Loading AI tools
Italian mathematician (1853–1925) From Wikipedia, the free encyclopedia
Gregorio Ricci-Curbastro (Italian: [ɡreˈɡɔːrjo ˈrittʃi kurˈbastro]; 12 January 1853 – 6 August 1925) was an Italian mathematician.[1] He is most famous as the discoverer of tensor calculus.
Gregorio Ricci-Curbastro | |
---|---|
Born | Lugo di Romagna, Italy | 12 January 1853
Died | 6 August 1925 72) Bologna, Italy | (aged
Alma mater | Sapienza University of Rome University of Bologna Scuola Normale Superiore di Pisa |
Known for | Tensor calculus Covariant derivative Ricci calculus Ricci curvature Ricci decomposition Ricci grid Ricci identity |
Scientific career | |
Fields | Mathematics |
Doctoral advisor | Ulisse Dini Enrico Betti |
Doctoral students | Tullio Levi-Civita |
Signature | |
With his former student Tullio Levi-Civita, he wrote his most famous single publication,[2] a pioneering work on the calculus of tensors, signing it as Gregorio Ricci. This appears to be the only time that Ricci-Curbastro used the shortened form of his name in a publication, and continues to cause confusion.
Ricci-Curbastro also published important works in other fields, including a book on higher algebra and infinitesimal analysis,[3] and papers on the theory of real numbers, an area in which he extended the research begun by Richard Dedekind.[4]
Completing privately his high school studies at only 16 years of age, he enrolled on the course of philosophy-mathematics at Rome University (1869). The following year the Papal State fell and so Gregorio was called by his father to the city of his birth, Lugo di Romagna. Subsequently he attended courses at University of Bologna during the year 1872 - 1873, then transferred to the Scuola Normale Superiore di Pisa.[5][6]
In 1875 he graduated in Pisa in physical sciences and mathematics with a thesis on differential equations, entitled "On Fuches's Research Concerning Linear Differential Equations". During his various travels he was a student of the mathematicians Enrico Betti, Eugenio Beltrami, Ulisse Dini and Felix Klein.
In 1877 Ricci-Curbastro obtained a scholarship at the Technical University of Munich, Bavaria, and he later worked as an assistant of Ulisse Dini, his teacher.
In 1880 he became a lecturer of mathematics at the University of Padua where he dealt with Riemannian geometry and differential quadratic forms.
He formed a research group in which Tullio Levi-Civita worked, with whom he wrote the fundamental treatise on absolute differential calculus (also known as Ricci calculus) with coordinates or tensor calculus on Riemannian manifold, which then became the lingua franca of the subsequent theory of Albert Einstein's general relativity. In fact absolute differential calculus had a crucial role in developing the theory, as is shown in a letter written by Albert Einstein to Ricci-Curbastro's nephew. In this context Ricci-Curbastro identified the so-called Ricci tensor which would have a crucial role within that theory.
The advent of tensor calculus in dynamics goes back to Lagrange, who originated the general treatment of a dynamical system, and to Riemann, who was the first to think about geometry in an arbitrary number of dimensions. He was also influenced by the works of Christoffel and of Lipschitz on the quadratic forms. In fact, it was essentially Christoffel's idea of covariant differentiation[7] that allowed Ricci-Curbastro to make the greatest progress.[8]
Ricci-Curbastro received many honours for his contributions.
He is honoured by mentions in various Academies amongst which are:
He participated actively in political life, both in his native town and in Padua, and contributed with his projects to the Ravenna-area land drainage and the Lugo aqueduct.
An asteroid, 13642 Ricci, is named after him.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.