [41, 43, 77]. Graph data can be
stored in a variety of formats: as an adjacency list, compressed
sparse row (CSR), or matrix [26], and we can leverage this for
supporting mammoths. For instance, in the restricted setting where
the full read/write set of each transaction is known, Sortledton [43]
presents an adjacency list-based data structure that stores sorted
neighborhoods of nodes, allowing transactions to acquire locks in
a consistent order and minimize deadlocks. Prior work has also
shown that specialized data structures can improve performance
for supernodes: GraphS, a system used at Alibaba to detect cycles
in real-time on a large-scale dynamic graph, constructs a supernode
index to avoid explicitly exploring all outgoing edges of these nodes
when traversing the graph [60]. Such an index can also be helpful
in dealing with supernodes for transactions, which may execute an
optimized concurrency protocol for these nodes.

Inherent graph properties. Furthermore, the graph data model
guarantees unique properties that we can leverage for faster con-
currency control. By default, most graph databases provide the
following consistency guarantees: no dangling edges, no duplicate
edges, and the reverse edge always exists (for undirected graphs). In
our social network graph, this would ensure that each Person has
no friendships with non-existent people, no duplicate friendships,
and every friend can be found from either direction. These rules are
inherent to the graph data model and are supported by optimized
data structures and protocols. Conveniently, they provide a strong
foundation for ensuring strong isolation guarantees for mammoth
transactions. For example, knowing that both edges exist can make
traversal simpler and relaxes what data needs to be kept up-to-
date synchronously. A query checking the friendship status on the
Knows edges between two friends can use the more recent status
if the two values from the edges differ. In the distributed setting,
storing only one edge of a pair can be sufficient for traversing the
partitioned graph: Meta’s TAO graph data store asynchronously
updates paired edges without any concurrency control since they
have the same data [30].

5.3 Workload-Specific Protocols
In large part, graph-processing algorithms display distinct access
patterns that can be used to optimize concurrency control. Ris-
Graph [40] leverages the fact that the results of monotonic algo-
rithms (e.g., breadth-first search) are only affected by certain up-
dates to reduce the overhead of concurrency control. The authors

categorize update operations as either safe or unsafe; most updates
are safe and allowed to run in parallel. Extending this notion to
mammoths can reduce the impact of concurrency control without
affecting correctness. Moreover, incremental graph computation al-
gorithms are also promising since not all updates need to be applied
atomically for valid results. We note that this proposal differs from
having application developers manually input semantic information
(e.g., creating compensating transactions for sagas [44]). Instead,
we imagine that the system will leverage contextual information
from particular graph-processing algorithms (e.g., to automatically
create compensating transactions).

6 CONCLUSION
Mammoth transactions are an important but underserved class
of transactions on graph data stores. We discuss the emergence
of mammoths and empirically confirm that these requests cannot
execute efficiently on existing systems. We propose several paths
forward to supporting mammoth transactions with high perfor-
mance and strong isolation guarantees. Leveraging inherent graph
data structures and properties will provide these requests with the
performance and consistency they deserve.
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