
Mammoths Are Slow:
The Overlooked Transactions of Graph Data

Audrey Cheng
UC Berkeley

accheng@berkeley.edu

Jack Waudby
Neo4j

jack.waudby@neo4j.com

Hugo Firth
Neo4j

hugo.firth@neo4j.com

Natacha Crooks
UC Berkeley

ncrooks@berkeley.edu

Ion Stoica
UC Berkeley

istoica@berkeley.edu

ABSTRACT
This paper argues for better concurrency control to support mam-
moth transactions, which read and write to many items. While
these requests are prevalent on graph data, few systems support
them efficiently. Currently, developers must make the uncomfort-
able choice between accepting dismal performance or abandoning
transactional semantics. Applications deserve better: we believe
that inherent graph properties provide a path forward to designing
efficient concurrency control that preserves strong isolation.

PVLDB Reference Format:
Audrey Cheng, Jack Waudby, Natacha Crooks, Hugo Firth, Ion Stoica.
Mammoths Are Slow: The Overlooked Transactions of Graph Data. PVLDB,
17(4): 904 - 911, 2023.
doi:10.14778/3636218.3636241

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/jackwaudby/mammoths-are-slow.

1 INTRODUCTION
This paper observes that long running read-write, or mammoth
transactions are underserved by existing concurrency control proto-
cols and benchmarks. Yet, these requests are increasingly prevalent
in graph workloads.

In large part, mammoths have been overlooked by modern sys-
tems. Traditionally, databases categorize workloads as either OLAP
(read-only, long running) or OLTP (write-intensive, short-lived).
HTAP systems [23, 24, 28, 49, 52, 54, 57, 59], which serve both work-
loads, make similar assumptions: analytical transactions are long
running and read-only whereas read-write transactions are short.
These systems presume that long running read-write transactions
are rare and choose to not support them due to the significant
challenges in doing so efficiently (Section 3).

However, the increasingly popular graph data model challenges
these assumptions. This model enables applications developers to
intuitively express complex business logic as graph queries [21,
30, 35, 42]. As a result, developers can easily design transactions

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 4 ISSN 2150-8097.
doi:10.14778/3636218.3636241

that span large parts of the underlying graph. For instance, mam-
moths are frequently generated by graph analytics workloads, such
as pattern matching, in applications for fraud detection, network
analytics, and access control [36, 39, 60]. These transactions also
result from cascading deletes, schema changes [4, 61], and graph-
processing algorithms like community detection [56]. We provide
several real-world case studies from graph databases and large
social networks in Section 2.

Supporting mammoth transactions with high performance and
strong isolation guarantees is difficult because these requests af-
fect large portions of the graph. Consequently, they can block the
progress of many other transactions and have outsized impact on
overall system performance. We find that naively running mam-
moth transactions under existing concurrency control methods
yields unsatisfactory results. To illustrate, we evaluate Neo4j, a
leading graph database, on a variety of mammoth transactions (Sec-
tion 3). We observe that throughput drops by up to 4.7× during the
execution of a single mammoth. To the best of our knowledge, no
system that stores graph data supports general mammoth transac-
tions with high performance.

Despite the prominence of these transactions on graph data,
state-of-the-art approaches that explicitly address these requests
are limited. At best, systems implement ad hoc mechanisms that are
restricted to specific use cases. For instance, TAO, Meta’s graph data
store, applies a special case algorithm that does not use two-phase
commit for large write-only transactions [29]. In the worst (and
most common) case, users must give up on transactional semantics.
Neo4j’s Graph Data Science library [17] and MemGraph’s MAGE
graph processing library [14] both allow users to run computation-
ally expensive graph algorithms but provide no isolation guarantees
for writes to the database.

Consequently, application developers are currently left to deal
with mammoths themselves: they must either carefully craft appli-
cation logic around these transactions to manually preserve consis-
tency or accept the downsides of weaker guarantees. As conversa-
tions with engineers from Neo4j reveal, application workarounds
(e.g., use of locking primitives or validation procedures outside of
the data store) are unwieldy, error-prone, and significantly increase
development burden [25, 66]. The lack of isolation can result in
data corruption and other undesirable side effects.

We believe that graph data stores can and should do better. Con-
trary to the relational model, graphs have inherent structure and
maintain invariants that enable more efficient concurrency control.
For instance, graph edges can be stored in a sorted adjacency list

904

https://doi.org/10.14778/3636218.3636241
https://github.com/jackwaudby/mammoths-are-slow
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636241
https://www.acm.org/publications/policies/artifact-review-and-badging-current

to prevent random traversals and thus minimize the risk of dead-
locks [43]. Moreover, transactional semantics can build on existing
consistency guarantees in the graph (e.g., no duplicate edges). To-
gether, these properties can help us design efficient concurrency
control protocols for mammoth transactions with strong isolation
(e.g., Read Committed, Snapshot Isolation, and Serializability).

In the rest of this paper, we study mammoths in detail and pro-
pose paths forward for supporting them. We first characterize com-
mon use cases (Section 2) before demonstrating that running even
a single mammoth under Read Committed isolation significantly
degrades performance (Section 3). Next, we summarize existing
approaches for mammoths (Section 4) and outline opportunities to
speed up these transactions (Section 5).

2 A NEW ICE AGE: THE EMERGENCE OF
MAMMOTHS

Mammoth transactions, defined as long running requests that con-
tain at least one write, are common in the graph model (Section 2.1)
and can be divided into two types: 1) balanced mammoths with
many reads and writes and 2) unbalanced mammoths that read
many objects but write to only a few. While there are many real-
world use cases (Section 2.2), we find that few benchmarks capture
these requests (Section 2.3).

2.1 The Graph Data Model
Under the graph datamodel, developers typically access data through
a higher level query language that simplifies graph traversal and in-
tentionally hides what operations are sent to the data store. Further-
more, graph data is often highly connected and regularly contains
supernodes, which have a high number of incident edges. Together,
these factors drastically increase the frequency of mammoths.

First, we explain how high level query languages induce mam-
moth transactions. These frameworks make it easy to express many
common graph-processing algorithms by deliberately hiding the
complex series of traversals and updates sent to an underlying store.
For instance, the Cypher query language, which is used Amazon
Neptune [8], Memgraph [15], and Neo4j [62], provides native sup-
port for traversing the graph with methods such as MATCH (searches
for patterns) and MERGE (matches existing nodes and adds edges
between them, or creates new nodes and connects them) [47].

Consequently, even seemingly simple queries can result in large
read and write sets on highly interconnected data. As a concrete
example, consider a request to find the shortest path between two
nodes in a network. The breadth-first search (BFS) needed to answer
this query could lead to a mammoth transaction if the network is
large (e.g., nodes connected to the Internet). Moreover, application
actions that appear as read-only can trigger writes. For example, a
MATCH call is often used paired with a predicate to update a select
group of nodes. In short, the flexibility and abstraction provided by
the graph model causes engineers to unerringly create mammoths.

Furthermore, supernodes, with their many neighbors and high
centrality, increase contention and complicate supporting mam-
moth transactions [60]. If a supernode is naively locked by a mam-
moth, concurrency over the entire graph is significantly reduced.

2.2 Mammoth Case Studies
In this section, we describe a range of case studies based on our
experience with Neo4j deployments and graph usage at a large
social network. We split mammoth transactions into two categories
based on their read to write ratio (by writes, we refer to inserts,
updates, and deletes). While some of the use cases we describe
could be implemented without transactional semantics, application
workarounds often have undesirable effects (Section 4.3).

2.2.1 Balanced Mammoths. Balanced mammoths have read and
write sets of roughly equal size. Note that we include bulk inserts
here since these requests typically check for existence before inser-
tion. We summarize two application use cases below.

Large-scale deletions. Timely deletion has become increasingly
important with the rise of data privacy laws, such as the EU’s
GDPR [12]. In the graph setting, deletion is even more challenging,
given how interconnected user data is. If a social media user asks for
their account and all relevant data to be deleted, the corresponding
request must remove not only all data linked to their user node but
also data with several degrees of connection (e.g., all their comments
on their friends’ posts). For isolation, all data should appear to be
removed atomically (a friend should not be able to see their photos
after they have deleted their account). Essentially, this deletion is a
mammoth transaction touching a sizable piece of the social graph.

Systems today offer limited support for these operations. They
only guarantee that data is deleted within a number of days (e.g., 90
days for Google [10] andMeta [19]). Deletions are usually broken up
into multiple asynchronous jobs, increasing the risk of user-visible
consistency anomalies.

Managing visibility. Next, we describe several examples based
on real use cases of Neo4j. Social network users often want to
constrain the visibility of certain posts. If a user wants to make all
their posts from 2020 visible to only themselves, the application
would need to find all these posts by traversing the social graph and
changing their visibility status. Similarly, role-based access control
(RBAC) systems are often modeled as graphs and encounter an
analogous request pattern (though at a smaller scale): mass updates
of granted/denied privileges for a given role and set of entities. In
both cases, the atomicity and consistency provided by transactions
are essential for these requests (e.g. once a visibility update has been
acknowledged, another user should not be able to view their posts
from 2020). The lack of such guarantees can allow malicious users
to leverage race conditions to trigger security vulnerabilities [72].

2.2.2 Unbalanced Mammoths. These transactions contain many
reads but few writes.

Identifying fake accounts. To detect anomalous social net-
work behavior, applications need to run complex queries that touch
many nodes [70, 76]. Consider a social networking application that
seeks to identify bots by checking user interactions. While most
of the application’s requests are read-only transactions, if a social
network user is found to have too much activity (likely a bot rather
than a real person), this user’s internal profile needs to be flagged
for review, resulting in writes at the end of the long running trans-
action. Transactional semantics are necessary to avoid missing a
fake account or mistakenly flagging it multiple times.

905

0 25 50 75
Time (s)

2K

4K

6K

�
ro

uh
gp

ut
(tx

n/
s)

Figure 1: Red lines indicate the start/end of a balanced mam-
moth, which greatly hampers system throughput.

Patternmatching. Pattern matching is a graph-processing algo-
rithm that also generates unbalanced mammoth transactions [56]:
the application performs many reads in the process of finding rele-
vant nodes/edges and then writes the relevant results. This request
pattern is found in many real-world applications, such as fraud
detection, network analytics, and access control [36, 39, 60]. Given
its widespread usage, Cypher [42] and GQL [35], popular graph
query languages, both provide a specific API (MATCH) to simplify
application queries. As a concrete example, an access control man-
ager could generate an unbalanced mammoth to verify which files
in a (potentially large) project are viewable by a given user. This
request must traverse over all files (while concurrent requests that
add or delete files execute) and atomically authorize the user for
all relevant files. Without transactional guarantees, the user may
obtain incorrect file permissions.

2.3 The Lack of Benchmarks
Despite the prevalence of mammoth transactions in industry, we
are aware of only a single benchmark that includes these requests.
The vast majority of HTAP benchmarks [23, 24, 31, 33] combine
some OLTP queries (e.g., TPC-C [68]) with the read-only portion
of an OLAP workload (e.g., TPC-H [69]). Only OLxPBench [50],
a recent benchmark, recognizes the need for “real-time” queries:
read-write transactions with analytical reads (these are equivalent
to the unbalanced mammoths that we identify in Section 2.2.2). The
authors find that throughput decreases by up to 5.9× on a state-of-
the-art HTAP system [49] when such requests are executed.

Among graph benchmarks, many focus on analytics or web serv-
ing without any transactions [2, 3, 22, 27, 71]. LDBC [37], a standard
graph database benchmark, contains complex read queries inter-
spersed with short read requests and insert operations. Though
the benchmark recently added a cascading delete, it lacks com-
plex read-write transactions with arbitrarily large read/write sets.
TAOBench [29], a benchmark based on Meta’s social graph work-
loads, contains a limited subset of large write transactions.

In evaluating mammoth transactions, users are sensitive to more
than just peak performance. From conversations with graph data-
base users, we find that users desire predictability, reliability, and
bounded retries, which are rarely evaluated by existing benchmarks.
For production systems, robustness is a crucial metric; customers
expect stable performance regardless of other requests. While fail-
ures within a limited window are acceptable, large disparities in
behavior are not. Towards this end, users are open to sometimes
severe tradeoffs (see Section 4.3) to achieve these properties.

0 25 50 75
Time (s)

2K

4K

6K

�
ro

uh
gp

ut
(tx

n/
s)

Figure 2: Red lines indicate the start/end of an unbalanced
mammoth, which harms system throughput.

3 EVALUATING A MODERN GRAPH
DATABASE

In this section, we evaluate the performance of Neo4j [62], a popular
graph database, on balanced and unbalanced mammoth transac-
tions. Neo4j’s default isolation level is Read Committed, though
applications can manually acquire explicit write locks to improve
isolation. We run Neo4j Enterprise 5.4.0 and our client drivers on
Azure Standard D48ds_v5 (48 vCPUSs, 192 GiB RAM) virtual ma-
chines. We use the LDBC social network dataset [74] with 10K
Person nodes and 346K Knows edges for our baseline graph. No-
tably, the number of friendship edges (friendship degree) generated
per Person is skewed following a power law distribution based
on the Meta graph (thus, certain Person nodes are supernodes).
Our baseline workload consists of an equal ratio of OLTP-style
read-only and read-write transactions that access or update data on
Person nodes. We add both balanced and unbalanced mammoth
transactions and measure the drop in throughput.

3.1 Balanced Mammoths
Our balanced mammoth is inspired by community detection algo-
rithms [56], which traverse part of the graph before writing back
computation results. This transaction calculates a Person’s impor-
tance score, which captures their influence on the social graph. To
compute this score for a given node, the transaction traverses the
graph via depth-first search up to a configurable depth (three in our
experiment) and records the scores of connected nodes. Then, the
transaction updates the scores of all nodes in the query. This mam-
moth conflicts with the short read-only and read-write transactions
that access and update these scores. Transactional guarantees are
necessary to avoid Lost Update anomalies.

As Figure 1 shows, throughput drops by 1.9x when a single
balanced mammoth transaction starts executing at the 28s mark.
Since Neo4j locks the node of each write in a transaction, other
requests struggle to make progress once the mammoth begins.
After the long running request completes at 57s, the throughput of
the system recovers. This slowdown would be even more severe
if read locks were also acquired for Serializability. In the current
setup, the relative slowdown corresponds to the ratio of read-write
transactions in the workload since the mammoth blocks writes.
For the experiment in Figure 1, we run a 50/50 ratio of read-only
to read-write transactions. With a 10/90 ratio, we get up to a 4.7x
slowdown (we omit the corresponding chart due to lack of space).
While we evaluate the impact of a single mammoth transaction,
performance is worse if multiple mammoths are run in parallel.

906

3.2 Unbalanced Mammoths
To quantify the impact of unbalanced mammoths, we augment the
Read 4 query of the LDBC Business Intelligence workload [65]. This
transaction focuses on finding the top commenters in online forums
per country. We extend this request by adding operations at the
end of the transaction to update the status of each Person that has
been identified as a top poster.

As Figure 2 shows, Neo4j performs better on unbalanced mam-
moths than balanced ones as it does not hold read locks (all the
reads in these transactions can proceed without blocking other
requests). However, when writes execute at the end of the mam-
moth, there is a noticeable slowdown (1.3x) in throughput for other
transactions, as many must wait until the mammoth commits.

While we quantify only throughput loss in these experiments,
mammoth transactions can impact physical resources as well. The
size of these requests can cause heavy page cache pollution, in-
creasing latency for all subsequent reads.

3.3 Discussion
Our findings demonstrate that there is limited support for efficiently
executing mammoth transactions. While modern graph databases
provide some transactional semantics, no system explicitly sup-
ports mammoths. Instead, most recommend smaller transaction
sizes for better performance and offer only limited isolation lev-
els. Neo4j [62], Neptune [8], and TigerGraph [20] support Read
Committed while ArangoDB [9], DGraph [11] and Memgraph [15]
provide Snapshot Isolation (SI). Running mammoths at higher iso-
lation levels is even more challenging. For instance, executing the
mammoths from our experiments on Memgraph proved impossible
as they always aborted when attempting to commit due to conflicts
with concurrent short transactions.

4 EXISTING APPROACHES FOR MAMMOTH
TRANSACTIONS

In this section, we describe existing approaches to handling mam-
moth transactions. Most research solutions require user interven-
tion: application developers must explicitly designate a transaction
as long running and often perform extra work for the underly-
ing system to efficiently process these requests. While there are
some specialized protocols that enable fast mammoths of certain
types, these methods do not apply to general workloads. In practice,
we find that applications developers take ad hoc approaches to
supporting mammoth transactions.

4.1 User Intervention
The problem of long-lived transactions (LTTs), first introduced in
1981 [45], is well studied in relational systems. However, many of
the existing solutions are impractical for graph data.

Transaction decompositionMany approaches seek to break
up large transactions into smaller pieces. Nested transactions en-
able applications to split operations into sub-transactions that can
commit or abort independently [53]. Often implemented using
“savepoints” [6, 13, 16, 18], these subtransactions provide additional
concurrency and reduce retries at the cost of poor behavior under
high load. For instance, an excessive number of savepoints caused
an outage at Amazon on Prime Day 2018 [5]. Similarly, sagas [44]

allow long running transactions to run as a series of smaller trans-
actions interleaved with other requests but require applications to
provide commutative compensating transactions for transparent
recovery. For large graph traversals, this constraint would incur
prohibitively large overheads.

Semantic concurrency control. Other work focuses on lever-
aging semantic information to increase concurrency. Altruistic
locking introduces a Donate method for applications to release
locks held by a long running transaction before commit to free up
resources [63]. Escrow transactions, a form of semantic concur-
rency control designed specifically for LLTs, enable commutative
operations to execute without blocking other requests [58].

All of these approaches require the users to carefully understand
how their transactions will interact with the storage system and
the data, which is difficult even in the relational model. Given the
use of high level graph frameworks, the lack of transparency into a
graph data store makes it even harder for users to manually specify
low level operation semantics.

Lazy execution. Deferred, or “lazy”, execution recognizes that
database state can differ from what has been promised to a client,
as long as the state is reconciled when the client explicitly requests
it [38, 75]. Consequently, a commit decision can be returned before
a transaction is fully executed. To ensure aborts do not occur after
a promise to commit is made, past work assumes the full read/write
set of each transaction is available (i.e., operating on a deterministic
database [38]) or requires the application to specify which opera-
tions can be deferred through a custom programming interface [75].
Both these assumptions are challenging for large graph traversals.

To the best of our knowledge, no work explicitly addresses mam-
moth transactions in the graph setting. Most research efforts for
the relational model focus on read-only transactions [51, 75]. Mühe
et al. [55] propose tentatively executing large transactions on a con-
sistent snapshot of the system before validating writes to provide
both Snapshot Isolation and Serializability. While validation works
well for low contention (which the paper focuses on), high conflicts
are pervasive in the graph setting due to supernodes.

4.2 Specialized Protocols
Schema changes and large-scale deletes, both of which generate
mammoth transactions, are often handled using specialized solu-
tions. Schema changes represent a restricted form of balanced mam-
moths with a limited number of state transitions. While modern dis-
tributed databases, such as Google’s F1 [61] and CockroachDB [4],
implement efficient protocols for these large-scale changes, they
leverage specific definitions of consistency that do not apply to
general transactions. On the other hand, large-scale deletions are
primarily handled through long running asynchronous jobs that
do not block ongoing requests but also offer no transactional guar-
antees. To trigger these deletions, developers are required to an-
notate their queries to specify the targeted retention periods of
data [32, 64]. With the right concurrency control, we do not need to
surface this complexity to applications and can efficiently remove
data at the system level.

907

4.3 Ad Hoc in Practice
Based on interviews with Neo4j and social network engineers, we
describe how mammoths are executed on production systems. Cur-
rently, application developers are confronted with two undesirable
choices: 1) build ad hoc concurrency control primitives at the ap-
plication level to ensure transactional isolation (e.g., use locking
primitives or validation procedures outside of the data store) or 2)
manually handle the data anomalies that can arise in the absence
of strong isolation guarantees. These workarounds are often in-
efficient, hard to debug, and in general, complicate the developer
process [25, 66]. For example, one common approach is to “stop-
the-world” by taking a snapshot of the entire graph database before
making it read-only. Mammoth writes are then applied to the snap-
shot before this updated version replaces the existing database state.
Glaringly, no writes can occur while the mammoth executes, even
on keys that the large transaction does not touch. Alternatively,
developers choose to manage versioning themselves by storing
metadata and filtering queries accordingly. While this approach en-
ables more concurrency, it requires that extra predicates be applied
to all requests. Overall, these workarounds are inefficient because
they require application programmers to reason about concurrency
without full visibility into the underlying system.

On the other hand, not ensuring any guarantees causes seri-
ous issues: the lack of transactional semantics can lead to data
corruption. For instance, requests could easily violate reciprocal
consistency [73], which requires that the data on the pair of edges
between two nodes be updated atomically.

Clearly, supporting mammoth transactions is a challenging prob-
lem. In the next section, we propose approaches to achieve strong
isolation for mammoths without hampering performance.

5 TOWARDS SPEEDY MAMMOTHS
Applications on graph data increasingly desire efficient mammoth
transaction execution. We believe that it is possible to leverage
inherent graph properties and domain-specificworkloads to achieve
strong isolation without sacrificing performance.

5.1 Borrowing From Relational Systems
Techniques for concurrency control on relational systems can in-
spire solutions for graph data.

Locking. Given how finer-grained locking has enabled greater
concurrency in the relational model [46], we can naturally extend
these techniques to the graph by applying locks at the structural
(node and edge) and data (attribute) levels. We consider two tech-
niques: finer-grained graph locking and graph lock escalation. Prop-
erty graphs associate each node/edge with a set of property-value
pairs called attributes [21]. For example, a Person node on the social
graph could have three attributes: Birthday, Contact_Info, and
Location. A mammoth transaction may only update an attribute
on a node (changing a user’s Location) or modify the structure
without altering data (inserting an Friend edge does not affect any
of the attributes on a Person node). Thus, the transaction needs to
only lock the attributes or structures it is modifying. Based on our
experience at Neo4j, changing only the structure or an attribute is
a frequent request pattern. Implementing finer-grained locks will
enable greater efficiency without losing transactional semantics.

10 15 20 25 30
of Communities

0

25K

50K

75K

#
of

Ad
di

tio
na

lL
oc

ks Range locks Community locks

Figure 3: Community locks result in fewer total locks com-
pared to range locks.

Lock escalation is another promising technique. In a relational
system, locks are typically applied at varying granularity (e.g., row,
range, table, etc.) depending on the number that needs to be ac-
quired. For graph data, communities (large subgraphs of highly
interconnected nodes) and motifs (small subgraphs often accessed
together within the same query) provide straightforward bound-
aries around which we can implement locks. These coarser-grained
locks can prevent unnecessary waits and aborts for larger requests.
For instance, if a mammoth transaction happens to access several
nodes in a community, it is likely that other nodes in the same
community will also be accessed, so the system can escalate the
individual node locks to a community level lock.

We evaluate the potential benefits of lock escalationwith a simple
experiment. We generate a graph with 100K nodes and assign each
node to a range and a community based on its unique id. Ranges
are contiguous groups of ids (e.g., the first range includes node 1
to node 99). For communities, nodes are randomly assigned to one
(i.e., each community will contain a set of node ids that may not
align with the sequential order of ids). With lock escalation, each
operation of a transaction automatically grabs higher level locks
after a threshold has been reached (e.g., after 5K locks are held in
MySQL [1]). We measure how many additional node level locks this
translates to for 10 operations after this threshold has been met (we
assume 5K locks have already been acquired). We pessimistically
select a probability of 85% that each operation will access a node
in the same community as the previous one (for many classes of
graph data, this is likely an underestimate [34]).

To measure the impact of different lock escalation strategies,
we compare range and community level locks. There are an equal
number of each though range locks span contiguous sets of node
ids while community locks only pertain to the nodes of the com-
munity. Figure 3 shows the number of additional locks averaged
over 1K transactions. Range locks always cause more locks to be
held in total since they do not leverage information about access
patterns (which community locks take advantage of). When there
are more communities, the number of locks held decreases under
both schemes since these coarse-grained locks cover fewer nodes.
By leveraging graph information, we can reduce the impact of
concurrency control while maintaining strong isolation.

Hotspots. Relational systems have extensively optimized for
hotspots. Their analogues in the graph context are supernodes,
which link to many other nodes and can affect their query per-
formance [60]. We believe that research on mitigating hotspots
for transactions [48, 67] can be extended to the graph setting. For
example, LDSF, a hotspot-aware transaction scheduling algorithm,

908

prioritizes transactions that block many others [67]. One could
design a similar algorithm that prioritizes transactions touching
nodes with higher outdegrees. Addressing supernodes separately is
already common practice in industry: Neo4j implements a relaxed
locking algorithm for nodes with more than 50 edges [7].

5.2 Taking Advantage of Graph Features
Despite the challenges that the graph setting presents, there are
also additional opportunities resulting from the graph’s inherent
structures and properties. As a running example, we consider the
social network graph from Section 3, which has Person nodes and
Knows edges to represent friendships.

Graph-specific data structures. A range of work has shown
that optimizing domain-specific data structures is promising for
improving concurrency control [41, 43, 77]. Graph data can be
stored in a variety of formats: as an adjacency list, compressed
sparse row (CSR), or matrix [26], and we can leverage this for
supporting mammoths. For instance, in the restricted setting where
the full read/write set of each transaction is known, Sortledton [43]
presents an adjacency list-based data structure that stores sorted
neighborhoods of nodes, allowing transactions to acquire locks in
a consistent order and minimize deadlocks. Prior work has also
shown that specialized data structures can improve performance
for supernodes: GraphS, a system used at Alibaba to detect cycles
in real-time on a large-scale dynamic graph, constructs a supernode
index to avoid explicitly exploring all outgoing edges of these nodes
when traversing the graph [60]. Such an index can also be helpful
in dealing with supernodes for transactions, which may execute an
optimized concurrency protocol for these nodes.

Inherent graph properties. Furthermore, the graph data model
guarantees unique properties that we can leverage for faster con-
currency control. By default, most graph databases provide the
following consistency guarantees: no dangling edges, no duplicate
edges, and the reverse edge always exists (for undirected graphs). In
our social network graph, this would ensure that each Person has
no friendships with non-existent people, no duplicate friendships,
and every friend can be found from either direction. These rules are
inherent to the graph data model and are supported by optimized
data structures and protocols. Conveniently, they provide a strong
foundation for ensuring strong isolation guarantees for mammoth
transactions. For example, knowing that both edges exist can make
traversal simpler and relaxes what data needs to be kept up-to-
date synchronously. A query checking the friendship status on the
Knows edges between two friends can use the more recent status
if the two values from the edges differ. In the distributed setting,
storing only one edge of a pair can be sufficient for traversing the
partitioned graph: Meta’s TAO graph data store asynchronously
updates paired edges without any concurrency control since they
have the same data [30].

5.3 Workload-Specific Protocols
In large part, graph-processing algorithms display distinct access
patterns that can be used to optimize concurrency control. Ris-
Graph [40] leverages the fact that the results of monotonic algo-
rithms (e.g., breadth-first search) are only affected by certain up-
dates to reduce the overhead of concurrency control. The authors

categorize update operations as either safe or unsafe; most updates
are safe and allowed to run in parallel. Extending this notion to
mammoths can reduce the impact of concurrency control without
affecting correctness. Moreover, incremental graph computation al-
gorithms are also promising since not all updates need to be applied
atomically for valid results. We note that this proposal differs from
having application developers manually input semantic information
(e.g., creating compensating transactions for sagas [44]). Instead,
we imagine that the system will leverage contextual information
from particular graph-processing algorithms (e.g., to automatically
create compensating transactions).

6 CONCLUSION
Mammoth transactions are an important but underserved class
of transactions on graph data stores. We discuss the emergence
of mammoths and empirically confirm that these requests cannot
execute efficiently on existing systems. We propose several paths
forward to supporting mammoth transactions with high perfor-
mance and strong isolation guarantees. Leveraging inherent graph
data structures and properties will provide these requests with the
performance and consistency they deserve.

ACKNOWLEDGMENTS
We thank Jim Webber, George Theodorakis, Xiao Shi, and our
anonymous reviewers for their insightful feedback. This work is
supported by NSF CISE Expeditions Award CCF-1730628, NSF GRFP
Award DGE-1752814, a Meta Next-Generation Infrastructure award,
and gifts from Amazon, Astronomer, Google, IBM, Intel, Lacework,
Microsoft, Nexla, Samsung SDS, and VMWare.

REFERENCES
[1] 2012. SQL Server Lock Escalation Thresholds. https://learn.microsoft.com/en-

us/previous-versions/sql/sql-server-2008-r2/ms184286(v=sql.105)
?redirectedfrom=MSDN#lock-escalation-thresholds

[2] 2013. Epinions.com Benchmark in OLTP-Bench. https://github.com/
oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/
epinions/

[3] 2013. Twitter Benchmark in OLTP-Bench. https://github.com/oltpbenchmark/
oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/twitter/

[4] 2016. How online schema changes are possible in CockroachDB.
https://www.cockroachlabs.com/blog/how-online-schema-changes-are-
possible-in-cockroachdb/

[5] 2018. Amazon’s move off Oracle caused Prime Day outage in one of its biggest
warehouses, internal report says. https://www.cnbc.com/2018/10/23/amazon-
move-off-oracle-caused-prime-day-outage-in-warehouse.html

[6] 2020. Nested transactions in CockroachDB 20.1. https://www.cockroachlabs.
com/blog/nested-transactions-in-cockroachdb-20-1/

[7] 2021. Relationship Chain Locks: Don’t Block the Rock! https://neo4j.com/
developer-blog/relationship-chain-locks-dont-block-the-rock/

[8] 2023. Amazon Neptune. https://aws.amazon.com/neptune/
[9] 2023. ArangoDB. https://www.arangodb.com/
[10] 2023. Data Deletion on Google Cloud Platform. https://cloud.google.com/

security/deletion/
[11] 2023. DGraph. https://dgraph.io/
[12] 2023. General Data Protection Regulation. https://gdpr-info.eu/
[13] 2023. ISO/IEC 9075-2:2016 (SQL standard on savepoints). https://www.iso.org/

standard/63556.html
[14] 2023. MAGE – Memgraph Advanced Graph Extensions. https://memgraph.

com/docs/mage/
[15] 2023. Memgraph. https://memgraph.com/
[16] 2023. MySQL ReferenceManual 13.3.4 SAVEPOINT, ROLLBACKTO SAVEPOINT,

and RELEASE SAVEPOINT Statements. https://dev.mysql.com/doc/refman/8.0/
en/savepoint.html

[17] 2023. Neo4j Graph Data Science. https://neo4j.com/product/graph-data-science/
[18] 2023. PostgreSQL 15 Documentation SAVEPOINT. https://www.postgresql.org/

docs/current/sql-savepoint.html

909

https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms184286(v=sql.105)?redirectedfrom=MSDN#lock-escalation-thresholds
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms184286(v=sql.105)?redirectedfrom=MSDN#lock-escalation-thresholds
https://learn.microsoft.com/en-us/previous-versions/sql/sql-server-2008-r2/ms184286(v=sql.105)?redirectedfrom=MSDN#lock-escalation-thresholds
https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/epinions/
https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/epinions/
https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/epinions/
https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/twitter/
https://github.com/oltpbenchmark/oltpbench/tree/master/src/com/oltpbenchmark/benchmarks/twitter/
https://www.cockroachlabs.com/blog/how-online-schema-changes-are-possible-in-cockroachdb/
https://www.cockroachlabs.com/blog/how-online-schema-changes-are-possible-in-cockroachdb/
https://www.cnbc.com/2018/10/23/amazon-move-off-oracle-caused-prime-day-outage-in-warehouse.html
https://www.cnbc.com/2018/10/23/amazon-move-off-oracle-caused-prime-day-outage-in-warehouse.html
https://www.cockroachlabs.com/blog/nested-transactions-in-cockroachdb-20-1/
https://www.cockroachlabs.com/blog/nested-transactions-in-cockroachdb-20-1/
https://neo4j.com/developer-blog/relationship-chain-locks-dont-block-the-rock/
https://neo4j.com/developer-blog/relationship-chain-locks-dont-block-the-rock/
https://aws.amazon.com/neptune/
https://www.arangodb.com/
https://cloud.google.com/security/deletion/
https://cloud.google.com/security/deletion/
https://dgraph.io/
https://gdpr-info.eu/
https://www.iso.org/standard/63556.html
https://www.iso.org/standard/63556.html
https://memgraph.com/docs/mage/
https://memgraph.com/docs/mage/
https://memgraph.com/
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://dev.mysql.com/doc/refman/8.0/en/savepoint.html
https://neo4j.com/product/graph-data-science/
https://www.postgresql.org/docs/current/sql-savepoint.html
https://www.postgresql.org/docs/current/sql-savepoint.html

[19] 2023. Privacy Policy. https://www.facebook.com/privacy/policy/
[20] 2023. TigerGraph. https://www.tigergraph.com/
[21] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5, Article 68 (sep 2017), 40 pages.

[22] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: A Database Benchmark Based on the Facebook
Social Graph. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 1185–1196.

[23] JoyArulraj, Andrew Pavlo, and PrashanthMenon. 2016. Bridging the Archipelago
between Row-Stores and Column-Stores for Hybrid Workloads. In Proceedings
of the 2016 International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD ’16). Association for Computing Machinery, New
York, NY, USA, 583–598.

[24] Manos Athanassoulis, Kenneth S. Bøgh, and Stratos Idreos. 2019. Optimal Column
Layout for Hybrid Workloads. Proc. VLDB Endow. 12, 13 (sep 2019), 2393–2407.

[25] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. 2015. Feral Concurrency Control: An Empirical Investiga-
tion of Modern Application Integrity. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (Melbourne, Victoria, Aus-
tralia) (SIGMOD ’15). Association for Computing Machinery, New York, NY, USA,
1327–1342.

[26] Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michał Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019. Demys-
tifying graph databases: Analysis and taxonomy of data organization, system
designs, and graph queries. arXiv preprint arXiv:1910.09017 (2019).

[27] Mihai Capotă, Tim Hegeman, Alexandru Iosup, Arnau Prat-Pérez, Orri Er-
ling, and Peter Boncz. 2015. Graphalytics: A Big Data Benchmark for Graph-
Processing Platforms. In Proceedings of the GRADES’15 (Melbourne, VIC, Aus-
tralia) (GRADES’15). Association for Computing Machinery, New York, NY, USA,
Article 7.

[28] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui
Wei, Lixun Cao, Dan Zou, Yang Liu, Lei Zhang, Rui Shi, Wei Ding, Kai Wu,
Shangyu Luo, Jason Sun, and Yuming Liang. 2022. ByteHTAP: Bytedance’s
HTAP System with High Data Freshness and Strong Data Consistency. Proc.
VLDB Endow. 15, 12 (sep 2022), 3411–3424.

[29] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Jason
Chan, Harrison Tin, Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, Nathan
Bronson, Natacha Crooks, and Ion Stoica. 2022. TAOBench: An End-to-End
Benchmark for Social Network Workloads. Proceedings of the VLDB Endowment
15, 12 (2022), 1965–1977.

[30] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa
Lawande, Nathan Bronson, Peter Bailis, Natacha Crooks, and Ion Stoica. 2021.
RAMP-TAO: Layering Atomic Transactions on Facebook’s Online TAO Data
Store. Proceedings of the VLDB Endowment 14, 12 (2021), 3014–3027.

[31] Fábio Coelho, João Paulo, Ricardo Vilaça, José Pereira, and Rui Oliveira. 2017.
HTAPBench: Hybrid Transactional and Analytical Processing Benchmark. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering (L’Aquila, Italy) (ICPE ’17). Association for Computing Machinery,
New York, NY, USA, 293–304.

[32] Katriel Cohn-Gordon, Georgios Damaskinos, Divino Neto, Joshi Cordova, Benoît
Reitz, Benjamin Strahs, Daniel Obenshain, Paul Pearce, and Ioannis Papagiannis.
2020. DELF: Safeguarding Deletion Correctness in Online Social Networks.
In Proceedings of the 29th USENIX Conference on Security Symposium (SEC’20).
USENIX Association, USA, Article 60, 18 pages.

[33] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan
Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,
Kai-Uwe Sattler, Michael Seibold, Eric Simon, and Florian Waas. 2011. The
Mixed Workload CH-BenCHmark. In Proceedings of the Fourth International
Workshop on Testing Database Systems (Athens, Greece) (DBTest ’11). Association
for Computing Machinery, New York, NY, USA, Article 8, 6 pages.

[34] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona. 2010. Stability of graph commu-
nities across time scales. Proceedings of the National Academy of Sciences 107, 29
(June 2010), 12755–12760. https://doi.org/10.1073/pnas.0903215107

[35] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, et al. 2022. Graph
pattern matching in GQL and SQL/PGQ. In Proceedings of the 2022 International
Conference on Management of Data. 2246–2258.

[36] Bogdan Dumitrescu, Andra Băltoiu, and Ştefania Budulan. 2022. Anomaly De-
tection in Graphs of Bank Transactions for Anti Money Laundering Applica-
tions. IEEE Access 10 (2022), 47699–47714. https://doi.org/10.1109/ACCESS.2022.
3170467

[37] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Net-
work benchmark: Interactive Qorkload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 619–630.

[38] Jose M. Faleiro, Alexander Thomson, and Daniel J. Abadi. 2014. Lazy Evaluation
of Transactions in Database Systems. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD
’14). Association for Computing Machinery, New York, NY, USA, 15–26.

[39] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,
Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin, Wenyuan Yu, Jingren
Zhou, Diwen Zhu, and Rong Zhu. 2021. GraphScope: A Unified Engine for Big
Graph Processing. Proc. VLDB Endow. 14, 12 (oct 2021), 2879–2892.

[40] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao
Han, and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for
Evolving Graphs to Support Sub-Millisecond Per-Update Analysis at Millions
Ops/s. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery,
New York, NY, USA, 513–527.

[41] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoğlu. 2013.
KÙZU Graph Database Management System. In Eleventh Biennial Conference
on Innovative Data Systems Research, CIDR 2023, Amsterdam, The Netherlands,
January 8-11, 2013, Online Proceedings. www.cidrdb.org.

[42] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In Proceedings of the 2018 international conference on management of data. 1433–
1445.

[43] Per Fuchs, Domagoj Margan, and Jana Giceva. 2022. Sortledton: a universal,
transactional graph data structure. Proceedings of the VLDB Endowment 15, 6
(2022), 1173–1186.

[44] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. SIGMOD Rec. 16, 3 (dec
1987), 249–259.

[45] Jim Gray. 1988. The Transaction Concept: Virtues and Limitations. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 140–150.

[46] Jim N Gray, Raymond A Lorie, and Gianfranco R Putzolu. 1975. Granularity of
locks in a shared data base. In Proceedings of the 1st International Conference on
very large data bases. 428–451.

[47] Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Martin Schuster, Petra Selmer, and Hannes Voigt.
2019. Updating Graph Databases with Cypher. Proc. VLDB Endow. 12, 12 (2019),
2242–2253.

[48] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. 2021. Releasing Locks As
Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase
Locking. In Proceedings of the 2021 International Conference on Management of
Data (Virtual Event, China) (SIGMOD ’21). Association for ComputingMachinery,
New York, NY, USA, 658–670.

[49] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: A Raft-Based HTAP
Database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[50] Guoxin Kang, Lei Wang, Wanling Gao, Fei Tang, and Jianfeng Zhan. 2022.
OLxPBench: Real-time, Semantically Consistent, and Domain-specific are Es-
sential in Benchmarking, Designing, and Implementing HTAP Systems. In
2022 IEEE 38th International Conference on Data Engineering (ICDE). 1822–1834.
https://doi.org/10.1109/ICDE53745.2022.00182

[51] Jongbin Kim, Hyunsoo Cho, Kihwang Kim, Jaeseon Yu, Sooyong Kang, and
Hyungsoo Jung. 2020. Long-Lived Transactions Made Less Harmful. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Management of Data
(Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New
York, NY, USA, 495–510.

[52] Jongbin Kim, Jaeseon Yu, Jaechan Ahn, Sooyong Kang, and Hyungsoo Jung. 2022.
Diva: Making MVCC Systems HTAP-Friendly. In Proceedings of the 2022 Interna-
tional Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22).
Association for Computing Machinery, New York, NY, USA, 49–64.

[53] N. A. Lynch andM.Merritt. 1986. Introduction to the Theory of Nested Transactions.
Technical Report. USA.

[54] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for
Interactive Applications. In Proceedings of the 2017 ACM International Conference
on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for
Computing Machinery, New York, NY, USA, 37–50.

[55] Henrik Mühe, Alfons Kemper, and Thomas Neumann. 2013. Executing Long-
Running Transactions in Synchronization-Free Main Memory Database Systems.
In Sixth Biennial Conference on Innovative Data Systems Research, CIDR 2013,
Asilomar, CA, USA, January 6-9, 2013, Online Proceedings. www.cidrdb.org.

[56] Mark Needham and Amy E Hodler. 2019. Graph algorithms: practical examples
in Apache Spark and Neo4j. O’Reilly Media.

[57] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data (Melbourne, Victoria, Australia) (SIGMOD ’15). Association for Computing
Machinery, New York, NY, USA, 677–689.

[58] Patrick E. O’Neil. 1986. The Escrow Transactional Method. ACM Trans. Database
Syst. 11, 4 (dec 1986), 405–430.

910

https://www.facebook.com/privacy/policy/
https://www.tigergraph.com/
https://doi.org/10.1073/pnas.0903215107
https://doi.org/10.1109/ACCESS.2022.3170467
https://doi.org/10.1109/ACCESS.2022.3170467
https://doi.org/10.1109/ICDE53745.2022.00182

[59] Adam Prout, Szu-PoWang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen, Evan
Bergeron, Eric Hanson, Robert Walzer, Rodrigo Gomes, and Nikita Shamgunov.
2022. Cloud-Native Transactions and Analytics in SingleStore. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA,
USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA,
2340–2352.

[60] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and
Jingren Zhou. 2018. Real-Time Constrained Cycle Detection in Large Dynamic
Graphs. 11, 12 (aug 2018), 1876–1888.

[61] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek. 2013.
Online, Asynchronous Schema Change in F1. Proc. VLDB Endow. 6, 11 (aug 2013),
1045–1056.

[62] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.".

[63] Kenneth Salem, Héctor García-Molina, and Jeannie Shands. 1994. Altruistic
Locking. ACM Trans. Database Syst. 19, 1 (mar 1994), 117–165.

[64] Subhadeep Sarkar and Manos Athanassoulis. 2022. Query Language Support
for Timely Data Deletion. In Proceedings of the 25th International Conference on
Extending Database Technology, EDBT 2022, Edinburgh, UK, March 29 - April 1,
2022, Julia Stoyanovich, Jens Teubner, Paolo Guagliardo, Milos Nikolic, Andreas
Pieris, Jan Mühlig, Fatma Özcan, Sebastian Schelter, H. V. Jagadish, and Meihui
Zhang (Eds.). OpenProceedings.org, 2:429–2:434.

[65] Gábor Szárnyas, Jack Waudby, Benjamin A Steer, Dávid Szakállas, Altan Birler,
Mingxi Wu, Yuchen Zhang, and Peter Boncz. 2023. The LDBC Social Network
Benchmark: Business Intelligence Workload. (2023).

[66] Chuzhe Tang, ZhaoguoWang, Xiaodong Zhang, Qianmian Yu, Binyu Zang, Haib-
ing Guan, and Haibo Chen. 2022. Ad Hoc Transactions in Web Applications: The
Good, the Bad, and the Ugly. In Proceedings of the 2022 International Conference
on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for
Computing Machinery, New York, NY, USA, 4–18.

[67] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant Schoenebeck. 2018.
Contention-Aware Lock Scheduling for Transactional Databases. Proc. VLDB
Endow. 11, 5 (oct 2018), 648–662.

[68] TPC. 2010. TPC Benchmark H, revision 5.11. Technical Report. TPC. 1–132 pages.
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.

[69] TPC. 2021. TPC Benchmark C, revision 3.0.0. Technical Report. TPC. 1–138 pages.
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf.

[70] Bimal Viswanath, M. Ahmad Bashir, Mark Crovella, Saikat Guha, Krishna P.
Gummadi, Balachander Krishnamurthy, and Alan Mislove. 2014. Towards De-
tecting Anomalous User Behavior in Online Social Networks. In Proceedings of
the 23rd USENIX Conference on Security Symposium (San Diego, CA) (SEC’14).
USENIX Association, USA, 223–238.

[71] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, Chen Zheng, Gang Lu, Kent
Zhan, Xiaona Li, and Bizhu Qiu. 2014. BigDataBench: a Big Data Benchmark
Suite from Internet Services. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). 488–499.

[72] Todd Warszawski and Peter Bailis. 2017. ACIDRain: Concurrency-Related At-
tacks on Database-Backed Web Applications. In Proceedings of the 2017 ACM
International Conference on Management of Data (Chicago, Illinois, USA) (SIG-
MOD ’17). Association for Computing Machinery, New York, NY, USA, 5–20.

[73] Jack Waudby, Paul Ezhilchelvan, Jim Webber, and Isi Mitrani. 2020. Preserving
Reciprocal Consistency in Distributed Graph Databases (PaPoC ’20). Association
for Computing Machinery, New York, NY, USA, Article 2, 7 pages.

[74] Jack Waudby, Benjamin A. Steer, Arnau Prat-Pérez, and Gábor Szárnyas. 2020.
Supporting Dynamic Graphs and Temporal Entity Deletions in the LDBC Social
Network Benchmark’s Data Generator. In GRADES-NDA’20: Proceedings of the
3rd Joint International Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA), Portland, OR, USA, June
14, 2020, Akhil Arora, Semih Salihoglu, and Nikolay Yakovets (Eds.). ACM, 8:1–8:8.
https://doi.org/10.1145/3398682.3399165

[75] Lesley Wevers, Marieke Huisman, and Maurice van Keulen. 2016. Lazy Eval-
uation for Concurrent OLTP and Bulk Transactions. In Proceedings of the 20th
International Database Engineering &; Applications Symposium (Montreal, QC,
Canada) (IDEAS ’16). Association for Computing Machinery, New York, NY, USA,
115–124.

[76] Cao Xiao, David Mandell Freeman, and Theodore Hwa. 2015. Detecting Clusters
of Fake Accounts in Online Social Networks. In Proceedings of the 8th ACM
Workshop on Artificial Intelligence and Security (Denver, Colorado, USA) (AISec
’15). Association for Computing Machinery, New York, NY, USA, 91–101.

[77] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu, Lei Xie,
Ashraf Aboulnaga, and Wenguang Chen. 2020. LiveGraph: A Transactional
Graph Storage System with Purely Sequential Adjacency List Scans. Proc. VLDB
Endow. 13, 7 (mar 2020), 1020–1034.

911

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
https://doi.org/10.1145/3398682.3399165

	Abstract
	1 Introduction
	2 A New Ice Age: The Emergence of Mammoths
	2.1 The Graph Data Model
	2.2 Mammoth Case Studies
	2.3 The Lack of Benchmarks

	3 Evaluating a Modern Graph Database
	3.1 Balanced Mammoths
	3.2 Unbalanced Mammoths
	3.3 Discussion

	4 Existing Approaches for Mammoth Transactions
	4.1 User Intervention
	4.2 Specialized Protocols
	4.3 Ad Hoc in Practice

	5 Towards Speedy Mammoths
	5.1 Borrowing From Relational Systems
	5.2 Taking Advantage of Graph Features
	5.3 Workload-Specific Protocols

	6 Conclusion
	Acknowledgments
	References

