On Clustering Using Random Walks

David Harel and Yehuda Koren

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel
{harel,yehuda}@wisdom.weizmann.ac.il

Abstract. We propose a novel approach to clustering, based on deter-
ministic analysis of random walks on the weighted graph associated with
the clustering problem. The method is centered around what we shall
call separating operators, which are applied repeatedly to sharpen the
distinction between the weights of inter-cluster edges (the so-called sep-
arators), and those of intra-cluster edges. These operators can be used as
a stand-alone for some problems, but become particularly powerful when
embedded in a classical multi-scale framework and/or enhanced by other
known techniques, such as agglomerative clustering. The resulting algo-
rithms are simple, fast and general, and appear to have many useful
applications.

1 Introduction

Clustering is a classical problem, applicable to a wide variety of areas. It calls
for discovering natural groups in data sets, and identifying abstract structures
that might reside there. Clustering methods have been used in computer vision
[11]2], VLSI design [4], data mining [3], web page clustering , and gene expression
analysis.

Prior literature on the clustering problem is huge, see e.g., [7]. However, to
a large extent the problem remains elusive, and there is still a dire need for a
clustering method that is natural and robust, yet very efficient in dealing with
large data sets.

In this paper, we present a new set of clustering algorithms, based on deter-
ministic exploration of random walks on the weighted graph associated with the
data to be clustered. We use the similarity matrix of the data set, so no explicit
representation of the coordinates of the data-points is needed. The heart of the
method is in what we shall be calling separating operators, which are applied
to the graph iteratively. Their effect is to ‘sharpen’ the distinction between the
weights of inter-cluster edges (those that ought to separate clusters) and intra-
cluster edges (those that ought to remain inside a single cluster), by decreasing
the former and increasing the latter. The operators can be used on their own
for some kinds of problems, but their power becomes more apparent when em-
bedded in a classical multi-scale framework and when enhanced by other known
techniques, such as agglomerative or hierarchical clustering.

The resulting algorithms are simple, fast and general. As to the quality of the
clustering, we exhibit encouraging results of applying these algorithms to several

R. Hariharan, M. Mukund, and V. Vinay (Eds.): FSTTCS 2001, LNCS 2245, pp. 18-H1] 2001.
© Springer-Verlag Berlin Heidelberg 2001

On Clustering Using Random Walks 19

recently published data sets. However, in order to be able to better assess its
usefulness, we are in the process of experimenting in other areas of application
too.

2 Basic Notions

We use standard graph-theoretic notions. Specifically, let G(V, E,w) be a
weighted graph, which should be viewed as modeling a relation E over a set
V' of entities. Assume, without loss of generality, that the set of nodes V is
{1,...,n}. The w is a weighting function w : £ — R, that measures the sim-
ilarity between pairs of items (a higher value means more similar). Let S C V.
The set of nodes that are connected to some node of S by a path with at most k
edges is denoted by V*(S). The degree of G, denoted by deg(G), is the maximal
number of edges incident to some single node of G. The subgraph of G induced by
S is denoted by G(5). The edge between i and j is denoted by (i, 7). Sometimes,
when the context is clear, we will write simply (i, j) instead of (i,j) € E.

A random walk is a natural stochastic process on graphs. Given a graph and
a start node, we select a neighbor of the node at random, and ‘go there’, after
which we continue the random walk from the newly chosen node. The probability
of a transition from node i to node j, is
w(i,)

d;

where d; = 3, ;) w(i, k) is the weighted degree of node i.

Given a weighted graph G(V, E, w), the associated transition matriz, denoted
by M@ is the n x n matrix in which, if 4 and j are connected, the (i, j)’th entry
is simply p;;. Hence, we have

a_Jpiy (4,j)€E

Pij =

0 otherwise

Now, denote by P¥,_,.(i) € R the vector whose j-th component is the proba-
bility that a random walk originating at ¢ will visit node j in its k-th step. Thus,
Pk .. (i) is the i-th row in the matrix (M“)*, the k’th power of M©.

The stationary distribution of G is a vector p € R™ such that p- ME = p. An
important property of the stationary distribution is that if G is non-bipartite,
then PY._..(7) tends to the stationary distribution as k goes to oo, regardless of
the choice of i.

The escape probability from a source node s to a target node ¢, denoted by
P.scape(s,t), is defined as the probability that a random walk originating at s
will reach ¢ before returning to s. This probability can be computed as follows.

For every i € V, define a variable p; satisfying:
ps =0, pt =1, and
PiZZpij'Pj fori#s, i#t
()

20 David Harel and Yehuda Koren

The values of p; are calculated by solving these equations EI, and then the
desired escape probability is given by:

Pescape (87 t) = Zpsz * Pi
(s,4)

3 The Clustering Problem

The common definition of the clustering problem is as follows. Partition n given
data points into k clusters, such that points within a cluster are more similar
to each other than ones taken from different clusters. The N data points are
specified either in term of their coordinates in a d-dimensional space or by means
of an n x n similarity matriz, whose elements s;; measure the similarity of data
points 4 and j.

Our algorithms use the similarity matrix only, and thus can deal with cases
where pairwise similarity is the only information available about the data. Specif-
ically, we address the problem of clustering the weighted graph G(V, E, w). Most
often we prefer to model the data using sparse graphs, which contain only a
small subset of the edges of the complete graph, those corresponding to higher
similarity values. Working with sparse graphs has several advantages. First, it
reduces the time and space complexity, and second, the “structure” of adequate
sparse graphs expresses the arrangement of the data, thus helping the clustering
process.

A preferred quality of a clustering algorithm is its ability to determine the
number k of natural clusters. In reality, however, most clustering algorithms
require this number to be an input, which means that they may break up or
combine natural clusters, or even create clusters when no natural ones exist in
the data.

The problem as described above is inherently ill-posed, since a set of points
can be clustered naturally in many ways. For example, Figure [(a) has three
clusters, but one could argue that there are only two, since the two on the right
hand side are close enough to be thought of as one. In Figure [[((b) one could
argue for and against dividing the points in the top dense region into two highly
connected natural clusters. A solution to such ambiguities is to use hierarchical
clustering, which employs a parameter for controlling the desired resolution.

Various cost functions, sometimes called objective functions, have been pro-
posed in order to measure the quality of a given clustering. Viewing the clustering
problem as an optimization problem of such an objective function formalizes the
problem to some extent. However, we are not aware of any function that op-
timally captures the notion of a ‘good’ cluster, since for any function one can
exhibit cases for which it fails. Furthermore, not surprisingly, no polynomial-time
algorithm for optimizing such cost functions is known. In fact, a main role of cost

! Notice that when multiplying each row i with d;, the weighted degree of the respected
node, the system is represented with a symmetric positive-definite matrix, which is
easier to be solved

On Clustering Using Random Walks 21

Fig. 1. Inherent ambiguity in clustering: How many clusters are there here?

functions for clustering is to obtain some intuition about the desired properties
of a good clustering, and to serve as an objective metric for distinguishing a
good clustering from a bad one.

3.1 Clustering Methods

We now survey some clustering approaches. Instead of providing specific refer-
ences to each method, we point the reader to the surveys in [7]8].

Clustering methods can be broadly classified into hierarchical and partitional
approaches. Partitional clustering algorithms obtain a single partition of the data
that optimizes a certain criterion. The most widely used criterion is minimizing
the overall squared distance between each data point and the center of its related
cluster. This tends to work well with isolated and compact clusters. The most
common methods of this kind are the k-Means (that is suitable only for points in
a metric space) and the k-Medoid algorithms. An advantage of these algorithms
is their robustness to outliers (nodes that cannot be classified into a natural
cluster). Another advantage is their quick running time. Their major drawback
is a tendency to produce spherically shaped clusters of similar sizes, which often
prevents the finding of natural clusters. For example, consider the graph in Figure
A natural clustering decomposition of this graph is into two rectangular grids,
the larger left-hand-side grid and the smaller right-hand-side grid. However, these
methods will attach some nodes of the left-hand-side grid to the nodes of the
right-hand-side grid, seeking to minimize the distance of each node to the center
of its related cluster.

Hierarchical algorithms create a sequence of partitions in which each partition
is nested into next partition in the sequence. Agglomerative clustering is a well-
known hierarchical clustering method that starts from the trivial partition of
n points into n clusters of size 1 and continues by repeatedly merging pairs
of clusters. At each step the two clusters that are most similar are merged,
until the clustering is satisfactory. Different similarity measures between clusters
result in different agglomerative algorithms. The most widely used variants are
the Single-Link and the Complete-Link algorithms. In Single-Link clustering
similarity between clusters is measured as the similarity between the most similar
pair of elements, one from each of the clusters, while in Complete-Link clustering
the similarity is measured using the least similar pair of elements.

22 David Harel and Yehuda Koren

The Complete-Link algorithm tends to break up a relatively large (though
natural) cluster into two (unnatural) clusters, and will face similar difficulties
to the partitional algorithms discussed above. The Single-Link algorithm has a
different problem — the “chaining effect”: it can be easily fooled by outliers,
merging two clusters that are connected by a narrow string of points. For ex-
ample, when activated on the graph of Figure [2], it will fail, since the distance
between the left-hand-side grid and the right-hand-side grid, is equal to the
distance between any two adjacent subgraphs.

*o

Fig. 2. A natural clustering decomposition of this graph is to divide it into two clus-
ters: the left-hand-side larger grid and the right-hand-side smaller grid. The two nodes
connecting these grids are outliers. Our clustering method reveals this decomposition,
unlike many traditional clustering methods that will not discover it.

4 Cluster Analysis by Random Walks

4.1 Cluster Quality

Our work is motivated by the following predicate, with which we would like to
capture a certain notion of the quality of a cluster:

Definition 4.1 A cluster C is (d,«)-normal iff for every i,j € C for which
dist(i,j) < d, the probability that a random walk originating at i will reach j
before it visits some node outside C, is at least «.

The role of « is obvious. The reason for limiting the distance between ¢ and
j to some d is that for clusters with a large enough diameter it may be easier to
escape out of the cluster than to travel between distant nodes inside the cluster.
This demonstrates the intuition that in a natural cluster, we need not necessarily
seek a tight connection between every two nodes, but only between ones that are
close enough. For example, consider Figure 2l Random walks starting at nodes
in the right-hand-side of the of the large cluster, will probably visit close nodes
of the other cluster, before visiting distant nodes of their own cluster.

In fact, the normality predicate can be seen to define the intuitive notion of
discontinuities in the data. Such discontinuities indicate the boundaries of the
clusters, and are created by sharp local changes in the data.

The normality predicate may label as good the clusters in different cluster-
ing decompositions of the same graph. This may be important in some cases,

On Clustering Using Random Walks 23

like when we want to identify a hierarchical clustering decomposition. A disad-
vantage of this predicate is that when a cluster is not well separated from its
neighborhood, the normality predicate may fail to declare the cluster as natural,
even though its global structure might be very natural. For example consider
Figure Bl A natural clustering decomposition of this graph is to separate the
left-hand-side and the right-hand-side grids. However, the normality predicate
will not necessarily label these two clusters normal, since there is a relatively
wide portion connecting them.

Fig. 3. Giving the normality predicate a hard time

Having said all this, we note that we do not have an efficient method for find-
ing a clustering decomposition that adheres exactly to the normality predicate.
However, the algorithms we have developed were conceived of to adhere to its
spirit.

4.2 Separators and Separating Operators

Our approach to identifying natural clusters in a graph is to find ways to compute
an ‘intimacy relation’ between the nodes incident to each of the graph’s edges.
In other words, we want to be able to decide for each edge if it should cross the
boundaries of two clusters (when a discontinuity is revealed), or, rather, if the
relationship between its two incident nodes is sufficiently intimate for them to
be contained in a common cluster.

Definition 4.2 Let the graph G(V,E) be clustered by C = (Ci,...,Ck). An
edge (u,v) € E is called a separating edge for C, or a separator for short, if

u€ CyveCy fori#j.

Any set of edges ' C FE gives rise to an induced clustering Cr, obtained by
simply taking the clusters to be the connected components of the graph G(V, E—
F). The set F will then contain precisely the separating edges of C'r. Another
way of putting this is that if we can indeed decide which are the separators of a
natural clustering of GG, we are done, since we will simply take the clustering to
be Cg for the discovered set F' of separators.

We have decided to concentrate on discovering a set of separating edges,
since, in the context of the normality predicate, the decision as to whether an
edge should be separating involves only relatively local considerations. Globally

24 David Harel and Yehuda Koren

speaking, there might not be much difference between two neighboring nodes,
and the reasons for placing two neighbors in different clusters will most often be
local. Our philosophy, therefore, is that after identifying the separators by local
considerations, we will deduce the global structure of the clustering decomposi-
tion by solving an easy global problem of finding connected components.

The strategy we propose for identifying separators is to use an iterative pro-
cess of separation. Separation reweights edges by local considerations in such
a way that the weight of an edge connecting ‘intimately related’ nodes is in-
creased, and for others it is decreased. This is a kind of sharpening pass, in
which the edges are reweighted to sharpen the distinction between (eventual)
separating and non-separating edges. When the separating operation is iterated
several times, a sort of ‘zero-one’ phenomenon emerges, whereby the weight of
an edge that should be a separator notably diminishes.

We now offer two methods for performing the edge separation, both based
on deterministic analysis of random walks.

NS: Separation by neighborhood similarity. A helpful property of the
vector PF . (i) is that it provides the level of nearness or intimacy between the
node ¢ and every other node, based on the structure of the graph. Actually,
Pk .. (i) generalizes the concept of weighted neighborhoods, since PL_.,(i) is
exactly the weighted neighborhood of . Also, P, (i) does not depend on i
and is equal to the stationary distribution of the graph (when it exists). Hence,
the value of P%_,,(i) is not very interesting for overly large values of k. We will
actually be using the term P=F (.), which is defined to be Zle P ().

Now, in order to estimate the closeness of two nodes v and u, we fix some small
k (e.g., k = 3) and compare PSP, (v) and PSF. (u). The smaller the difference
the greater the intimacy between u and v. The reason we use Pfifit here and not
Pk ., is that for a bipartite subgraph the values of P¥ ., can be very different,
since the two random walks originating from w and v cannot visit the same node
at the same time. However, if we are willing to sum some steps of the two walks,
we may find that they visit roughly the same nodes.

We now define the separating operator itself:

Definition 4.3 Let G(V, E,w) be a weighted graph and k be some small con-
stant. The separation of G by neighborhood similarity, denoted by NS(G), is
defined to be:

NS(G) L G, (v, B, w,),

ek p<k <k
where Y(v,u) € E, ws(u,v) = sim" (P, (v), Prigii(w))
sim*(x,y) is some similarity measure of the vectors and y, whose value in-
creases as « and y are more similar. A suitable choice is:

dfn
fHa,y) = exp(2k — ||lz — yllz,) — 1
The norm L; is defined in the standard way: For a,b € R", |la — b||., =

Z?:l |la; — bl

On Clustering Using Random Walks 25

Another suitable choice is the cosine, or the correlation, of © and y that is
defined as:
(z,y)

(x,) \/(y,y)

cos(x,y) =

where (-, -) denotes inner-product.

The key component in computing N.S(G) is the calculation of Pfifit (v) and
P=% (u). Tf the graph G is of bounded degree, P=F., (u) can be computed in time
and space O(deg(G)*), which is independent of the size of G and can be treated
as a constant. Hence, for bounded degree graphs N.S(G) can be computed in

space O(1) and time O(|E|), which in this case is just O(|V]) = O(n).

CE: Separation by circular escape. An alternative method for capturing the
extent of intimacy between nodes u and v, is by the probability that a random
walk that starts at v visits u exactly once before returning to v for the first time.
(This notion is symmetric, since the event obtained by exchanging the roles of v
and u has the same probability.) If v and w are in different natural clusters, the
probability of such an event will be low, since a random walk that visits v will
likely return to v before reaching u (and the same with v and v exchanged).
The probability of this event is given by:

}%scape(v7u)' }éscape(u7v)

Seeking efficient computation, and on the reasonable assumption that data
relevant to the intimacy of v and w lies in a relatively small neighborhood around
v and u, we can constrain our attention to a limited neighborhood, by the fol-
lowing:

Definition 4.4 Let G(V, E,w) be a graph, and let k be some constant. Denote
by Pe(fc)ape(v,u) the probability Pescape(v,u), but computed using random walks
on the subgraph G(V¥*({v,u})) instead of on the original graph G. The circular
escape probability of v and u is defined to be:

CE*(v,u) I pk) (v, u) - P& (u,v).

escape escape

We can now define separation by circular escape:

Definition 4.5 Let G(V, E,w) be a weighted graph, and let k be some small
constant. The separation of G by circular escape, denoted by CE(G), is defined
to be:

CEG) L GV, B, w,)

where Y(v,u) € E, ws(u,v) = CE*(v,u)

For graphs with bounded degree, the size of G(V*(v, u)) is independent of the
size of G, so that CE*(v,u) can be computed essentially in constant time and
space. Hence, as with N.S(G), the separating operator CE(G) can be computed
in time O(|E|) = O(n) and space O(1).

26 David Harel and Yehuda Koren

4.3 Clustering by Separation

The idea of separating operators is to uncover and bring to the surface a closeness
between nodes that exists implicitly in the structure of the graph. Separating
operators increase the weights of intra-cluster edges and decrease those of inter-
cluster ones. Iterating the separating operators sharpens the distinction further.
After a small number of iterations we expect the difference between the weights
of the two kinds of edges to differ sufficiently to be readily apparent, because
the weights of separators are expected to diminish significantly.

The partition of the edges into separators and non-separators is based on
a threshold value, such that all the edges whose weight is below this value are
declared as separators. Without loss of generality, we may restrict ourselves to
the O(]E|) edge weights as candidates for being thresholds. The actual threshold
value (or several, if a hierarchy of decompositions is called for), is found by some
statistical test, e.g., inspecting the edge-weight frequency histogram, where the
frequency of the separators’ weights is usually smaller, since most of the edges
are inside the clusters, and have higher weights than those of the separators.

We demonstrate this method by several examples. Consider Figure [, which
contains an almost uniformly weighted graph, taken from [12]. We experimented
with both separating operators, each one with a four-fold iteration. The N.S

operator was used with k = 3 and sim”(z, y) din f¥(x,y) and the CF operator
with & = 2, other choices work very similarly. The results of both runs appear
along the edges in the figure (with those of CE appearing, multiplied by 100, in
parentheses). As can be seen, the separation iterations cause the weights of edges
(3,18),(7,8), (6,10), (1,4), and (8, 18) to become significantly smaller than those
of the other edges; in fact, they tend to zero in a clear way. We conclude that
these edges are separators, thus obtaining the natural clustering of the graph by
removing them and taking each connected component of the resulting graph to
be a cluster, as indicated in the lower right hand drawing of the figure.

Notice that the first activation of the separating operator already shows dif-
ferences in the intimacy that later lead to the clustering, but the results are
not quite sharp enough to make a clear identification of separators. Take edge
(6,10), for example. We intentionally initialized it to be of weight 1.5 — higher
than the other edges — and after the first separation its weight is still too high
to be labeled a separator. It is still higher than that of the non-separating edge
(10,13). However, the next few iterations of the separating operator cause its
weight to decrease rapidly, sharpening the distinction, and its being a separator
becomes obvious.

The success in separating nodes 6 and 10 is particularly interesting, and
would probably not be possible by many clustering methods. This demonstrates
how our separation operators integrate structural properties of the graph, and
succeed in separating these nodes despite the fact that the edge joining them
has the highest similarity value in the graph.

Figure [0l shows the algorithms applied to a tree, using three-fold separation.
The results clearly establish edges (0,6) and (6,11) as separators. Notice that

On Clustering Using Random Walks 27

separation iteration 4 the clustering (separators dashed)

Fig. 4. Clustering using four-fold application of separation operators, which sharpen
the edge weight distinction (NS values are on top and C'E values, multiplied by 100,
are in parentheses); example taken from [11]

28 David Harel and Yehuda Koren

the clustering methods that rely on edge-connectivity will fail here, since the
edge-connectivity between every two nodes of the tree is one.

separation iteration 2 separation iteration 3

Fig.5. Clustering a tree using three-fold application of separation (separators are
dashed in iteration 3)

Figure [l shows seven copies of the complete graph K¢ arranged cyclically.
Each node is linked by ‘internal’ edges to the other five nodes in its own complete
subgraph, and by ‘external’ edges to two nodes of the neighboring complete
subgraphs. All edges have uniform weight. In the table, one can see how iterations
of the separating operators diminish the weights of the ‘external’ edges, which
are clearly found to be separators, decomposing the graph into seven clusters of
complete subgraphs.

When applying the separating operators to the graph of Figure 2] the edges
of the lowest sharpened weight are those outside the two grids, resulting in the
decomposition of the graph into three clusters, as shown in Figure [

The graph in Figure B(a) demonstrates the application of our method to a
weighted graph. The weight of edges of this graph have been set up to decrease
exponentially with their length. After a three-fold iteration of the CE separat-
ing operator with & = 3, and declaring the edges with weight below 0.097 as
separators, the graph is decomposed into two clusters depicted in Figure B[(b).
Slight changes to the value of k, or applying the NS separating operator, produce
similar results, where several nodes on the chains connecting the upper and the
lower clusters become independent clusters of outliers.

On Clustering Using Random Walks 29

]

=

—
A

5 ~Al
X

N
%
'A“‘!I

4
¥

L1 1 2 | 3 | 4 [5 | 6]
CE[[30.56 / 16.21 | 33.16 / 9.51 | 34.51 / 4.74[35.31 / 1.65[35.77 / 0.26[35.96 / 0
NS|[191.38 / 12.08[279.17 / 0.33[287.14 / 0.01] 287.3 /0 | 287.3 /0 [287.3 /0

Fig. 6. Clustering a cycle of complete graphs. Edges are of two kinds: internal edges
that link two nodes of the same complete subgraph and external edges linking nodes of
different subgraphs. The table shows the sharpened weights of internal/external edges
after each of six iterations of separation.

o 8 & 7 Py
C 5
Teeses b3
< 2 .,'
L > 34 V. .
[]
[
_e---
3
‘-
\ /2
|
>4
O,

(a) (b)

Fig.8. (a) A weighted graph (edge weights are decaying exponentially with their
length); (b) decomposition of the graph into two clusters.

30 David Harel and Yehuda Koren

The main virtues of clustering by separation are:

1. Applying a separation operator to an edge in a bounded-degree graph takes
constant time and space, resulting in very good time complexity for large
bounded-degree graphs.

2. Edges are weighted based on the relevant graph structure, thus overcoming
phenomena like random noise and outliers, which are not reflected directly
in the structure.

3. Tterating the separating operators causes information from distant parts of
the graph to ‘flow in’, reaching the areas where separating decisions are to
be made.

Notice that the differences between consecutive iterations of separation di-
minish as the process continues, and they appear to tend to a fixpoint. This
behavior requires further investigation.

4.4 Clustering Spatial Point-Sets

We now illustrate the ability of our method to cluster “correctly” 2D sets of
points, in a number of typical cases, some of which have been shown to be
problematic for agglomerative methods [9]. (More extensive examples are given
in Subsection [5.1]) For a short version of this paper that deals with clustering
spatial data, see [5].

We have used 10-mutual neighborhood graphs for modeling the points. The
k-mutual neighborhood graph contains all edges (a, b) for which a is one of the
k nearest neighbors of b, and b is one of the k nearest neighbors of a. Regarding

edge weights, we adopt a commonly used approach: the weight of the edge (a, b)

is exp(—d((;’:f), where d(a,b) is the Euclidean distance between a and b, and

ave is the average Euclidean distance between two adjacent points in the graph.

The results are achieved using 3 iterations of either CE or NS, with & = 3.
For NS, we took the function sim(-,-) to be f(-,). In general, other choices work
equally well.

The partition of the edges into separators and non-separators is based on
a threshold value, such that all the edges whose weight is below this value are
declared as separators. Without loss of generality, we may restrict ourselves to
the O(n) edge weights as candidates for being thresholds. The actual threshold
value (or several, if a hierarchy of decompositions is called for), is found by some
statistical test, e.g., inspecting the edge-weight frequency histogram, where the
frequency of the separators’ weights is usually smaller, since most of the edges
are inside the clusters, and have higher weights than those of the separators.

Figure [@ shows the clustering decomposition of three data sets using our
algorithm.

The data set DS1 shows the inherent capability of our algorithms to clus-
ter at different resolutions at once, i.e., to detect several groups with different
intra-group densities. This ability is beyond the capabilities of many clustering
algorithms that can show the denser clusters only after breaking up the sparser

On Clustering Using Random Walks 31

clusters. Data set DS2 demonstrates the ability of our algorithm to separate
the two left hand side clusters, despite the fact that the distance between these
clusters is smaller than the distance between points inside the right hand side
cluster.

The data set DS3 exhibits the capability of our algorithm to take into account
the structural properties of the data set, which is the only clue for separating
these evenly spaced points.

oo oo
v

0000000 0000000
9009900 9000000
0606066 900000
6000000 3008000
9000900 9000000
0000900 G0OO000
6080906 3008500
6000006 5606060

000000000
©00000000
000000000
©00000000
©co0o0o0o0o0o000
©00000000
©co0o0o00o0000
©co0o0o000000
©c00000000

Fig. 9. Clustering of several data sets. Different clusters are indicated by different
colors.

When there is a hierarchy of suitable decompositions, our method can reveal
it by using a different threshold for each level of the hierarchy. For example,
consider the two data sets of Figure [l For each of these we have used two
different thresholds, to achieve two decompositions. The results are given in
Figure [101

5 Integration with Agglomerative Clustering

The separation operators can be used as a preprocessing stage before activating
agglomerative clustering on the graph. (Without loss of generality, we think of
agglomerative algorithms as working on graphs.) Such preprocessing sharpens
the edge weights, adding structural knowledge to them, and greatly enhances the
agglomerative algorithms, as it can effectively prevent bad local merging that
works against the graph structure.

Implementation of the agglomerative algorithm can be done using a dynamic
graph structure. At each step we take the edge of the highest weight, merge
(“contract”) its two endpoints, and update all the adjacent edges. When con-
tracting nodes u and v having a common neighbor ¢, the way we determine the

32 David Harel and Yehuda Koren

£ ’f.:";‘." ®
AP

Threshold ~ 0 8.97(18.02) < Threshold < 9.52(18.39)

Fig. 10. Clustering at multiple resolutions using different thresholds. When values of
CE are different from values of NS, the CE values are given in parentheses. CE values
are multiplied by 100.

weight of the edge between ¢ and the contracted node uniquely distinguishes
between different variants of the agglomerative procedure. For example, when
using Single-Link, we take this weight as max{w(v,t), w(u,t)}, while when us-
ing total similarity we fix the weight as w(v,t) + w(u,t). For a bounded degree
graph, which is our case, each such step can be carried out in time O(logn),
using a binary heap.

It is interesting that the clustering method we have described in the previous
section is in fact equivalent to a Single-Link algorithm preceded by a separation
operation. Hence we can view the integration of the separation operation with
the agglomerative algorithm as a generalization of the method we have discussed
in the previous section, which enables us to use any variant of the agglomerative
algorithm.

We have found particularly effective the normalized total similarity variant,
in which we measure the similarity between two clusters as the total sum of the
weights of the original edges connecting these clusters. We would like to eliminate
the tendency of such a procedure to contract pairs of nodes representing large
clusters whose connectivity is high due to their sizes. Accordingly, we normalize
the weights by dividing them by some power of the sizes of the relevant clusters.
More precisely, we measure the similarity of two clusters C; and Cs by:

w(C’l, CQ)

VIC1| + /1Cs|

where w(C1, Cy) is the sum of original edge weights between C; and Cs, and d
is the dimension of the space in which the points lie. We took {/|Ci| and {/|Cy|
as an approximation of the size of the boundaries of the clusters Cy and Cs,
respectively.

The overall time complexity of the algorithm is O(nlogn), which includes
the time needed for constructing the graph and the time needed for performing
n contractions using a binary heap. This equals the time complexity of the
method described in the previous section (because of the graph construction

On Clustering Using Random Walks 33

stage). However, the space complexity is now worse. We need ©(n) memory for
efficiently handling the binary heap.

Selecting Significant Decompositions

An agglomerative clustering algorithm provides us with a dendrogram, which is
a pyramid of nested clustering decompositions. It does not directly addresses the
question of which are the meaningful decompositions inside the dendrogram.

Each level in the dendrogram is constructed from the level below, by merging
two clusters. We associate with each level a grade that measures the importance
of that level. Inspired by the work of [2], a rather effective way of measuring the
importance of a level is by evaluating how sharp is the change that this level
introduces into the clustering decomposition. Since changes that are involved
with small clusters do not have a large impact, we define the prominency rank
of a level in the dendrogram, in which the clusters C; and C; of the level below
were merged, as:

|Ci] - 1C5]

We demonstrate the effectiveness of this measure in the next section.

5.1 Examples

In this section we show the results of running our algorithm on several data sets
from the literature. For all the results we have used total similarity agglomerative
clustering, preceded by 2 iterations of the NS separation operator with k = 3
and similarity function defined as cos(-, -). Using the CE operator, changing the
value of k, or increasing the number of iterations, do not have a significant effect
on the results. Using the method described in Section [4 may change the results
in few cases.

We implemented the algorithm in C++4, running on a Pentium IIT 800MHz
processor. The code for constructing the Delaunay triangulation is of Trian-
gle, which is available from URL: http://www.cs.cmu.edu/~quake/triangle.html.
The reader is encouraged to see [6], in order to view the figures of this section
in color.

Figure [T1] shows the results of the algorithm on data sets taken from [9].
These data sets contain clusters of different shapes, sizes and densities and also
random noise. A nice property of our algorithm is that random noise gets to
stay inside small clusters. After clustering the data, the algorithm treats all the
relatively small clusters, whose sizes are below half of the average cluster size,
as noise, and simply omits them showing only the larger clusters.

Figure [[2] shows the result of the algorithm applied to a data set from [IJ.
We show two levels in the hierarchy, representing two possible decompositions.
We are particularly happy with the algorithm’s ability to break the cross shaped
cluster into 4 highly connected clusters, as shown in Figure [2(c).

In Figure [[3] which was produced by adding points to a data set given in [I],
we show the noteworthy capability of our algorithm to identify clusters of dif-
ferent densities at the same level of the hierarchy. Notice that the intra-distance

34 David Harel and Yehuda Koren

between the points inside the right hand side cluster, is larger than the inter-
distance between several other clusters.

The data set in Figure [[4] which in a way is the most difficult one we have
included, is taken from [2]. We have modeled the data exactly the same way
described in [2], by putting an edge between every two points whose distance is
below some threshold. Using this model, [2] shows the inability of two spectral
methods and of the Single-Link algorithm to cluster this data set correctly.

Throughout all the examples given in this section, we have used the promi-
nency rank introduced in Section [3] to reveal the most meaningful levels in the
dendrogram. Figure [[5] demonstrates its capability with respect to the data set
DS4 (shown in Figure [[T). We have chosen the five levels with the highest promi-
nency ranks, and for each level we show the level that precedes it. It can be seen
that these five levels are exactly the five places where the six large natural clus-
ters are merged. In this figure we have chosen not to hide the noise, so the reader
can see the results of the algorithm before hiding the noise.

Table[l gives the actual running times of the algorithm on the data sets given
here. We should mention that our code is not optimized, and the running time
can certainly be improved.

Table 1. Running time (in seconds; non-optimized) of the various components of the
clustering algorithm

Data Set| Size |Graph construction|Separation|Agglomeration|Overall|Ratio %
DS4 | 8000 0.4 0.88 0.19 1.47 5434
DS5 | 8000 0.41 0.83 0.19 1.43 5587
DS6 {10000 0.5 1.12 0.26 1.88 5311
DS7 | 8000 0.4 0.89 0.2 1.49 5358
DS8 | 8000 0.39 0.93 0.2 1.52 5256
DS9 | 8000 0.33 0.66 0.21 1.2 6656
DS10 | 3374 0.14 0.26 0.07 0.47 7178

6 Multi-scale Clustering

In this section we embed our separation operators inside a classical multi-scale
scheme. The resulting algorithm subsumes the agglomerative variant presented
in Section B

A multi-scale treatment of a graph-related problem handles the graph in a
global manner, by constructing a coarse abstraction thereof. The abstraction
is a new graph that contains considerably fewer nodes than the original, while
preserving some of its crucial properties. Dealing with a global property for the
coarse graph may be easier, since it contains much less information, and hopefully
still has the desired property. A multi-scale representation of the graph consist
of various coarse abstractions that allow us to view the graph on different scales,
that differ in the level of abstraction they represent. For example, see [LOJIT].

On Clustering Using Random Walks 35

nst e . G

DS6: 10000 points

"%ﬁ&”q. -\,)_J».

DS8: 8000 points

Fig. 11. Data sets taken from [9] (see [6] for clearer color versions of this figure and of

Figs. [2HIH).

6.1 The General Scheme

In our context, we find that the multi-scale technique is often called for in order
to identify clusters whose naturalness stems from the graph’s global structure,
and which would be very difficult to identify using only local considerations.
Such clusters are not well separated from their surroundings. For example, there
might be wide ‘channels of leaked information’ between such a cluster and others,
disrupting separation. If we were able to construct a coarse graph in which a wide

36 David Harel and Yehuda Koren

. el

iy
el

DS10: 3374 points

Fig. 13. A data set with clusters of different densities

Fig. 14. A 2012 points data set taken from [2]

channel of connection is replaced by a single separating edge, we would be able
to overcome the difficulty.

For example, consider the graph in Figure[3. As mentioned earlier, the natu-
ral clustering decomposition of this graph does not obey the predicate for cluster
normality introduced in Section [41] due to the broad five-edge connection be-
tween the two larger parts of the graph. Hence, our separating operators, which
were developed in the spirit of this predicate, will have a hard time identifying
the natural decomposition of this graph. (The operators do manage to natu-

On Clustering Using Random Walks 37

pAOL TR T T

62 clusters 88 clusters

Fig.15. A hierarchy containing five decompositions of DS4 corresponding to the five
levels with the highest prominency rank.

rally decompose this graph if they applied with a relatively large value of k,
i.e.,, k > 5.) The multi-scale solution we propose below overcomes this situation
by constructing a coarse representation similar to that of Figure 2], in which the
natural decomposition is correctly identified. We can then use the decomposition
of the coarse graph to cluster the original one, as long as we have a good way of
establishing a correspondence between the left and right grids of the two graphs,
respectively.
Here, now, is a high-level outline of the multi-scale clustering algorithm.

MS-Clustering (G(V, E,w))

1. compute iterated sharpened weights of G’s edges.
. if G is small enough then
return a clustering decomposition of G.
3. construct GC(VC, EC,w®), a coarser abstraction of G, such that
[VE =a-|V|, where 0 < a < 1.
call MS-Clustering(G® (VY E¢, w?)).
obtain a clustering of G' by projecting the clustering of G¢ onto G.
improve the clustering of G using a greedy smoothing procedure.
end

[\

No o

6.2 Structure Preserving Coarsening

Clearly, the key step in the algorithm is the computation of a coarse graph,
which we now set out to describe. A common approach to coarsening graphs is
to use a series of edge-contractions. In a single operation of edge-contraction we
pick some edge (v, u), and combine the two nodes v and u (‘fine nodes’) into
a single super-node v U u (‘coarse-node’). In order to preserve the connectivity
information in the coarse graph, we take the set of edges of v Uwu to be the union

38 David Harel and Yehuda Koren

of the sets of edges of v and u. If v and u have a common neighbor ¢, the weight
of the edge (v U u,t) is taken to be w(v,t) + w(u,t).

A coarse graph is only useful to us if it retains the information related to
the natural clustering decomposition of the original graph. Hence, we seek what
we call a structure preserving coarsening in which large-enough natural clusters
of the original graph are preserved by the coarsening. A key condition for this
is that a coarse node does not contain two fine nodes that are associated with
different natural clusters; or, equivalently, that we do not contract a separating
edge.

To achieve this, we select the edges to be contracted by considering the sharp-
ened weights of the edges — those obtained by using our separating operators
— and contract only edges with high sharpened weights. We would like to elim-
inate the tendency of such a procedure to contract pairs of large nodes whose
connectivity is high due to their sizes. Accordingly, we normalize the sharpened
weights by dividing them by some power of the sizes of the relevant nodes.

The hope is that the kind of wide connections between natural clusters that
appear in Figure [3 will show up as sets of separators. This is based on the fact
that connections between sets of nodes that are related to the same cluster should
be stronger than connections between sets that are related (even partially) to
different clusters.

After finding the clustering decomposition of the coarse graph, we deduce
the related clustering decomposition of the original graph by a simple projection
based on the inclusion relation between fine and coarse nodes. The projected
clustering might need refining: When the wide connections indeed exist, it may
be hard to find the ‘right’ boundary of a natural cluster, and some local mistakes
could occur during coarsening. We eliminate this problem by adding a smoothing
phase (line 6 of the algorithm), in which we carry out an iterative greedy process
of exchanging nodes between the clusters. The exchanges are done in such a way
that each node joins the cluster that minimizes some global cost-function (we
have chosen the multi-way cut between all the clusters). This kind of smoothing
is similar to what is often done in graph partitioning; see, e.g., [10].

6.3 Relationship to Agglomerative Clustering

The edge contraction operation in our multi-scale clustering method is essentially
the same as the merging of two clusters in agglomerative algorithms.

The main difference between the multi-scale method and the agglomerative
variant introduced in Section [l is in the use of the separating operators on the
coarse graphs, not only on the original fine graph: at certain levels of the process
we sharpen the edge weights by these operators. This way, the operators act upon
more global properties, which can be identified on the coarser graphs. Another
advantage of the multi-scale algorithm, is its utilization of the smoothing process,
which can undo erroneous merges.

We have found this multi-scale algorithm superior for the task of image seg-
mentation. A common approach to image segmentation is to represent the image
by a weighted graph whose nodes are the pixels of the image. There are edges

On Clustering Using Random Walks 39

connecting each pixel with its four immediate neighbors, and the weight of an
edge is determined by the similarity of the intensity levels of the incident pixels.
Figure [I6] shows the ability of the multi-scale algorithm to accurately separate
the two vases, in spite of the large connectivity between them. We are still in
the process of investigating the use of our ideas in image segmentation, and we
expect to present additional results.

(a) (b)

Fig. 16. (a) original 350 x 350 image (taken from [10]); (b) segmentation: each vase
forms its own segment

7 Related Work

Random walks were first used in cluster analysis in [4]. However, the properties
of the random walk there are not computed deterministically, but by a random
algorithm that simulates a ©(n?) random walk. This results in time and space
complexity of @(n?) and ©(n?), respectively, even on bounded degree graphs.

A recent algorithm that uses deterministic analysis of random walks for clus-
ter analysis is that of [13]. The approach there is quite different from ours. Also,
its time and space complexity appear to be £2(n3) and ©(n?), respectively, even
for bounded degree graphs.

A recently published graph-based approach to clustering, aimed at overcom-
ing the limitations of agglomerative methods, is [9]. It is hard for us to assess its
quality since we do not have its implementation. However, the running time of
[9], which is O(nm + nlogn + m?logm) for m ~ 0.03n, is slower than ours.

Finally, we mention [3], in which an agglomerative clustering algorithm is
described that merges the two clusters with the (normalized) greatest number
of common neighbors. To our best knowledge, this is the first agglomerative
algorithm that considers properties related directly to the structure of the graph.
Our work can be considered to be a rather extensive generalization of this work,
in the sense that it considers weights of edges and adds considerations related
to larger neighborhoods.

40 David Harel and Yehuda Koren

8 Conclusion

The process of using random-walk-based separating operators for clustering
seems to have a number of major advantages. One advantage is in the qual-
ity of the resulting clustering. Our algorithms can reveal clusters of any shape
without a special tendency towards spherically shaped clusters or ones of similar
sizes (unlike many clustering algorithms that tradeoff these features for being
robust against outliers). At the same time, the decisions the algorithms make are
based on the relevant structure of the graph, making them essentially immune
to outliers and noise.

Another advantage is the running time. Our separating operators can be
applied in linear time when the graphs are of bounded degree, and their running
time in general is very fast. We have been able to cluster 10,000-node planar
graphs in less than two seconds, on a 700MHz Pentium IIT PC.

In addition to developing the algorithms themselves, we have also attempted
to define a rather general criterion for the naturalness of a cluster (Section [ZT]).
We hope to use this criterion in the future as the basis of improved algorithms,
and to better study the connections between it and random-walk-based separa-
tion.

Finally, we believe that the structure preserving coarsening introduced in
Section [B can be used to improve other algorithms that perform coarsening on
structured graphs, e.g., multi- scale graph drawing algorithms and multi-level
graph partitioning algorithms [I0].

References

1. V. Estivill-Castro and I. Lee, “AUTOCLUST: Automatic Clustering via Boundary
Extraction for Mining Massive Point- Data Sets”, 5th International Conference on
Geocomputation, GeoComputation CD-ROM: GC049, ISBN 0-9533477-2-9.

2. Y. Gdalyahu, D. Weinshall and M. Werman, “Stochastic Image Segmentation by
Typical Cuts”, Proceedings IEEE Conference on Computer Vision and Pattern
Recognition, 1999, pp. 588-601.

3. S. Guha, R. Rastogi and K. Shim, “ROCK: A Robust Clustering Algorithm for
Categorical Attributes”, Proceedings of the 15th International Conference on Data
Engineering, pp. 512-521, 1999.

4. L. Hagen and A. Kahng, “A New Approach to Effective Circuit Clustering”, Pro-
ceedings of the IEEE/ACM International Conference on Computer-Aided Design,
pp. 422-427, 1992.

5. D. Harel and Y. Koren, “Clustering Spatial Data using Random Walks”, Proc. 7th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD-2001),
ACM, pp. 281-286, 2000.

6. D. Harel and Y. Koren, “Clustering Spatial Data Using Random Walks”,
Technical Report MCS01-08, Dept. of Computer Science and Applied
Mathematics, The Weizmann Institute of Science, 2001. Available at:
www.wisdom.weizmann.ac.il/reports.html

7. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, En-
glewood Cliffs, New Jersy, 1988.

10.

11.

12.

13.

On Clustering Using Random Walks 41

A. K. Jain, M.N. Murty and P.J. Flynn, “Data Clustering: A Review”, ACM
Computing Surveys, 31 (1999), 264-323.

G. Karypis, E. Han, and V. Kumar, “CHAMELEON: A Hierarchical Clustering
Algorithm Using Dynamic Modeling”, IEEE Computer, 32 (1999), 68-75.

G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs”, SIAM Journal on Scientific Computing 20:1 (1999),
359-392.

E. Sharon, A. Brandt and R. Basri, “Fast Multiscale Image Segmentation”, Pro-
ceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 70-77,
2000.

B. Stein and O. Niggemann, “On the Nature of Structure and its Identification”,
Proceedings 25th Workshop on Graph-Theoretic Concepts in Computer Science,
LNCS 1665, pp. 122-134, Springer Verlag, 1999.

N. Tishby and N. Slonim, “Data Clustering by Markovian relaxation and the Infor-
mation Bottleneck Method”, Advances in Neural Information Processing Systems
13, 2000.

	1 Introduction
	2 Basic Notions
	3 The Clustering Problem
	3.1 Clustering Methods

	4 Cluster Analysis by Random Walks
	4.1 Cluster Quality
	4.2 Separators and Separating Operators
	4.3 Clustering by Separation
	4.4 Clustering Spatial Point-Sets

	5 Integration with Agglomerative Clustering
	5.1 Examples

	6 Multi-scale Clustering
	6.1 The General Scheme
	6.2 Structure Preserving Coarsening
	6.3 Relationship to Agglomerative Clustering

	7 Related Work
	8 Conclusion
	References

