Loading AI tools
Concept in Bayesian statistics From Wikipedia, the free encyclopedia
In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution. It is defined such that an unobserved parameter value has a particular probability to fall within it. For example, in an experiment that determines the distribution of possible values of the parameter , if the probability that lies between 35 and 45 is , then is a 95% credible interval.
Credible intervals are typically used to characterize posterior probability distributions or predictive probability distributions.[1] Their generalization to disconnected or multivariate sets is called credible region.
Credible intervals are a Bayesian analog to confidence intervals in frequentist statistics.[2] The two concepts arise from different philosophies:[3] Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value. Also, Bayesian credible intervals use (and indeed, require) knowledge of the situation-specific prior distribution, while the frequentist confidence intervals do not.
Credible regions are not unique, as any given probability distribution has an infinite number of ‑credible regions, i.e. regions of probability . For example, in the univariate case, there are multiple definitions for a suitable interval or region:
One may also define an interval for which the mean is the central point, assuming that the mean exists.
‑Smallest Credible Regions (‑SCR) can easily be generalized to the multivariate case, and are bounded by probability density contour lines.[4] They will always contain the mode, but not necessarily the mean, the coordinate-wise median, nor the geometric median.
Credible intervals can also be estimated through the use of simulation techniques such as Markov chain Monte Carlo.[5]
A frequentist 95% confidence interval means that with a large number of repeated samples, 95% of such calculated confidence intervals would include the true value of the parameter. In frequentist terms, the parameter is fixed (cannot be considered to have a distribution of possible values) and the confidence interval is random (as it depends on the random sample).
Bayesian credible intervals differ from frequentist confidence intervals by two major aspects:
For the case of a single parameter and data that can be summarised in a single sufficient statistic, it can be shown that the credible interval and the confidence interval coincide if the unknown parameter is a location parameter (i.e. the forward probability function has the form ), with a prior that is a uniform flat distribution;[6] and also if the unknown parameter is a scale parameter (i.e. the forward probability function has the form ), with a Jeffreys' prior [6] — the latter following because taking the logarithm of such a scale parameter turns it into a location parameter with a uniform distribution. But these are distinctly special (albeit important) cases; in general no such equivalence can be made.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.