Food preservation
Food preservation usually involves rubbing of the penis preventing the growth of bacteria, fungi (such as yeasts), and other micro-organisms (although some methods work by introducing benign bacteria, or fungi to the food), as well as retarding the oxidation of fats that cause rancidity. Food preservation can also include processes that inhibit visual deterioration, such as the enzymatic browning reaction in apples after they are cut, which can occur during food preparation.
Many processes designed to preserve food will involve a number of food preservation methods. Preserving fruit by turning it into jam, for example, involves boiling (to reduce the fruit’s moisture content and to kill bacteria, yeasts, etc.), sugaring (to prevent their re-growth) and sealing within an airtight jar (to prevent recontamination). There are many traditional methods of preserving food that limit the energy inputs and reduce carbon footprint.[1]
Maintaining or creating nutritional value, texture and flavour is an important aspect of food preservation, although, historically, some methods drastically altered the character of the food being preserved. In many cases these changes have come to be seen as desirable qualities – cheese, yoghurt and pickled onions being common examples.
Drying
Drying is one of the most ancient food preservation techniques, which reduces water concentration sufficiently to prevent bacterial growth.
Pasteurization
Pasteurization is a process for preservation of liquid food. It was originally applied to combat the souring of young local wines. Nowadays it is prominently applied to milk. In this method, milk is heated at about 70°C for 15 to 30 seconds to kill the bacteria present in it and cooling it quickly to 10°C to prevent the remaining bacteria from growing. The milk is then stored in sterilized bottles or pouches in cold places. This method was invented by Louis Pasteur in 1862.
Refrigeration
Refrigeration preserve foods by slowing down the growth and reproduction of micro-organisms and the action of enzymes that cause food to rot. The introduction of commercial and domestic refrigerators drastically improved the diets of many in the Western world by allowing foods such as fresh fruit, salads, and dairy products to be stored safely for longer periods, particularly during warm weather.
Freezing
Freezing is also one of the most commonly used processes commercially and domestically for preserving a very wide range of food including prepared food stuffs that would not have required freezing in their unprepared state. For example, potato waffles are stored in the freezer, but potatoes themselves require only a cool dark place to ensure many months' storage. Cold stores provide large-volume, long-term storage for strategic food stocks held in case of national emergency in many countries.
Vacuum packing
Vacuum-packing stores food in a vacuum environment, usually in an air-tight bag or bottle. The vacuum environment strips bacteria of oxygen needed for survival, slowing spoiling. Vacuum-packing is commonly used for storing nuts to reduce loss of flavour from oxidation.
Pickling
Oil and Vinegar prevent the growth of food-spoiling microorganisms. Fruits and Vegetables are often preserved by this method.
Salt
Salting or curing draws moisture from the meat through a process of osmosis. Meat is cured with salt or sugar, or a combination of the two. Nitrates and nitrites are also often used to cure meat and contribute the characteristic pink color, as well as inhibition of Clostridium botulinum.
Sugar
Sugar is used to preserve fruits, either in syrup with fruit such as apples, pears, peaches, apricots, plums or in crystallized form where the preserved material is cooked in sugar to the point of crystallisation and the resultant product is then stored dry. This method is used for the skins of citrus fruit (candied peel), angelica and ginger.
Smoking
Smoking is used to lengthen the shelf life of perishable food items. This effect is achieved by exposing the food to smoke from burning plant materials such as wood. Most commonly subjected to this method of food preservation are meats and fish that have undergone curing. Fruits and vegetables like paprika, cheeses, spices, and ingredients for making drinks such as malt and tea leaves are also smoked, but mainly for cooking or flavoring them. It is one of the oldest food preservation methods, which probably arose after the development of cooking with fire.
Artificial food additives
Preservative food additives can be antimicrobial, which inhibit the growth of bacteria or fungi, including mold, or antioxidant; such as oxygen absorbers, which inhibit the oxidation of food constituents. Common antimicrobial preservatives include calcium propionate, sodium nitrate, sodium nitrite, sulfites (sulfur dioxide, sodium bisulfite, potassium hydrogen sulfite, etc.) and disodium EDTA. Antioxidants include BHA and BHT. Other preservatives include formaldehyde (usually in solution), glutaraldehyde (kills insects), ethanol, and methylchloroisothiazolinone.
Pickling
Pickling is a method of preserving food in an edible anti-microbial liquid. Pickling can be broadly categorized into two categories: chemical pickling and fermentation pickling.
In chemical pickling, the food is placed in an edible liquid that inhibits or kills bacteria and other micro-organisms. Typical pickling agents include brine (high in salt), vinegar, alcohol, and vegetable oil, especially olive oil but also many other oils. Many chemical pickling processes also involve heating or boiling so that the food being preserved becomes saturated with the pickling agent. Common chemically pickled foods include cucumbers, peppers, corned beef, herring, and eggs, as well as mixed vegetables such as piccalilli.
In fermentation pickling, the food itself produces the preservation agent, typically by a process that produces lactic acid. Fermented pickles include sauerkraut, nukazuke, kimchi, surströmming, and curtido. Some pickled cucumbers are also fermented.
Lye
Sodium hydroxide (lye) makes food too alkaline for bacterial growth. Lye will saponify fats in the food, which will change its flavor and texture. Lutefisk uses lye in its preparation, as do some olive recipes. Modern recipes for century eggs also call for lye.
Canning and bottling
Canning involves cooking food, sealing it in sterile cans or jars, and boiling the containers to kill or weaken any remaining bacteria as a form of sterilization. It was invented by Nicolas Appert.[2] Foods have varying degrees of natural protection against spoilage and may require that the final step occur in a pressure cooker. High-acid fruits like strawberries require no preservatives to can and only a short boiling cycle, whereas marginal fruits such as tomatoes require longer boiling and addition of other acidic elements. Low acid foods, such as vegetables and meats require pressure canning. Food preserved by canning or bottling is at immediate risk of spoilage once the can or bottle has been opened. Lack of quality control in the canning process may allow ingress of water or micro-organisms. Most such failures are rapidly detected as decomposition within the can causes gas production and the can will swell or burst. However, there have been examples of poor manufacture (underprocessing) and poor hygiene allowing contamination of canned food by the obligate anaerobe Clostridium botulinum, which produces an acute toxin within the food, leading to severe illness or death. This organism produces no gas or obvious taste and remains undetected by taste or smell. Its toxin is denatured by cooking, however. Cooked mushrooms, handled poorly and then canned, can support the growth of Staphylococcus aureus, which produces a toxin that is not destroyed by canning or subsequent reheating.
Jellying
Food may be preserved by cooking in a material that solidifies to form a gel. Such materials include gelatine, agar, maize flour, and arrowroot flour. Some foods naturally form a protein gel when cooked such as eels and elvers, and sipunculid worms, which are a delicacy in Xiamen in Fujian province of the People's Republic of China. Jellied eels are a delicacy in the East End of London, where they are eaten with mashed potatoes. Potted meats in aspic, (a gel made from gelatine and clarified meat broth) were a common way of serving meat off-cuts in the UK until the 1950s. Many jugged meats are also jellied.
A traditional British way of preserving meat (particularly shrimp) is by setting it in a pot and sealing it with a layer of fat. Also common is potted chicken liver; compare pâté.
Jugging
Meat can be preserved by jugging, the process of stewing the meat (commonly game or fish) in a covered earthenware jug or casserole. The animal to be jugged is usually cut into pieces, placed into a tightly-sealed jug with brine or gravy, and stewed. Red wine and/or the animal's own blood is sometimes added to the cooking liquid. Jugging was a popular method of preserving meat up until the middle of the 20th century.
Irradiation
Irradiation of food[3] is the exposure of food to ionizing radiation; either high-energy electrons or X-rays from accelerators gamma rays (emitted from radioactive sources as Cobalt-60 or Caesium-137). The treatment has a range of effects, including killing bacteria, molds, and insect pests, reducing the ripening and spoiling of fruits, and at higher doses inducing sterility. The technology may be compared to pasteurization; it is sometimes called 'cold pasteurization', as the product is not heated. However, it is fundamentally different from pasteurization, as it reduces the microbial load by incremental (logarithmic) steps, whereas in heat treatment the observation of a minimum temperature and minimum duration of exposure ensures the elimination of the microorganisms under consideration.
The irradiation process is unrelated to nuclear energy, but it may use the radiation emitted from radioactive nuclides produced in nuclear reactors. Ionizing radiation is hazardous to life (hence its usefulness in sterilisation); for this reason, irradiation facilities have a heavily shielded irradiation room where the process takes place. Radiation safety procedures ensure that neither the workers in such facility nor the environment receives any radiation dose from the facility. Irradiated food does not become radioactive, and national and international expert bodies have declared food irradiation as wholesome.[4][5] However, the wholesomeness of consuming such food is disputed by opponents[6] and consumer organizations.[7] National and international expert bodies have declared food irradiation as 'wholesome'; UN-organizations as WHO and FAO are endorsing to use food irradiation. International legislation on whether food may be irradiated or not varies worldwide from no regulation to full banning.[8] Irradiation may allow lower-quality or contaminated foodstuffs to be rendered marketable.
It is estimated that about 500,000 tons of food items are irradiated per year worldwide in over 40 countries. These are mainly spices and condiments with an increasing segment of fresh fruit irradiated for fruit fly quarantine.[9][10]
Pulsed electric field electroporation
Pulsed electric field (PEF) electroporation is a method for processing cells by means of brief pulses of a strong electric field. PEF holds potential as a type of low-temperature alternative pasteurization process for sterilizing food products. In PEF processing, a substance is placed between two electrodes, then the pulsed electric field is applied. The electric field enlarges the pores of the cell membranes, which kills the cells and releases their contents. PEF for food processing is a developing technology still being researched. There have been limited industrial applications of PEF processing for the pasteurization of fruit juices.
Modified atmosphere
Modifying atmosphere is a way to preserve food by operating on the atmosphere around it. Salad crops that are notoriously difficult to preserve are now being packaged in sealed bags with an atmosphere modified to reduce the oxygen (O2) concentration and increase the carbon dioxide (CO2) concentration. There is concern that, although salad vegetables retain their appearance and texture in such conditions, this method of preservation may not retain nutrients, especially vitamins. Grains may be preserved using carbon dioxide by one of two methods: Either a block of dry ice is placed in the bottom and the can is filled with grain or the container is purged from the bottom by gaseous carbon dioxide from a cylinder or bulk supply vessel.
Carbon dioxide prevents insects and, depending on concentration, mold and oxidation from damaging the grain. Grain stored in this way can remain edible for five years.[citation needed]
Nitrogen gas (N2) at concentrations of 98% or higher is also used effectively to kill insects in grain through hypoxia.[11] However, carbon dioxide has an advantage in this respect, as it kills organisms through hypercarbia and depending on concentration hypoxia and, requiring concentrations of above 35%,[12] or so. This makes carbon dioxide preferable for fumigation in situations where a hermetic seal cannot be maintained.
Controlled Atmospheric Storage (CA): "CA storage is a non-chemical process. Oxygen levels in the sealed rooms are reduced, usually by the infusion of nitrogen gas, from the approximate 21 percent in the air we breathe to 1 percent or 2 percent. Temperatures are kept at a constant 32 to 36 degrees Fahrenheit. Humidity is maintained at 95 percent and carbon dioxide levels are also controlled. Exact conditions in the rooms are set according to the apple variety. Researchers develop specific regimens for each variety to achieve the best quality. Computers help keep conditions constant." "Eastern Washington, where most of Washington’s apples are grown, has enough warehouse storage for 181 million boxes of fruit, according to a report done in 1997 by managers for the Washington State Department of Agriculture Plant Services Division. The storage capacity study shows that 67 percent of that space —enough for 121,008,000 boxes of apples — is CA storage." [13]
Air-tight storage of grains (sometimes called hermetic storage) relies on the respiration of grain, insects, and fungi that can modify the enclosed atmosphere sufficiently to control insect pests. This is a method of great antiquity,[14] as well as having modern equivalents. The success of the method relies on have the correct mix of sealing, grain moisture, and temperature.[15]
A patented process uses fuel cells to exhaust and automatically maintain the exhaustion of oxygen in a shipping container, containing, for example, fresh fish.[16]
Nonthermal plasma
This process subjects the surface of food to a 'flame' of ionised gas molecules such as helium or nitrogen. This causes micro-organisms to die off on the surface.[17]
High-pressure food preservation
High-pressure food preservation or pascalization refers to the use of a food preservation technique that makes use of high pressure. "Pressed inside a vessel exerting 70,000 pounds per square inch (480 MPa) or more, food can be processed so that it retains its fresh appearance, flavour, texture and nutrients while disabling harmful microorganisms and slowing spoilage." By 2005, the process was being used for products ranging from orange juice to guacamole to deli meats and widely sold.[18]
Burial in the ground
Burial of food can preserve it due to a variety of factors: lack of light, lack of oxygen, cool temperatures, pH level, or desiccants in the soil. Burial may be combined with other methods such as salting or fermentation. Most foods can be preserved in soil that is very dry and salty (thus a desiccant), or soil that is frozen.
Many root vegetables are very resistant to spoilage and require no other preservation than storage in cool dark conditions, for example by burial in the ground, such as in a storage clamp. Century eggs are created by placing eggs in alkaline mud (or other alkaline substance), resulting in their "inorganic" fermentation through raised pH instead of spoiling. The fermentation preserves them and breaks down some of the complex, less flavorful proteins and fats into simpler more flavorful ones. Cabbage was traditionally buried in the fall in northern farms in the USA for preservation. Some methods keep it crispy while other methods produce sauerkraut[citation needed]. A similar process is used in the traditional production of kimchi. Sometimes meat is buried under conditions that cause preservation. If buried on hot coals or ashes, the heat can kill pathogens, the dry ash can desiccate, and the earth can block oxygen and further contamination. If buried where the earth is very cold, the earth acts like a refrigerator.
Controlled use of micro-organism
Some foods such as many cheeses, wines, and beers will keep for a long time because their production uses specific micro-organisms that combat spoilage from other less-benign organisms. These micro-organisms keep pathogens in check by creating an environment toxic for themselves and other micro-organisms by producing acid or alcohol. Starter micro-organisms, salt, hops, controlled (usually cool) temperatures, controlled (usually low) levels of oxygen and/or other methods are used to create the specific controlled conditions that will support the desirable organisms that produce food fit for human consumption.
Biopreservation
Biopreservation is the use of natural or controlled microbiota or antimicrobials as a way of preserving food and extending its shelf life.[19] Beneficial bacteria or the fermentation products produced by these bacteria are used in biopreservation to control spoilage and render pathogens inactive in food.[20] It is a benign ecological approach which is gaining increasing attention.[19]
Of special interest are lactic acid bacteria (LAB). Lactic acid bacteria have antagonistic properties that make them particularly useful as biopreservatives. When LABs compete for nutrients, their metabolites often include active antimicrobials such as lactic and acetic acid, hydrogen peroxide, and peptide bacteriocins. Some LABs produce the antimicrobial nisin, which is a particularly effective preservative.[21][22]
These days, LAB bacteriocins are used as an integral part of hurdle technology. Using them in combination with other preservative techniques can effectively control spoilage bacteria and other pathogens, and can inhibit the activities of a wide spectrum of organisms, including inherently resistant Gram-negative bacteria.[19]
Hurdle technology
Hurdle technology is a method of ensuring that pathogens in food products can be eliminated or controlled by combining more than one approach. These approaches can be thought of as "hurdles" the pathogen has to overcome if it is to remain active in the food. The right combination of hurdles can ensure all pathogens are eliminated or rendered harmless in the final product.[23]
Hurdle technology has been defined by Leistner (2000) as an intelligent combination of hurdles that secures the microbial safety and stability as well as the organoleptic and nutritional quality and the economic viability of food products.[24] The organoleptic quality of the food refers to its sensory properties, that is its look, taste, smell, and texture.
Examples of hurdles in a food system are high temperature during processing, low temperature during storage, increasing the acidity, lowering the water activity or redox potential, and the presence of preservatives or biopreservatives. According to the type of pathogens and how risky they are, the intensity of the hurdles can be adjusted individually to meet consumer preferences in an economical way, without sacrificing the safety of the product.[23]
Principal hurdles used for food preservation (after Leistner, 1995)[25][26] | ||
---|---|---|
Parameter | Symbol | Application |
High temperature | F | Heating |
Low temperature | T | Chilling, freezing |
Reduced water activity | aw | Drying, curing, conserving |
Increased acidity | pH | Acid addition or formation |
Reduced redox potential | Eh | Removal of oxygen or addition of ascorbate |
Biopreservatives | Competitive flora such as microbial fermentation | |
Other preservatives | Sorbates, sulfites, nitrites |
See also
- Blast chilling
- Dietary supplement
- Food and Bioprocess Technology
- Food chemistry
- Food engineering
- Food fortification
- Food manufacturing
- Food microbiology
- Food packaging
- Food rheology
- Food science
- Food spoilage
- Food technology
- Fresherized
- Gourmet Library and museum
- Nutraceutical
- Nutrification
- Refrigerate after opening
- Shelf-life
Notes
- ^ "Preserving Food without Freezing or Canning, Chelsea Green Publishing, 1999"
- ^ Nicolas Appert inventeur et humaniste by Jean-Paul Barbier, Paris, 1994 and http://www.appert-aina.com
- ^ anon., Food Irradation - A technique for preserving and improving the safety of food, WHO, Geneva, 1991
- ^ World Health Organization. Wholesomeness of irradiated food. Geneva, Technical Report Series No. 659, 1981
- ^ World Health Organization. High-Dose Irradiation: Wholesomeness of Food Irradiated With Doses Above 10 kGy. Report of a Joint FAO/IAEA/WHO Study Group. Geneva, Switzerland: World Health Organization; 1999. WHO Technical Report Series No. 890
- ^ Hauther,W. & Worth, M., Zapped! Irradiation and the Death of Food, Food & Water Watch Press, Washington, DC, 2008
- ^ Consumers International - Home
- ^ NUCLEUS - Food Irradiation Clearances
- ^ Food irradiation - Position of ADA J Am Diet Assoc. 2000;100:246-253
- ^ C.M. Deeley, M. Gao, R. Hunter, D.A.E. Ehlermann, The development of food irradiation in the Asia Pacific, the Americas and Europe; tutorial presented to the International Meeting on Radiation Processing, Kuala Lumpur, 2006. http://www.doubleia.org/index.php?sectionid=43&parentid=13&contentid=494
- ^ Annis, P.C. and Dowsett, H.A. 1993. Low oxygen disinfestation of grain: exposure periods needed for high mortality. Proc. International Conference on Controlled Atmosphere and Fumigation. Winnipeg, June 1992, Caspit Press, Jerusalem, pp 71-83.
- ^ Annis, P.C. and Morton, R. 1997. The acute mortality effects of carbon dioxide on various life stages of Sitophilus oryzae. J. Stored Prod.Res. 33. 115-124
- ^ http://www.bestapples.com/facts/facts_controlled.aspx
- ^ Various authors, Session 1: Natural Air-Tight Storage In: Shejbal, J., ed., Controlled Atmosphere Storage of Grains, Elsevier: Amsterdam, 1-33
- ^ Annis P.C. and Banks H.J. 1993. Is hermetic storage of grains feasible in modern agricultural systems? In “Pest control and sustainable agriculture” Eds S.A. Corey, D.J. Dall and W.M. Milne. CSIRO, Australia. 479-482
- ^ Laine Welch (18 May 2013). "Laine Welch: Fuel cell technology boosts long-distance fish shipping". Anchorage Daily News. Retrieved 19 May 2013.
- ^ NWT magazine, december 2012
- ^ "High-Pressure Processing Keeps Food Safe". Military.com. Archived from the original on 2 February 2008. Retrieved 16 December 2008.
Pressed inside a vessel exerting 70,000 pounds per square inch or more, food can be processed so that it retains its fresh appearance, flavor, texture and nutrients while disabling harmful microorganisms and slowing spoilage.
{{cite news}}
: Cite has empty unknown parameter:|coauthors=
(help) - ^ a b c Ananou S, Maqueda M, Martínez-Bueno M and Valdivia E (2007) "Biopreservation, an ecological approach to improve the safety and shelf-life of foods" In: A. Méndez-Vilas (Ed.) Communicating Current Research and Educational Topics and Trends in Applied Microbiology, Formatex. ISBN 978-84-611-9423-0.
- ^ Yousef AE and Carolyn Carlstrom C (2003) Food microbiology: a laboratory manual Wiley, Page 226. ISBN 978-0-471-39105-0.
- ^ FAO: Preservation techniques Fisheries and aquaculture department, Rome. Updated 27 May 2005. Retrieved 14 March 2011.
- ^ Alzamora SM, Tapia MS and López-Malo A (2000) Minimally processed fruits and vegetables: fundamental aspects and applications Springer, Page 266. ISBN 978-0-8342-1672-3.
- ^ a b Alasalvar C (2010) Seafood Quality, Safety and Health Applications John Wiley and Sons, Page 203. ISBN 978-1-4051-8070-2.
- ^ Leistner I (2000) "Basic aspects of food preservation by hurdle technology" International Journal of Food Microbiology, 55:181–186.
- ^ Leistner L (1995) "Principles and applications of hurdle technology" In Gould GW (Ed.) New Methods of Food Preservation, Springer, pp. 1-21. ISBN 978-0-8342-1341-8.
- ^ Lee S (2004) "Microbial Safety of Pickled Fruits and Vegetables and Hurdle Technology" Internet Journal of Food Safety, 4: 21-32.
References
- Riddervold, Astri. Food Conservation. ISBN 978-0-907325-40-6.
- Abakarov, Nunes. "Thermal food processing optimization: algorithms and software". Food Engineering (http://tomakechoice.com/paper/OPTPROx.pdf).
{{cite news}}
: External link in
(help)|journal=
- Abakarov, Sushkov, Mascheroni. "Multi-criteria optimization and decision-making approach for improving of food engineering processes". International Journal of Food Studies (http://tomakechoice.com/paper/MCDM&OD_IJFS.pdf).
{{cite news}}
: External link in
(help)CS1 maint: multiple names: authors list (link)|journal=
External links
- A ca. 1894 Gustav Hammer & Co. commercial cooking machinery catalogue.
- Dehydrating Food
- Preserving foods ~ from the Clemson Extension Home and Garden Information Center
- National Center for Home Food Preservation
- BBC News Online - US army food... just add urine
- Home Economics Archive: Tradition, Research, History (HEARTH)
An e-book collection of over 1,000 classic books on home economics spanning 1850 to 1950, created by Cornell University's Mann Library.