Loading AI tools
Knot defined by parametric equations defining Lissajous curves From Wikipedia, the free encyclopedia
In knot theory, a Lissajous knot is a knot defined by parametric equations of the form
where , , and are integers and the phase shifts , , and may be any real numbers.[1]
The projection of a Lissajous knot onto any of the three coordinate planes is a Lissajous curve, and many of the properties of these knots are closely related to properties of Lissajous curves.
Replacing the cosine function in the parametrization by a triangle wave transforms every Lissajous knot isotopically into a billiard curve inside a cube, the simplest case of so-called billiard knots. Billiard knots can also be studied in other domains, for instance in a cylinder[2] or in a (flat) solid torus (Lissajous-toric knot).
Because a knot cannot be self-intersecting, the three integers must be pairwise relatively prime, and none of the quantities
may be an integer multiple of pi. Moreover, by making a substitution of the form , one may assume that any of the three phase shifts , , is equal to zero.
Here are some examples of Lissajous knots,[3] all of which have :
There are infinitely many different Lissajous knots,[4] and other examples with 10 or fewer crossings include the 74 knot, the 815 knot, the 101 knot, the 1035 knot, the 1058 knot, and the composite knot 52* # 52,[1] as well as the 916 knot, 1076 knot, the 1099 knot, the 10122 knot, the 10144 knot, the granny knot, and the composite knot 52 # 52.[5] In addition, it is known that every twist knot with Arf invariant zero is a Lissajous knot.[6]
Lissajous knots are highly symmetric, though the type of symmetry depends on whether or not the numbers , , and are all odd.
If , , and are all odd, then the point reflection across the origin is a symmetry of the Lissajous knot which preserves the knot orientation.
In general, a knot that has an orientation-preserving point reflection symmetry is known as strongly positive amphicheiral.[7] This is a fairly rare property: only seven prime knots with twelve or fewer crossings are strongly positive amphicheiral (1099, 10123, 12a427, 12a1019, 12a1105, 12a1202, 12n706).[8] Since this is so rare, ′most′ prime Lissajous knots lie in the even case.
If one of the frequencies (say ) is even, then the 180° rotation around the x-axis is a symmetry of the Lissajous knot. In general, a knot that has a symmetry of this type is called 2-periodic, so every even Lissajous knot must be 2-periodic.
The symmetry of a Lissajous knot puts severe constraints on the Alexander polynomial. In the odd case, the Alexander polynomial of the Lissajous knot must be a perfect square.[9] In the even case, the Alexander polynomial must be a perfect square modulo 2.[10] In addition, the Arf invariant of a Lissajous knot must be zero. It follows that:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.