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Abstract. Plenoptic cameras provide a robust way to capture 3D infor-
mation with a single shot. This is accomplished by encoding the direction
of the incoming rays with a microlens array (MLA) in front of the cam-
era sensor. In the focused plenoptic camera, a MLA acts like multiple
small cameras that capture the virtual scene on the focus plane of a
main lens from slightly different angles, which enables algorithmic depth
reconstruction. This virtual depth is measured on the camera side, and
independent of the main lens used. The connection between actual lat-
eral distances and virtual depth, however, does depend on the main lens
parameters, and needs to be carefully calibrated. In this paper, we pro-
pose an approach to calibrate focused plenoptic cameras, which allows a
metric analysis of a given scene. To achieve this, we minimize an energy
model based upon the thin lens equation. The model allows to estimate
intrinsic and extrinsic parameters and corrects for radial lateral as well
as radial depth distortion.

Keywords: focused plenoptic camera, plenoptic 2.0, metric calibration,
calibration, depth distortion, Raytrix

1 Introduction

While normal 2D cameras only record the intensity of light at a certain position
on the image sensor, plenoptic cameras capture the complete 4D lightfield on po-
sition on the image sensor, plenoptic cameras capture the complete 4D lightfield
on the sensor plane. The 4D lightfield is an intensity function that not only de-
pends on the position on the imaging plane, but also the incident direction. This
additional information allows an algorithmic 3D reconstruction of the captured
scene [19, 4, 10, 11].

The idea of plenoptic cameras originates in the early 20th century. First de-
scribed using a grid of pinholes inside a camera by Ives in 1903 [6], Lippmann
in 1908 proposed the use of microlenses in front of the image plane [8]. Emerg-
ing from these concepts, a lot of research on plenoptic cameras has been done,
varying from setups with multiple independent cameras over such ones with mi-
crolenses in front of an image sensor. Several improvements to the design have
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Fig. 1. Detail of a raw image captured by a plenoptic 2.0 camera by Raytrix. Ob-
jects closer to the camera are visible in more microlens images. The different types
of microlenses can be distinguished in this image by comparing the sharpness of the
projections.

been proposed, for example, cameras manufactured by Raytrix3 employ multiple
types of microlenses to accomplish a larger depth of field. Based on the different
types of input data, a multitude of different concepts for estimating depth, like
EPI stacks [19, 18, 4, 2], focus stacks [10, 11], or multiview stereo approaches [7,
1] has been introduced.

For any kind of 3D camera, it is of interest to be able to metrically measure
the depth and determine the extent of a captured object. Hence, a lot of work
has been put into calibrating plenoptic cameras. Vaish et al. [16] and Svoboda
et al. [15] work on calibrating plenoptic multi-camera arrays while Dansereau et
al. [5] deal with the calibration of unfocused lenslet-based plenoptic cameras like
the ones commercially available from Lytro4.

This paper concentrates on the metric depth reconstruction with focused
lenslet-based plenoptic cameras or plenoptic 2.0 cameras [9] as commercially
available from Raytrix [12] (see figure 3). The idea of depth reconstruction with
a focused plenoptic camera is to find the virtual point an object point is focused
on by the main lens. Since points at different distances to the main lens are
focused upon different distances behind the main lens, a reconstruction of the
original 3D scene is possible.

The location a scene point is projected to on the sensor side of the camera
does not only depend on the point‘s distance to the camera, but also on the
focal length and focus distance of the main lens. A metric surveying of objects
is impossible without knowing the exact parameters of the camera. Our contri-
bution is to introduce a model of how to estimate those parameters to calibrate
a plenoptic 2.0 camera.

3 see www.raytrix.de
4 see www.lytro.com



On the Calibration of Focused Plenoptic Cameras 3

The paper is organized as follows. First, a brief introduction to camera mod-
els is given and afterwards, the depth estimation algorithm implemented in a
Raytrix camera is described in terms of these models. In section 2.3, distor-
tion models are introduced, which allow for the correction of lens errors. Here
we propose a novel type of distortion model, which corrects for distortion in
depth dimension. The effect of this type of distortion is that objects located
on a plane perpendicular to the optical axis are projected to different virtual
depths depending on their position in the frame. Section 3 describes the final
calibration model, after which we show results on a number of different camera
configurations. Finally, we give an outlook on possible future work.

2 Theoretical Background

The concept behind calibrating a camera lens combination is that multiple im-
ages of a known object (e.g. a checkerboard or a dot grid) are taken. The known
dimensions of the model and the extracted projections on the sensor are then
leveraged to estimate the intrinsic and extrinsic camera parameters. The extrin-
sic camera parameters describe the position and rotation of the model points
in relation to the camera, while the intrinsic camera parameters parametrize
the projection through the lens. Additionally, correction parameters like lens
distortion must be calculated.

In this chapter, we introduce the theoretical background for these topics.
First, a short introduction to camera models is given, which is an important
prerequisite to understand depth estimation with a plenoptic camera. Second,
we shed some light on lens distortion models and introduce the proposed depth
distortion model.

2.1 Camera Models

In order to describe the perspective projections and optical properties of cameras,
multiple camera models have been proposed over time. One of the most simple
models is the pinhole camera model, which is often used in computer graphics. In
this model, points in the object space are projected through the optical center
(the pinhole) onto an image plane resulting in a 2D representation of the 3D
object space.

While this model is useful for generating 2D images in computer graphics or
even for calibrating 2D cameras [20], any depth information is lost by the pro-
jection. Hence, a more physically motivated model has to be chosen to describe a
plenoptic camera. The thin lens model describes the distance between an object
in front of the camera and the virtual point where the light emitted from that
object is focused on behind the lens.

Looking at figure 2, one can see rays emerging from the two object points O1

and O2. Each ray is bent according to the focal point of the lens and focused upon
I1 and I2, respectively. The intercept theorem leads to the thin lens equation,
which describes the connection between an object at a distance b along the
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Fig. 2. Thin Lens Camera Model. Object points Oi are projected through the lens and
focused to virtual image points Ii behind the lens. If a virtual image point lies upon
the image plane, the point is in focus and therefore captured sharply, while points
away from the focus plane are projected in front or behind the image plane and hence
appear blurred. This effect is called depth of field (DOF).

optical axis from the camera, the distance of its focused representation a and
the focal length f of the lens as

1

f
=

1

a
+

1

b
. (1)

As one can see in figure 2, this model also describes the effect of depth of field
(DOF): an object that is at the focus distance of the camera (in this case a2)
is focused precisely onto the image plane resulting in a sharp representation of
that point in the image, while an object in front (or behind) that focus plane is
focused behind (or in front) of the image plane (O1 and I1). Hence, the light of
an object point that is out of focus influences a larger area, resulting in a blurred
representation of that point.

The thin lens model only holds for lenses whose thickness is negligible in
comparison to its focal length. As this must not always be the case, the thin lens
model can be extended to the thick lens model. This model includes an offset (the
lens thickness) to the model, hence, the thin lens model is a special case of the
thick lens model. It can be shown that any combination of lenses – in particular
any single lens – can be approximated by the thick lens model, although multiple
effects like aberrations or distortion are not included. While with normal camera
lenses, the difference between both models is negligible, especially in the field
of microscopy the thin lens model can not be used to describe the optics of the
lens.

Consequently, the thick lens model would be the perfect model to build the
basis for the desired calibration algorithm. Unfortunately, the given information
is generally not sufficient to distinguish between the thin lens and the thick
lens model, as this requires knowledge of the absolute distance between a point
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in front and one behind the camera. Hence, the lens thickness is impossible to
estimate by only using calibration targets. For this reason, we will use the thin
lens model for the remainder of the paper in order to model the main lens.

If the coordinate system is placed with its origin at the intersection of the
main lens axis with the lens plane and the z-axis running along the main lens
axis, the thin lens projection can be expressed as matrix multiplication in ho-
mogeneous coordinates

ĩ = Ao, i =
ĩ

ĩ4
,

with i =


i1
i2
i3
1

 , ĩ =


ĩ1
ĩ2
ĩ3
ĩ4

 , o =


o1
o2
o3
1

 and A :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

f 1

 . (2)

Above, the point o is the object point in front of the camera, i the virtual point
onto which o is projected by the main lens, and A the projection matrix. The
multiplication Ao leads to the representation ĩ of i in homogenous coordinates,
from which i can easily be recovered.

2.2 Depth Estimation
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Fig. 3. Schematics of a plenoptic camera. An object point (not shown) is projected
through the main lens (right side) onto the virtual image point i. The resulting light
cone is split up by the microlenses and focused onto the image plane at i1 and i2.
Thus, depth estimation can be performed by finding corresponding projections and
calculating the parallax.

The image in a plenoptic 2.0 camera is captured through a microlens array,
see figure 1. This allows algorithms to estimate the virtual depth of a given scene.
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Fig. 4. The Raytrix plenoptic camera estimates depth with correspondence search in
the microlens domains. The result of the internal algorithm is a virtual depth v := a/b
for each pixel given in multiples of the distance b between microlens array and image
plane.

As described by the thin lens model, an object point is focused behind the main
lens onto a virtual image point. The cone of rays between this virtual point and
the lens is split up by the microlenses and focused at different points onto the
image plane, see figure 3. As only the position of these projections is of interest,
the pinhole model is sufficient to describe the effect of the microlenses.

Looking at just the microlens array, in figure 4 one can see how the projec-
tion i1 and i2 arise as the projections of the main lens’ virtual image point i
onto the image plane. The depth reconstruction works similar to that in stereo
cameras: a pair of microlenses is chosen, corresponding points are identified and
triangulated. To identify matching projections in multiple lenses, pixel patches
are compared. The usually chosen photoconsistency measure is the sum of ab-
solute differences over small pixel patches along the epipolar lines. For this to
work, sufficient object structure and image contrast are needed.

We define the virtual depth v of the image point i as the distance between i
and the MLA, given in multiples of the distance b between the sensor and the
MLA, as returned by the depth estimation algorithm of the Raytrix camera.
Thus, v = a

b , see figure 3. As one can see in figure 4, the virtual depth can
be computed from the detected correspondences using the intercept theorem.
Assuming the distance D = ‖c1 − c2‖ between the microlens centers c1 and c2
to be known, the intercept theorem leads to

v :=
a

b
=
‖i− c1‖
‖i1 − c1‖

=
D

‖i1 − i2‖
. (3)

To calibrate this model, we need to estimate this distance b as well as the
distance h between the main lens and the MLA. Knowledge of both allows virtual
depths to be transformed to metric distances: bL = h + v · b, which can be
projected in front of the camera by the thin lens equation (see eq. 1).
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The virtual depth can also be used to reconstruct the refocused image [13].
This refocused image is equivalent to a picture a common 2D camera would have
taken. Due to the increasing redundancy for higher virtual depths, the relative
resolution decreases. As each point has to be projected at least 4 times – twice
for every dimension of the image – for depth estimation to work the resolution
of the refocused image is one quarter of the raw image.

2.3 Distortion models

Lateral distortion. Distortion describes errors in the geometric projection
through a lens. It represents a deviation from the ideal rectilinear projection
which maps straight lines to straight lines. Distortion can follow many patterns,
but in general it is primarily radially symmetric due to the symmetric design of
a lens.

However, in applications the distortion is not always perfectly radially sym-
metric. Therefore, multiple extensions of the pure radial distortion model have
been introduced. One of the most prominent and widely used is Brown’s distor-
tion correction model from 1966 [3],

xu =(xd − xc)(1 + k1r
2 + k2r

4 + · · · )
+ (p1(r2 + 2(xd − xc)2) + 2p2(xd − xc)(yd − yc))(1 + p3r

2 + · · · ),
yu =(yd − yc)(1 + k1r

2 + k2r
4 + · · · )

+ (p2(r2 + 2(yd − yc)2) + 2p1(xd − xc)(yd − yc))(1 + p3r
2 + · · · ).

(4)

Here the point (xu, yu) is the undistorted and (xd, yd) the distorted image
point. The parameters ki describe the radial distortion and the parameters pi
the tangential distortion. (xc, yc) is an offset as the origin of the distortion is
not necessarily the center of the image. The radius r is defined by the Euclidean
distance to the origin of distortion

√
(xd − xc)2 + (yd − yc)2.

Brown deducts this formula from the thin prism model, which states that
any skew of lenses inside a lens can be obtained by combining a perfect lens
which is also perfectly aligned with a thin prism. The distortion model was
designed to be an approximation to ray-tracing. In general, the even degrees of
the polynomials are predominant. Hence, in most calibration algorithms, only
these degrees are taken into account. The distortion model we use includes the
coefficients k1, k2, p1, p2 and p3.

Distortion in direction of the optical axis. A second kind of distortion is
that of distortion in direction of the optical axis which in this paper we term the
depth distortion. It originates from the Petzval field curvature which describes
a slight change of focal length for points at greater distance from the optical
axis [14]. This kind of distortion does not effect the position of a point in lateral
direction, but the distance it is projected to in depth dimension. Hence, in 2D
imaging it would only result in a slight blur at the image corners. But as one
can observe in figure 5, the effect leads to a depth distortion for the plenoptic
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Fig. 5. Color-coded 3D representation of a plane captured by a Raytrix camera with a
standard Nikon AF Nikkor 50mm 1:1.8D lens. The depth distortion bends the plane,
with the effect becoming stronger with increasing radius from the center. The difference
between the estimated depth at the center and the border is about 0.5 virtual depth
units, corresponding to approximately 3mm if reprojected in front of the camera.

camera. As this kind of distortion behaves similarly to the lateral distortion, we
model it with a structurally similar formula depending on the off-center radius r.

Although in this way, this kind of distortion can be easily compensated for,
another aspect has to be taken into account as well. The depth distortion changes
over the depth range of the camera. Therefore, the distortion does not only
depend on the radius but also on the virtual depth. We think the reason for
the change in the depth distortion over the depth range is that the main lens is
optimized in a way that the effect of Petzval field curvature is minimal at the
image plane, while the focused plenoptic camera calculates depth behind this
plane. Hence, the main lens correction is not sufficient in this scenario.

Further experimental analysis of the depth distortion suggests that the dis-
tortion changes linearly with the virtual depth. Figure 6 visualises this behavior.
Thus, we suggest calculating the depth distortion depending on the radius which
is linearly adapted by the virtual depth,

r′ =r · (s1 + vd · s2) (5)

vu =vd + t1r
′ + t2r

′2 +3 r
′4, (6)

where vu is the undistorted and vd the distorted virtual depth, respectively,
while si are the radial and ti the depth distortion coefficients to be determined
during calibration.

3 The Calibration Model

The main idea behind the calibration is to capture a target with a known pattern
(in our case a dot pattern with a known grid size – see figure 7(a)). These dots
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Fig. 6. Depth radial distortion for different virtual depths. The depth distortion in-
creases in magnitude with increasing radius from the image center, but also with in-
creasing virtual depth. The dependence on virtual depth is approximately linear.

(a) Target capture setup (b) Linear axis used to measure the ground truth

Fig. 7. Experimental setup to (a) capture individual targets and to (b) measure the
ground truth depth of a target plane.
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are detected in the image and their virtual depth is calculated. We now need to
establish the model parameters such that the detected virtual points are equal
to the projection of a model grid with the correct size.

To detect these virtual points first the virtual depth of the given scene and
the refocused image have to be calculated as described by Perwaß[13]. The dot
pattern has to be detected and positions have to be converted to metric distances.
The pixel size is known but due to the different resolution of the depth map and
the refocused image it has to be adapted.

As in 2D calibration approaches, the unknown variables can be divided into
two groups: the extrinsic and the intrinsic camera parameters, see figure 8. The
former describe the position and rotation of the calibration target (or the camera,
depending on the point of view), the latter the characteristics of the modeled
plenoptic camera like focal length and the distance between the image plane
and the modeled lens. A parameter specific to plenoptic cameras is the distance
between the microlens array and the image plane (corresponding to the factor
between virtual and metric depth). Due to imperfect lenses, we also have to
compensate for distortion. For that, the distortion models previously introduced
will be used.

The parameters are estimated by minimizing the residual between the ro-
tated, translated and projected model points (which is equivalent to a rotated
and translated camera) and the measured image points. The distortion model
is applied to the measured points as they are supposed to rectify images. The
residual, which depends on the unknowns summarized in figure 8, is given by

R =

C∑
j=1

Nj∑
i=1

(dist(pji)− πA(TjRjmji))
2, (7)

where C is the number of targets used for calibration, Nj is the number of points
found on target j. For each i, j, the vector pji represents the measured point,
mji the corresponding model point, Rj the rotation matrix of target j and Tj
the translation matrix of that target. The projection πA is computed according
to the thin lens camera model and depends on the projection matrix A, i.e.
ultimately only on the focal length f , see equation 2. dist(·) represents both the
lateral (see section 2.3) as well as the depth distortion (see equation 6).

As can be seen in figure 8, we need 15 parameters to describe the intrinsic
characteristics of the camera and 6 for the position of each target. Hence, for C
targets, a total of 6C + 15 parameters are used.

As the overall energy is non-convex and has local minima, for more robust
results, the optimization proceeds in several steps. First, only the initial pose
is estimated. For this, the parameters for focal length f , focus distance h and
multilens array distance b are initialized with their theoretical quantities from
the technical specifications of lenses and cameras. As these values are usually
close to the final results, this is a good choice to start the optimization with.
However, due to small deviations in manufacturing, they might not be exact,
and we find that optimization is still required.
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parameter model variable number of unknowns

in
tr

in
si

c

focal length f 1
focus distance h 1
distance between MLA and sensor b 1
distortion offset xc, yc 2
lateral distortion ki, pi 5
depth distortion si, ti 5

ex
t. rotation Rj 3

translation Tj 3

total 21

Fig. 8. Parameters to be optimized for during calibration.

Afterwards, all model parameters except for the distortion are estimated.
If a good initialization for the distance b between the MLA and the sensor is
unknown and therefore might be far off, we suggest an iterative approach to
determine this parameter: should the change in b be above a certain threshold
after optimizing the whole model for the first time, all parameters except b are
reset to the initial values. This is suggested especially for higher focal length as
the algorithm might otherwise converge to local optima which are far off.

Finally, the distortion parameters are computed. As the undistorted model
already tried to (erroneously) compensate for the distortion, we suggest iterating
this part with a linear scaling factor to the lateral distortion, which is gradually
phased out during optimization iterations.

For all optimization steps above, the Matlab implementation of the sequen-
tial quadratic programming (SQP) algorithm was used, which proved to be suf-
ficiently accurate and efficient. Depending on the number of targets and the
number of points on each of these the approximate computation time is between
one to fifteen minutes.

4 Results

In order to evaluate the calibration, we use a linear axis as shown in figure 7(b) to
generate ground truth data. A target showing a random noise pattern is placed
perpendicular to the optical axis of the camera and moved along this axis, and
we estimate the virtual depth of the captured scene. Due to possible slight skew
of the target and depth distortion, a skewed paraboloid was fitted to the data
and only the depth measured at the extrema of the paraboloid – i.e. the center of
the distortion – was used for the virtual depth. This paraboloid was also used to
estimate the depth distortion for different virtual depths. In addition, the actual
real-world distance between the image sensor and the target was measured. This
way, it is possible to compare the real distance between camera and object to
the one obtained from calibrating the camera system.

To compare this ground truth data with the calibration parameters from the
optimization, the estimated distances for various virtual depths were reprojected
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Fig. 9. A comparison shows that the measured ground truth data (green) and the data
calculated from the calibration (red) correspond quite well (left axis). The difference
between both graphs is plotted in black (right axis). The average relative error is
only 0.36mm, while the absolute error (see text) amounts to 245mm. Three targets
with a total of 2055 points were used for this calibration.

in front of the camera according to the thin lens model and compared to the
measured data. We observe that absolute distances can generally not be esti-
mated, which is the expected behaviour. On the one hand, the relation between
the virtual depth and the relative change in metric distances is very similar if
focal length, focus distance and distance to the object are increased simultane-
ously. On the other hand, as the lens thickness is neglected, it is not assured
that the model can fit reality. Hence, there is a fixed offset of as much as 20cm
between the calculated and the measured sensor-target distance. This error does
not improve by using more points or targets.

However, if we correct for this fixed offset and only consider the relative
differences between the various virtual depths, the results fit reality very well.
Figure 9 shows both the measured depth curve (green) and the shifted estimated
curve (red). Two kinds of errors can be seen. On the one hand there is some noise
present in the ground truth. This is due to measurement errors and the standard
deviation of the estimation. On the other hand, systematic errors can be seen:
the error is not completely random. This might be due to inaccuracies while
identifying the marks on the targets, or because of improperly printed targets –
we have experimented with this, and an error of 1-2% in the distance between
the spots would explain the difference between the two curves quite closely.
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Fig. 10. The number of images of targets used for calibration plotted against the
average relative error. The data has been generated using multiple camera lens com-
binations. Due to only few samples with more than 9 images used the curve is not as
monotonous as expected.

We now discuss to what extend other parameters influence the quality of the
calibration. First of all, the number of targets used for the calibration plays an
important role. The more targets used, the better and more robust the results, see
figure 10. This is not surprising, as more data generally works towards reducing
the influence of deviations in measurements on the error. More input data may
also be generated by using a finer dot grid on the targets. Experiments show
that although the quality of the estimate improves with the number of points
per target, the number of targets is generally more important. In general, we
suggest using at least 3 targets with a few hundred points each.

We have compared multiple lenses on the same camera, and the results for
the distance between the sensor and the MLA are robust, that is this distance
is approximately the same for all lenses. Another point that is important for
calibrating plenoptic cameras is that the actual focal length and focus distance
change for different focal settings of the lens. As one can see in figure 11, the ef-
fective focal length of a Zeiss Makro Planar T* 100mm f/2 ZE is between 110mm
and 130mm depending on the focus distance. This corresponds to the observed
behaviour when mounted on a DSLR.

Furthermore, one can see that the results for the R29 are better than that
of the R5. This is due to several reasons. First, because the R29 creates larger
and sharper images as well as has a higher depth resolution. Second, the R5’s
ground truth data is noisier than that of the R29. Third, the wide angle lenses
used with the R5 are more difficult to calibrate.
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declared on lens computed from calibration
camera dot spacing focal length focus distance focal length focus distance difference

R
5
M

25 300 22.60 300.63 4.22
25 500 24.59 552.55 7.21
50 500 55.93 607.89 1.25
50 700 51.29 741.58 7.33
75 900 79.12 1036.24 3.09

R
2
9
M

4 50 440 55.39 444.82 1.81
16 50 440 56.07 450.45 1.27

50 500 64.11 491.10 1.60
100 440 107.35 332.85 2.00
100 500 131.37 508.46 1.13

4 100 700 119.50 734.66 1.86
16 100 700 120.15 741.30 1.90

Fig. 11. Declared versus calculated values depending on focal length and focus distance
for different cameras and lenses and spacing of the target dots. If no dot spacing distance
is given above, the values were averaged over targets with spacing between 2mm and
8mm. All distances are given in millimeters. In addition, the average relative difference
between the ground truth and the projected depth curve is given.

Figure 12 shows how depth values on a plane are corrected by the depth dis-
tortion estimation. While figure 12(a) shows initial erroneous depth estimates in
virtual depth for different virtual depths and radii, correcting this data by the
introduced distortion model as shown in 12(b) leads to considerably improved
results. There is close to no systematic error present. This is particularly re-
markable as the correction works on the whole depth range, while the targets
used for the calibration only cover part of it.

5 Conclusion

We have presented a way to compute a metric calibration for plenoptic 2.0 cam-
eras. Based upon the thin lens equation, a quadratic residual was determined,
which can be minimized by standard optimization techniques. In addition, dis-
tortion is taken into account. Here, a newly developed model was presented,
which corrects for depth distortion over varying virtual depths and radii.

We have tested our method on a number of different camera models available
from Raytrix. The results show that although the absolute distance between an
object and the camera can not be precisely estimated, the relative distances
between the virtual depth levels are calculated correctly. The depth distortion
model leads to an accurate correction of the data over the complete depth range,
even if calibration targets only cover part of it.

In the future, we plan to extend the presented model. Investigating another
lateral distortion model might be interesting, which describes the tangential
distortion as a tilt of the main lens. Wang et al. [17] show that in terms of quality,



On the Calibration of Focused Plenoptic Cameras 15

radius

v
ir

tu
a

l d
e

p
th

 

 

0 0.2 0.4 0.6 0.8 1

4

6

8

10

12

14
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) Uncorrected depth distortion.
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(b) Corrected depth distortion.

Fig. 12. Depth distortion over different radii and virtual depths. The depth distortion
increases with higher virtual depths and radii. The error is given in virtual depth units.

this is equivalent to the standard model. However, due to the information on the
tilt of the main lens, the correction of the depth distortion as well as the general
depth calibration might be improved.

Another factor which has been neglected are the microlenses itself. First,
calibration might improve if done for each type of microlens separately. Second,
experiments suggest that distortion within the microlenses influences the depth
estimation. Hence, we think that an extension of the model which can correct
for the lateral distortion within the microlenses can further improve results.
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