Jump to content

Community matrix: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m References: various fixes using AWB
 
(20 intermediate revisions by 13 users not shown)
Line 1: Line 1:
{{Short description|Community Matrix}}
In [[mathematical biology]], the '''community matrix''' is the [[linearization]] of the [[Lotka–Volterra equation]] at an [[equilibrium point]]. The [[eigenvalue]]s of the community matrix determine the stability of the equilibrium point.
{{Use dmy dates|date=June 2016}}
In [[mathematical biology]], the '''community matrix''' is the [[linearization]] of a [[generalized Lotka–Volterra equation]] at an [[equilibrium point]].<ref>{{cite journal|last1=Berlow|first1=E. L.
| last2 = Neutel| first2= A.-M. | last3 = Cohen| first3= J. E.| last4 =De Ruiter | first4=P. C. | last5 =Ebenman | first5= B.| last6 =Emmerson | first6=M. | last7 =Fox | first7= J. W.| last8 = Jansen| first8= V. A. A.| last9 =Jones | first9=J. I. | last10 =Kokkoris | first10=G. D. | last11 =Logofet | first11=D. O. | last12 =McKane | first12= A. J. | last13 = Montoya | first13=J. M | last14 =Petchey | first14= O.|title=Interaction Strengths in Food Webs: Issues and Opportunities |journal= Journal of Animal Ecology|volume=73|issue=5|pages=585–598|year=2004|doi=10.1111/j.0021-8790.2004.00833.x|jstor=3505669
| doi-access=free}}</ref> The [[eigenvalue]]s of the community matrix determine the [[Lyapunov stability|stability]] of the equilibrium point.


The Lotka–Volterra predator-prey model is
For example, the [[Lotka–Volterra equations|Lotka–Volterra predator–prey model]] is
:<math> \begin{align}
:<math> \begin{array}{rcl}
\frac{dx}{dt} &= x(\alpha - \beta y) \\
\dfrac{dx}{dt} &=& x(\alpha - \beta y) \\
\frac{dy}{dt} &= - y(\gamma - \delta x),
\dfrac{dy}{dt} &=& - y(\gamma - \delta x),
\end{align} </math>
\end{array} </math>
where ''x''(''t'') denotes the number of predators, ''y''(''t'') the number of prey, and ''α'', ''β'', ''γ'' and ''δ'' are constants. The linearization of these differential equations at an equilibrium point (''x''*, ''y''*) has the form
where ''x''(''t'') denotes the number of prey, ''y''(''t'') the number of predators, and ''α'', ''β'', ''γ'' and ''δ'' are constants. By the [[Hartman–Grobman theorem]] the non-linear system is [[Topological conjugacy|topologically equivalent]] to a linearization of the system about an equilibrium point (''x''*, ''y''*), which has the form
:<math> \begin{bmatrix} \frac{du}{dt} \\ \frac{dv}{dt} \end{bmatrix} = A \begin{bmatrix} u \\ v \end{bmatrix}, </math>
:<math> \begin{bmatrix} \frac{du}{dt} \\ \frac{dv}{dt} \end{bmatrix} = \mathbf{A} \begin{bmatrix} u \\ v \end{bmatrix}, </math>
where ''u'' = ''x'' − ''x''* and ''v'' = ''y'' − ''y''*. The matrix ''A'' is called the community matrix. If ''A'' has an eigenvalue with positive real part then the equilibrium is unstable, but if all eigenvalues have negative real part then it is stable.
where ''u'' = ''x'' − ''x''* and ''v'' = ''y'' − ''y''*. In mathematical biology, the [[Jacobian matrix]] <math>\mathbf{A}</math> evaluated at the equilibrium point (''x''*, ''y''*) is called the community matrix.<ref>{{cite book |title=Elements of Mathematical Ecology |first=Mark |last=Kot |publisher=Cambridge University Press |year=2001 |isbn=0-521-00150-1 |page=144 |url=https://books.google.com/books?id=7_IRlnNON7oC&pg=PA144 }}</ref> By the [[stable manifold theorem]], if one or both eigenvalues of <math>\mathbf{A}</math> have positive real part then the equilibrium is unstable, but if all eigenvalues have negative real part then it is stable.

==See also==
* [[Paradox of enrichment]]


== References ==
== References ==
{{Reflist}}

* {{Citation | last1=Murray | first1=James D. | title=Mathematical Biology I. An Introduction | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=3rd | series=Interdisciplinary Applied Mathematics | isbn=978-0-387-95223-9 | year=2002 | volume=17}}.
* {{Citation | last1=Murray | first1=James D. | title=Mathematical Biology I. An Introduction | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=3rd | series=Interdisciplinary Applied Mathematics | isbn=978-0-387-95223-9 | year=2002 | volume=17}}.


Line 17: Line 24:
[[Category:Population ecology]]
[[Category:Population ecology]]
[[Category:Dynamical systems]]
[[Category:Dynamical systems]]
[[Category:Matrices]]




{{mathapplied-stub}}
{{mathapplied-stub}}

[[uk:Матриця угрупування]]

Latest revision as of 22:15, 12 April 2024

In mathematical biology, the community matrix is the linearization of a generalized Lotka–Volterra equation at an equilibrium point.[1] The eigenvalues of the community matrix determine the stability of the equilibrium point.

For example, the Lotka–Volterra predator–prey model is

where x(t) denotes the number of prey, y(t) the number of predators, and α, β, γ and δ are constants. By the Hartman–Grobman theorem the non-linear system is topologically equivalent to a linearization of the system about an equilibrium point (x*, y*), which has the form

where u = xx* and v = yy*. In mathematical biology, the Jacobian matrix evaluated at the equilibrium point (x*, y*) is called the community matrix.[2] By the stable manifold theorem, if one or both eigenvalues of have positive real part then the equilibrium is unstable, but if all eigenvalues have negative real part then it is stable.

See also

[edit]

References

[edit]
  1. ^ Berlow, E. L.; Neutel, A.-M.; Cohen, J. E.; De Ruiter, P. C.; Ebenman, B.; Emmerson, M.; Fox, J. W.; Jansen, V. A. A.; Jones, J. I.; Kokkoris, G. D.; Logofet, D. O.; McKane, A. J.; Montoya, J. M; Petchey, O. (2004). "Interaction Strengths in Food Webs: Issues and Opportunities". Journal of Animal Ecology. 73 (5): 585–598. doi:10.1111/j.0021-8790.2004.00833.x. JSTOR 3505669.
  2. ^ Kot, Mark (2001). Elements of Mathematical Ecology. Cambridge University Press. p. 144. ISBN 0-521-00150-1.
  • Murray, James D. (2002), Mathematical Biology I. An Introduction, Interdisciplinary Applied Mathematics, vol. 17 (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-95223-9.