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Abstract

This paper introduces a new efficient algorithm for compyit8robner bases. To avoid
as much as possible intermediate computation, the algodtmputes successive truncated
Grobner bases and it replaces the classical polynomiactiesh found in the Buchberger
algorithm by the simultaneous reduction of several polyiadsn This powerful reduction
mechanism is achieved by means of a symbolic precomputatidnby extensive use of
sparse linear algebra methods. Current techniques inrlaigabra used in Computer Al-
gebra are reviewed together with other methods coming fileennumerical field. Some
previously untractable problems (Cyclic 9) are presensagiell as an empirical comparison
of a first implementation of this algorithm with other welldwun programs. This compari-
son pays careful attention to methodology issues. All theebmarks and CPU times used
in this paper are frequently updated and available on a Wek.p&ven though the new
algorithm does not improve the worst case complexity it i&sd times faster than previous
implementations both for integers and modploomputations.

1 Introduction

In view of the progress already achieved and the promising potential of current amaegl
algorithms, polynomial solving could become one of the more attractive applicatiooraf C
puter Algebra: practical problems can be solved, the algorithms are comgpetitivnumerical
methods. The main conclusion to be drawn from practice and experience of solving paynomi
systems coming from various fields (industrial [Fau98b] problems, pure matls{fato96]) is
the following: first of all, even though the computation of a Grobner basis is aatnpaint it
must be emphasized that it is omdgestep in the full solving process (change of ordering, trian-
gular systems, real or numerical roots are complementary tools); seconsificaleBuchberger
algorithms [Buc65, Buc70, Buc85] must be improved since even the best impleropsatati
ten do not succeed to compute Grobner bases from big problems. This paper is comgtrned
describing a new algorithm (whose naméig for computing Grobner basis. Even if the algo-
rithm works for any admissible ordering, the algoritiitnhas been designed to be efficient for a
degree reverse lexicographical ordering (DRL); computing efficiently adgxaphical Grobner
basis from an already computed Grobner basis being the task of another algoréhado-
cally, if the Buchberger algorithm without optimizations is very simple to desat becomes
much harder to understand how to improve a real implementation. By and lavgevémnit may
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eventually be possible to suggest two improvements: gifi¢eof the times is spent computing
zero it would be useful to have more powerful criterion to remove useldgsatpairs [Buc79]
(a powerful theoretical criteria exists but it is too costly); this calieispect of the problem is
not studied in this paper, but is implemented in another algorithrh;([Fau98a]). The second
improvement is concerned with strategies: during a Grobner computationalseiveices can be
made (select a critical pair, choose a reductor) and even if strategeb&an proposed ([Gio91]
or even [Ger95]) the heuristics which they rely on could not be satisfacexplained. So it is
difficult to be convinced that they are optimal optimizations. Another bad conseqisetice
it is very difficult to (massively) parallelize the Buchberger algorithrochese the sugar (for in-
stance) strategy imposes a strong sequential ordering. The primary objedinsg édper is to
propose a more powerful reduction algorithm. For that purpose we will resioadtaneously
several polynomials by a list of polynomials by using linear algebra techniques wihscinesa
global view of the process.

The plan of the paper is as follows. The main Section 2 is devoted to presémdimgw
algorithm. This section has been divided into several parts: first (2.1)ewew the necessary
mathematical notations (we make the choice to use the same notations as in thBéx#i{)
and in 2.2 we establish the link between linear algebra (matrices) and pablradgebra. Then
we present (2.3) a basic version of the algorithm without any criteria taredie useless pairs.
A improved version of the algorithm including the Buchberger criteria is theangin 2.4. We
close this section in 2.5 by motivating the choice of a good selection strateggefns that
selecting all critical pairs with a minimal exponent is a good strategyhceSthe algorithm
relies heavily on linear algebra, Section 3 contains a short survey of lifgeglira techniques
we have implemented. A first version of this algorithm has been implement€dnma new
small system called FGb (for Fast Gb). In Section 4 we report an expetaievaluation of this
first implementation. The best Grobner bases programs are compared on a sktkobwa
benchmarks and industrial problems. Finally, in Section 5 we outline the matiarés of the
algorithm along with a list of possible related works and open issues.

The name of this algorithm is simply algorithm numBetn the rest of this papef, stands
for this algorithm.

2 Description of the F); algorithm

2.1 Standard notations

We use the notations of [Bec93] for basic definitiofds the ground ringR[z] = R[xy, ..., x,]
is the polynomial ring. We denote B§(x,...,z,), or simply by7', the set of all terms in
these variables. We choose an admissible ordering ofi. If ¢ = z{'---29» € T, then
the total degreeof ¢ is defined asleg(t) = > . a;. Now let f € R[z], f # 0, so that
f=>clag,...,an)zt -+ -z (wherec(ay,...,a,) are elements of?). Then we define
the setM (f) of monomials off asM(f) = {c(ai,..., ;)" - - a0 | c(ay,. .., o) # 0}.
The set?'(f) of terms of f is T'(f) = {«7' -+ 2% | ¢(ay,...,a,) # 0}. Thetotal degreeof

n

f # 0is defined asleg(f) = max{deg(t) |t € T'(f)}. We define thénead termHT( f), the
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head monomiaHM( f), and thehead coefficientIC( f) of f w.r.t. < as follows: HT(f) =
mazx(T(f)), HM(f) = maz(M(f)), andHC(f) = the coefficient o HM( f). If F'is a subset
of R[z] we can extend the definitiddT(F) = {HT(f) | f € F'}, HM(F) = {HM(f) | f € F'}
andT(F) = {T(f) | f € F'}; Id(F') denotes the ideal generated By

Let f,g,p € R[z] with p # 0, and letF' be a finite subset aR[z]. Then we say that

e f reduces tgs modulop (notationf — g), if 3t € T'(f), 3s € T'such that «+ HT'(p) =t
P

andg = f — ﬁ(m * s * p wherea is the coefficient of in p.

e f reduces tgy moduloP (notationf — q), if f — g forsomep € P.
P
e fisreducible modulg if there existsy € R[z] such thatf — g¢.
P
e f isreducible moduld if there existyy € R[z] such thatf — 9

e f is top reducible moduld@ if there existsg € R|[z]| such thatf — 9 andHT(g) <
HT(f).

o f % g is the reflexive-transitive closure efP—>.

e The S-polynomiabf f andg is defined as

lem(HT(f),HT(g))
HT(f)

lem(HT(f),HT(g))
HT(g)

spol(f,g) = HC(g) f—=HC(f)

2.2 Linear algebra and polynomials.

Definition 2.1 By convention if\/ is as x m matrix, M; ; is j th element of theé th row of M.
If Tas = [t1,...,t,] @an ordered set of terms, I¢t;);—1,.. . be the canonical basis d&™, we
consider the linear map,, : Vr,, — R™ (whereVy,, is the submodule ak[z] generated by
Tr) such thatpr,,(t;) = €. The reciprocal function will be denoted by-,,. The application
Yr,, allows to interpret vectos ak” as polynomials. We note i}/, 7,) a matrix with such an
interpretation.

Definition 2.2 If (M, Th) is as x m matrix with such an interpretation, then we can construct
the set of polynomials:

Rows(M, Tar) := {1, (row(M,7)) |t =1,...,s}\{0}
whererow(M, ) is thei-th row of M (an element of2™). Conversely, if is a list of poly-
nomials and/; an ordered set of terms we can constructsarn m matrix A (wheres = size(l),
m = size(T))):
A;ji=coeff(Is], Ti[j]) e =1,...,s5=1,...,m
We noteA(Tt) the matrix(A; ;).



fi X X X
fis X X X
M= - S S 1
fi% X X X e ( )
Jim | X X X
fi. X X X
Definition 2.3 Let M be as x m matrix, andY = [Yi,...,Y,.] new variables. Thed" =

Rows(M,Y ) is a set of equations, so we can comp#ta reduced Grobner basis df for a
lexicographical ordering such that, > ... > Y,,. From this basis we can reconstruct a matrix
M = AFY) We calledM the (unique) row echelon foff M. We say also thaf' is a row
echelon basis of'.

tl tg tk tk+1 tm

fi I 0 ... 0 x X

fis o 1 ... 0 x X

X X

M= f; o 0 -+ 1 x X (2)

Jig | O 0 - 0 0

: 0 0

fin \O O -+ 0 0 0

where x denotes a possibly non zero element.
In the case of polynomials we have a similar definition:

Definition 2.4 Let /' be a finite subset ak[z] and < an admissible ordering. We defifie (#')
tobeSort({1'(f) | f € F},<), A := AFT<(1) and A the row echelon form af.. We say that
F = Rows(A,T.(F))is the row echelon form af w.rt. <.

Elementary properties of row echelon matrices are summarized by theiiod theorem:

Theorem 2.1 LetM be asxm matrix, andY_ = [V;,. .., Y, | new variablesf’ = Rows(M,Y),
M the row echelon form a¥f, F' = Rows(M,Y ). We define

Fr={ge F|HT(g) g HT(F)}
Fe— P\

1In some computer algebra system, this is the only way to coerpuow echelon form !
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For any subset_ of /' such thatsize(F_) = size(HT(F')) andHT(F_) = HT(F'), then
G = F+ U F_ is a triangular basis of thee—moduleV,, generated by. That is to say, for
all f € Vi there exist(\;), elements of and (gx), elements ofy such thatf = ), A\xgs,
HT(g:) = HT(f) andHT(gx) > HT(gr+1)-

Proof Since the head terms @&f are pairwise distinctz is linearly independent. We claim

that it is also a generating systemlof;. Suppose for a contradiction that there exigts Vi,

such thatf % f' # 0. By definition of a Grobner basig! — 0, consequently’ is top
F

reducible moduldIT(F) = HT(F+)UHT(F-) = HT(F+)UHT(F_) = HT(G), so thatf’ is
top-reducible modul@-. This is a contradiction]
We can transpose immediately the theorem for polynomials:

Corollary 2.1 LetF be afinite subset df and< an admissible ordering, anfl the row echelon
form of /" w.r.t. <. We define

Fr={ge F|HI(g) ¢ HT(F)}

For all subsetF_ of F' such that size(_)=sizeHT(F)) andHT(F_) = HT(F), thenGG =
F+ U F_ is a triangular basis o#/,; the R—module generated b¥. For all f € Vi, there exist
(Ax)r elements oft and (gx)x elements ofy such thatf = >, A\vgr, HT(¢91) = HT(f) and
HT(gr) > HT(ge+1).

2.3 TheF, algorithm
It is well known that during the execution of the Buchberger algorithm, one has a lot @eshoi
e select a critical pair in the list of critical pairs.

e choose one reductor among a list of reductors when reducing a polynomial by a list of
polynomials.

Buchberger[Buc65] proves that these choices are not important for the correctribss
algorithm, but it is well known that these choices are crucial for the tota¢ ttomputation.
Moreover the best strategies [Gi0o91] inspect only the leading terms of the polgisdmimake
a choice. Consider the case where all the input polynomials have the same |leadinmtérat
case, all the critical pairs are equal and it is not possible to take a@®cisi some sense this
problem can be corrected in a simple and surprising wamake no choiceMore precisely
instead of choosingnecritical pair at each step, we selecsabseof critical pairs at the same
time. So, in fact, we are delaying the necessary choices in a second stepadforithm, the
linear algebra part of the algorithm

Definition 2.5 A critical pair of two polynomials f;, f;) is an element df'? x R[z] x T' x R|[z],
Pair(fl-, f]) = (lcmij, t;, fi7 t]‘, f]) such that

lem(Pair(f;, f;)) = lemy; = HT(t:fi) = HT(¢,f;) = lem(HT(f;), HT(f;))
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Definition 2.6 We say that the degree of the critical pair; = Pair(fi, f;), deg(pi;), is
deg(lem; ;). We define the two projections: ft(p; ;) := (¢, fi) and Right(p; ;) = (¢;, f;).
If (¢,p) € T x R[z] then we notenult((t, p)) the evaluated products p.

We have now the tools needed to present the basic version of our algorithm. All theama
occuring in following algorithms are the representation of a list of polynomieitsugh the set
of all their terms, as explained in Definition 2.2.

Algorithm F4
F' a finite subset of R[z]

Sel afunction List(Pairs) — List(Pairs) such that Sel(l) £ 0 if [ £ ()
Output: a finite subset of[z].

G::F,FNO"' = Fandd :=0

P :={Pair(f,g9)| f,g € Gwith f # g}

Input:

while P # () do
di=d+1
P, := Sel(P)
P:= P\P,

Ld = Left(Pd) U RLght(Pd)
F := Reduction(Lq, G)
for h e Ff do
P :=PU{Pair(h,g) | g € G}
G :=GU{h}
return G

We have to extend the reduction of a polynomial modulo a subsetdf to the reduction of
a subset of?[z] modulo another subset &fz]:

Reduction
L afinite subset of T' x R[z]

(# a finite subset of R[]

Output: a finite subset of[z] (possibly an empty set).
F' := Symbolic Preprocessifg, )
F := Reduction to Row Echelon Form éfw.rt. <
P+ o= {f € F|HT(f) ¢ HT(F)}

return £+

Input:

Remark 2.1 By Lemma 2.1, we will see that an equivalent (but slower) definitiorfto€ould
be F'+ := {f € F |f top irreducible by G}.

We have now to describe the main function of our algorithm, that is to say the ctineruc
of the “matrix” F'. This subalgorithm can be viewed as an usual reduction of all the considered
polynomials if we replace the standard arithmetic by:Olet =,0 # y € R, thenz +y = 1,
x*xy=1,z*0=0andx + 0 = 1. So this is really aymbolicpreprocessing.
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Symbolic Preprocessing
L afinite subset of T' x R[z]
( a finite subset of R[z]
Output: a finite subset of[z].
Fi={txf|(tf) €L}
Done := HT(F)
while T(F') # Done do
m an element off' (¥')\ Done
Done := Done U {m}
if m top reducible modul@- then
m = m'* HT(f) for somef € G and somen’ € T’
F:=Fu{m'x f}
return F

Input:

Remark 2.2 It seems that the initial values of Done should(bbut in all application of this
function the result is in fact the same with less iterations.

Remark 2.3 The symbolic preprocessing is very efficient since its complexity is ling¢heisize
of its outout ifsize(() is smaller than the final size of f( /') which is usually the case.

Lemma 2.1 Let (& be finite subset oR[z], L be the image bynult of a finite subset of' x
and F+ = Reduction(L,G). Thenfor allh € F+, HT(h) ¢ I[d(HT(G)).

Proof Let F' the set computed by the algorith®ymbolic Preprocessifig, ). Assume for a
contradiction thaBh € F+ such that = HT(h) € Id(HT(G)). HenceHT(g) dividest for
someg € G. Sotisin T(F+) C T(F) C T(F) and is top reducible by, hence; * g
is inserted inF' by Symbolic Preprocessingr another product with the same head term). This
contradicts the fact tha{ 7'(h) ¢ HT(F). O

The following lemma is useful to proof the correctness of the algorithm.

Lemma 2.2 Let be finite subset ak[z], L. be the image bynult of a finite subset of x G and

F+ = Reduction(L,G). ThenF+ is a subset of d(). Moreover for all f in the R—module
generated by, f — 0
GUF+

Proof Apply the Corollary 2.1 taF' the set generated [Symbolic Preprocessifig, ). Clearly
Fis a subset of' U Id((), but it is obvious that. is a subset of (), so that/' is a subset
of Id(G). Hence anyF_ fulfilling the hypothesis of Theorem 2.1 is a subset/df(). This
conclude the proof of the lemma since tRe-module generated by is a submodule of the
R—module generated by . O

Remark 2.4 Let( be a finite subset ak[z]. It is possible thatf % 0 but that Normal Form

(f,G) # 0 where Normal Form is the reduction which is used in Buchberger algorithm. The
reason for that is that the result df ormal F'orm depends on many choices (strategies).
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Theorem 2.2 The algorithm#, computes a Grobner basis in R[z] such thatF' C G and
Id(G) = Id(F).

Proof Termination:Assume for a contradiction that thehile-loop does not terminate. We see
that there exists an ascending sequefaggof natural numbers such thay # ( for all i. Let
say thaiy; € }«:j (hencey; can be any element |ﬁj) LetU; belU;_, + Id(HT(g)) for: > 1 and
Up = (0). By Lemma 2.1 we hav&,_; C U,. This contradicts the fact thdi[x] is noetherian.

CorrectnessWe haveG = Udzoﬁj . We claim that the following are loop invariants of the
while-loop: ¢ is a finite subset oR[z] such thatF" C G C Id(F), andspol(g,g2) % 0
for all g;,9: € G such that{g,, ¢} ¢ P. The first claim is an immediate consequence of the
first part of Lemma 2.2. For the second one{4f,¢.} ¢ P, this means thaPair(g:,g:) =
(lemy 9,11, 91,12, 92) has been selected in a previous step (®aPy the functionSel. Hence
1% g andty * go @are inLy, sS0spol(g1, g2) is an element of th&-module generated b, hence
by Lemma 2.2spol (g1, g2) %> 0.0

Remark 2.5 If size(Sel(l)) = 1 forall [ # () then the algorithn¥) is the Buchberger algorithm.
In that case th& e/ function correspond to the selection strategy in the Buchberger algorithm.

Example 2.1 One might wonder why in the proof of the termination of the algorithm we consider
only one element of; and not the whold’;.

If = > y > z for alexicographical orderingF' = [f; = ay*+ 1, fo = 22> + 1, f3 = y> + y*]
andSel = identity, we findP, = {Pair(f., f2), Pair(fs, f3), Pair(fi, fs)} and FF = {y? —
22 y+1}so that[d(HT(]ﬂJf)) = {y}. So contrarily to Buchberger Algorithm this not true that
after each operationi’’ := G U {h}, we haveld(HT(G")) 2 Id(HT(G)).

2.4 Buchberger criteria. Improved F algorithms

In order to obtain an efficient algorithm we need to insert into the previous #igothe Buch-
berger Criteria. Since it is not the subject of this paper to improve the Buchib@rgeria we
will use a standard implementation of these criteria such as the Gebauktoiadinstallation
[GM88]:

Buchberger Criteria

(Gnew, Pnew) = Update(Gogd, Pold7 h)

Update of critical pair list and ideal basis (see [Bec93 p.230)
a finite subset G,y of R[z]

Input: {

Specification {

a finite set Pojq of critical pairs of R[z]
0 # h € Rz]
Output: a finite subset of[z] and a list of critical pairs.



In the previous version of the algorithm we used astynerows of the reduced matrix (the
setsF+), rejecting the rows which were already in the original matrix(the $¢t$. In the new
version of the algorithm we keep these useless rows, and we try to replaegesoductsn * f
occuring in the rows of the “matrix?’ by a new “equivalent” produet.’ « f’ with m > m’. This
is the task of the functiofimplify : 7' x R[z] x List(Subset(R[z])) — T x R[z]. The third
argument obimplify is the list of all the already computed matrices. A complete description of
this function will be given below.

Improved Algorithm F4

F' a finite subset of R[z]

Sel afunction List(Pairs) — List(Pairs) such that Sel(l) £ 0 if [ # ()
Update the part of Buchberger algorithm which select the pairs to compute,
using the criteria like the algorithm of p. 230 in[Bec93.

Output: a finite subset of[z].

G:=0andP :=pandd :=0

Input:

while F # () do

f= first(F)

F=F\{f}

(G, P):=Update(G, P, f)
while P # () do

di=d+1

P, := Sel(P)

P:= P\P,

Ld = Left(Pd) U RLght(Pd)
(FNj, Fy) := Reduction(Lq, G, (F;)g=1,...(d-1))
for h e Ff do
(G, P):=Update(G, P, h)
return ¢

The new Reduction function is identical to the previous version except that thareas
argument and that it returns also the resulsgibolic Preprocessing

Reduction
L a finite subset of T' x R[z]

Input: ¢ G a finite subset of R[z]
F = (Fk)g=1,..(d-1), Where F}. is finite subset of R[z]
Output: two finite subsets oR?[z].
F := Symbolic Preprocessig, G, F)
F := Reduction to Row Echelon Form éfw.rt. <
o= {f € F|HT(f) ¢ HT(F)}

return (F'+, F)



Symbolic Preprocessing
L a finite subset of T' x R[z]
Input: < G a finite subset of R[z]
F = (Fk)g=1,..,(d-1), Where F} is finite subset of R[z]
Output: a finite subset of[z].
F := {mult(Simplify(m, f, F)) | (m, f) € L}
Done := HT(F)
while T(F') # Done do
m an element off' (¥')\ Done
Done := Done U {m}
if m top reducible modul@- then
m = m'* HT(f) for somef € G and somen’ € T’
F = F U {mult(Simplify(m/, f, F))}
return F

Simplify

t € T aterm
Input: < f € R[z] a polynomial
F = (Fk)g=1,..(d-1), Where F}. is finite subset of R[z]
Output: a non evaluated product, i.e. an element'of R|[z].
for u € list of divisors oft do
if 35 (1 <7 < d)suchthatu * f) € F} then
F; is the row echelon form of; w.r.t. <
there exists a (unique)€ /" such thatiT(p) = HT(u * f)
if w # t then
return Simplify(L, p, F)
else
return (1, p)
return (¢, f)

Lemma 2.3 If (tj,f’) is the result oSimplify(¢, f, F) thenHT(¢' * f') = HT(t * f). Moreover
if 7+ denoteq ! )i—1, . (4_1) there exish # \ € R, andr € R — module(F+ U F) such that
tf =M f"+rwithHT(r) < HT(¢ * f).

Proof Termination: Simplify constructs a sequence;, f;) such thatt, = ¢, fo = f and
tr+1 < 1 except perhaps for the last stép.is noetherian, this implies that the algorithm stops
afterr, steps.

Correctness: The first part is obvious sincHT (uy fr) = HT(fr41) SO thatHT (¢, fr) =
HT(i—szH) = HT(tx41fr+1). The proof is by induction on the step number. So we suppose
re = 1, ¢ = Landux f € Fj, f/ € Fj for somej with HT(f") = HT(u * f). The set
F_ = {uf} can be supplemented by other elementg’ptuch thatHT(F/_) = HT(F) and
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size(F_) = size(HT(F)). We can apply Corollary 2.1 we fin@d) € R, g» € F_U(F;),, such
thatf' = >, axgr andHT(g;) = HT(f") andHT(f’) > HT(gx) for &£ > 2. By construction of
F_,g1 = ux f. Hencef’ = ayuf +r with HT(r) < HT(f’), consequently; # 0 and we have
tf =t f — -t . O

Remark 2.6 Experimental observation establishes that the effegtrablify is to return, in95%

of the cases, a produ¢t;, p) wherez; is a variable (and frequently the produgt,, p)). This
technique is very similar to the FGLM algoritm for computing normal forms by usingixnatr
multiplications.

For the verification of the improved version of the algorithm we recall tHeviohg definition
and theorem([Bec93], p. 219):

Definition 2.7 Let P be a finite subset oR[z], 0 # f € R[z], andt € T. Supposef =
Ele m;p; With monomials) # m; € R[z] andp, € P not necessarily pairwise different
(1 < < k). Then we say that this istarepresentatioof f w.r.t. P, if HT(m,p;) < t for all
i=1,2,... k.

Theorem 2.3 Let G be a finite subset oR[z] with 0 ¢ G. Assume that for aly;, g, € G,
spol(g1,g2) either equals zero or it has arepresentation w.r.t.; for somet < lem(HT(¢1),
HT(g2)). ThenG is a Grobner basis.

Theorem 2.4 Let I be a finite subset aR[z], F = (F}))i=1,.. (4-1), WhereFy is finite subset of
R[Q], Pair(gl,QQ) = (lcmm, tl, aq1, tg, gg) W|th lcmm, tl, tg € T SUCh that the fOIIOW|ng hOld

(i) Fyisthe image bynult of a finite subset of' x F

(i) (Fy)y Cc Gfork=1,...,(d—1) (F being as usual the row echelon Bf)
(iii) f; = mult(Simplify(¢;, g;, F)) fori = 1, 2.
(iv) spol(fi, f2) has at-representation w.r.tF witht < lem(HT(f1), HT(f2)).

Then theS-polynomialspol(g1, g2) has at’-representation w.r.tF with ¢ < lem; 5.

Proof Let (¢}, g!) be Simplify(t;, g;:, F). By Lemma 2.3 we havélT(t,¢;) = HT(t1g1) =
lemy o = HT(t2g9,) = HT(t,g}) so that (we suppose that all the polynomial are monics):

spol(gy,g5) = thgy — thyg)
= (11g) — tig1) + (tigr — t292) + (t292 — thg3)
=r 4+ SPOZ(f1,f2) + 7

T(r")) < lemys. Hence

with 7/ € Id(F+ U F) C 1d(G) such thatmar(HT(r),
t) < lcm1 ) O

spol(g1, g2) has a'-representation faf = max(HT(r), HT(+'),
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2.5 Selection strategy

The choice of a good selection strategy, that is to say the choice of the futtioms very
important for the performance of the algorithm.

Computing Grobner bases for a degree ordering is very frequently the most diffequins
the solving process (other steps are elimination or decomposition of the idealye@sun for
that is that the input of the algorithm is only a subseRpf] with no mathematical structure. We
want to give some structure to these polynomials at the beginning of the computatione we us
the concept of-grobner bases:

Definition 2.8 If GG, is the result of the Buchberger algorithm truncated to the degrébat is
to say we reject all critical pairs whose total degree (Definition 2.6):aré), then we call7,; a
(truncated)d-Grobner basis of .

The following theorem give a structure to this list when the polynomials are homogese

Theorem 2.5 ([Laz83], [Bec93] p. 471) For homogeneous polynomigls . ., f, G4 is a Grob-
ner basis “up to degred” that is to say:

. GL> is well defined for polynomialg such thatleg(f) < d.
e Vpe st deg(p) <d = pGLH)
e spol(f,qg) GL> 0 for f, g in Gy such thadeg(lem(HT(f),HT(g))) < d

Moreover, there exists &, such that for alld > Dy, Gy = Gp, is the Grobner basis of.
We note by the numberDg.

An effective Nullstellensatz may give an estimate/f; from a theoretical point of view
such an explicit bound for the degrees reduces the problem of finding the polynémiais
the resolution of a system of linear equations. This reduction to linear algelna obmputa-
tion Grobner bases has been used for a long time for analysing the complexity of Byethber
algorithm [Laz83].

For practical computation this does not work well since:

e ), is often over estimated.

e the linear system is huge: the matrix which is generated is frequently [Hrgereally
needed.

¢ the matrix of the linear system has a generalized sylvester structurelamyfficiently
such a system is not a well known task.
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Other algorithms are also closely related to linear algebra [Laz7881,8Att96, Ger95,
Lom98].

In fact the Buchberger algorithm and tl#g algorithm giveincrementalmethods to solve
this systems. The new algorithm will computg,; from ;. Thus the algorithm transforms
a mathematical objectd; is unique) into another object with a stronger structure. In fact the
Buchberger algorithm is also incremental since it computes one polynomial aftbeabat in
our case we compute a whole new truncated basis.

Go— G — Gy — - — Gy — Gy — -+

Unfortunately Theorem 2.5 is false for non homogeneous polynomials. One solution to over-
come this difficulty is to homogenize the list of polynomials but it is not efficienbfgrsystems
since parasite solutions are also computed (solutions at infinity can be ofrgigaension);

a better method is to consider the sugar degree [Gio91] of each polynomial: we addha “pha
tom” homogenization variable and the sugar degteg, of a polynomial is the degree of the
polynomial if all the computations were performed with the additional variable:

Definition 2.9 For the initial polynomials:degg(f;) = deg(f;) , forall: = 1,...,m. The
polynomials occurring in the computation have the following fopmsg or ¢ « p wheret € T'is
aterm. We definéegg(p+ q) = maz(degg(p), degs(q)) anddegg(m*p) = deg(m)+ degg(p).
We say thatleg4(¢) is the “sugar” of ¢.

Definition 2.10 GEZS) is the result of the Buchberger algorithm when we reject all critical pairs
whosedeg is > d. (We replaceleg by deg is the Definition 2.8)

The weak point of this approach is th@fﬁl \G&S ) contains polynomials with various degrees
and that near to the end of the computatleps(p) > deg(p).

We give now some possible implementatiorSef. These results are not discussed in detail
as they will been reported in a more technical paper.

e The easiest way to implemeSfit!/ is to take the identity ! In that case we really reduce all
the critical pairs at the same time.

e The best function we have tested is to take all the critical pairs witmamal total degree:

Sel(P)
Input: P alist of critical pairs
Output: a list of critical pairs
d := min{deg(lem(p)), p € P}
Py = {p € P| deg(lem(p)) = d}
return P,

We call this strategy theormal strategy for,. If the input polynomials are homogeneous,
we already have a Grobner basis up to degreel andS e/ selects exactly all the critical
which are needed for computing a Grobner basis up to degree
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e We can also change thleg( Pair( f;, f;)) to be the sugar degreésg ;(/cm;;) (see Defini-
tion 2.6). In our experiments, this variant of the algorithm was less efficient.

2.6 Example

The reader should be aware that it is impossible to fully appreciate theeafficof the algo-
rithm for small examples. We consider the cycliproblem. We choose a total degree reverse
lexicographical ordering and the normal strategy.

F =[fs=abcd — 1, f3 = abc + abd + acd + bed, fo = ab+ bc+ ad+ ed, fy = a+ b+ ¢+ d

At the beginningG = {f4} and P, = {Pair(fs, f4)} so thatlL, = {(1, f3), (b, f1)}.
We enter now inSymbolic Preprocessitg., G,0); Fy = Li, Done = HT(F;) = {ab} and
T(Fy) = {ad,ab,b* bc,bd, cd}, we pick an element ifi'(F)\ Done, for instanceud, butad is
top reducible by“; we haveDone = {ab,ad}, F, = F, U {df,} andT(F,) = T(F,) U {d*}.
Since the other elements @f( ;) are not top reducible by:, Symbolic Preprocessingeturns
{f3,bfs,dfs}. Orin matrix form:

00011110
Ai=10110100
11101000

the row echelon form ofi; is

0001 1 1 1 0
Ai=l1 010 -1 0 =10
0100 2 0 1 0

that is to sayF, = {fs = ad + bd + cd + d?, f¢ = ab+ bc — bd — d?, fr = b* + 2bd + d*}
and sinceib, ad € HT(F,) we haveF,, = {f;} and nowG = {f, f-}.

In the next step we have to study = { Pair(fs, fa)}, thusLs = {(1, f2), (bc, f4)} andF =
{Fi}. In Symbolic Preprocessinge first try to simplify(1, f>) and(be, f4) with F. We see that
bf, € F, and thatf; is the unique polynomial it} such thatiT(fs) = HT(bf,) = ab, hence
Simplify(be, f4, F) = (¢, fo). Now Fy = {fa,cfs} andT'(Fz) = {abe, be?, abd, acd, bed, cd?}.
We pickabd wich is reducible bydf, but again we can replace this productijy. After several
steps we find"y, = {cfs, df7,bfs, fa,cfe}

00001 1 10 1 00
00010 0 02 0 10
Ay=]1001 10 1 01 0 00
10101 1 00 0 00
11000 -100 —120 0|

14



00001 1 1 0 1 0 0
00010 0 0 2 0 1 0
A,=100100 I 0 -1 0 =10
10000 -1 -1 1 -1 1 0
01000 0 1 -1 0 —1 0]

Fy = {fo = acd + bed + *d + cd?, fio = b*d + 2bd* + d°, f1; = abd + bed — bd? — &P,
fi2 = abc — bed — *d + bd* — ed? + d®, fi3 = bc* + *d — bd* — &} andG = {f4, f7, fi3}-

In the next step we have; = {(1, f1), (bed, f4),(c*, f7), (b, f13)}, and we call recursively
the function Simplify:Simpli fy(bed, f1) = Simplify(ed, fo) = Simplify(d, fi2) = (d, fi2).
We haveFs = { f1,dfi2, ¢ fz, bfis}. Notice that? f; cannot be simplified, but very often we have
only a polynomial multiplied by a variable. After several stepSymbolic Preprocessinge find
Fs = {f1,dfr2, 2 fz,bf1s, dfis, dfio} andFs = { fi5 = 20> — Ad> +2bd® + 2 d*, fi6 = abed —1,
fir = —bed* — Ad* +bd® — ed® + d* + 1, f1g = 2bd+ Ad? — bd® — d*, fig = b*d* +2bd® + d*}.
Note that the rank of; is only 5. This means that there is a reduction to zero.

2.7 Conclusion

So we have transformed the degree of freedom in the Buchberger algorithm inégistseor
efficiently solving linear algebra systems. This is easier because webastucted a matrid

(the number of rows il is a little overestimated by the symbolic prediction) and we can decide
to begin the reduction of one row before another witigaod reason”. For integer coefficients

it is a major advantage to be able to apply an iterative algorithm on the whdlexraadic
method). Some negative aspects are that the mdtisxsingular and thatl is often huge. A
good compression algorithm for the matrix reduces the storage requirements byrafaater
than10 (see Section 3.4).

3 Solving sparse linear systems

Compared with naive linear algebra approach we have reduced dramatesatiyg¢ of matrices
which are involved. Despite this reduction, the matrices that we havev®e doting the program
execution are very big sparse matrices (see p. 22)5&y0 x 50000 to give an idea (the record

IS 750000 x 750000 for a very sparse matrix). To give a comprehensive review of all usefullinea
techniques is far beyond the scope of this paper and we give only some referencesitfirtaé or
papers. It should be observed that we have to sspeesematrices in &omputer algebraystem.

It is therefore not surprising that we have to merge techniques coming from $pagsealgebra
(possibly designed initially for floating point coefficients) and techniques comamg ¢omputer
algebra (for big integer computations for instance). But first we establisimtheith the main
algorithm:
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3.1 Solving a matrix and reduction to row echelon

In the main algorithm we have teduce(find a basis of the image of the corresponfing linear
map) sparse matrices which are singulars and not square. On the other hand)djeles tech-
niques are often described feolvinglinear systems of equationsr = . One way to connect
the two approaches is to first extract a square sub matrix and to put the negneetumns into
the right hand side. For instance if we want to reduce:

a’> ab b be

/1 2 1 1

A= fob0 1 2 1 2
f\1 2 2 2

We first try to find the rank of the matrix using a fast algorithm mpoahd we find that the
second column is deffective. So we extract a square matrix and a right lokend si

111 2
A=111 2| r=1|2
1 2 2 2

Hence the system of equation can be rewritten:

a’ a?
Al | = —(ab)r or b | = —(Gb)(A_lT)
be be

so we have tgolvethe linear system

To 2
20 = 0
to 0

and the reduced form of the matrix

a’ ab b be a’ ab b be
fi/fl xg 0 0 fi/1 2 0 0
ol 1 2z 1 0= f 1 0 1 0
fs\1 t 0 1 s\l 0 0 1

3.2 Solving sparse linear systems

Solving sparse linear systems has been studied for a very long time for nunengautations,
there are mainly two types of methods: iterative methods (computing suadgssiv = Ay; if

Ais an x n matrix) and decomposition methods. The methods wich are useful in our context
are the following:
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3.2.1 Iterative solvers

After O(n) steps we obtain an exact solution (up to rounding errors). This is the case of cenjugat
gradient method or the Lanczos algorithm [Mon95] since aftgeps the result is exact. Another
well known iterative algorithm is the Wiedemann algorithm [Wie86, Kal91hjch uses the
efficient Berlekamp and Massey algorithm [L.69] to recover the solutione Wit there exists

a more efficient version of the Wiedemann algorithm: the Wiedemann algorithnmobl{but

we have not implemented this version yet).

The key operation in these algorithms is the multiplicationy. Itis very easy to implement
this operation efficiently to take advantage of the sparsityl @nd to obtain a complexity of
O(]A|) for computingA * y where| A| is the number of non zero elementsAnthus the global
complexity for solving the system 8(n|A|) instead ofO(r?).

When the matrix has a regular pattern it is possible to apply even moresetftechniques
(for Toeplitz matrices for instance [Bin94]). These methods can not be appled itase since
the pattern of the generated matrices is not regular enough. A significant drawbtsef
methods is that there is no speedup if we try to solve simultaneously sexegal $ystems with
the same left hand side.

3.2.2 Factorization methods

The classical LU decomposition try to decompose the input matmto a product.UU wherel
(resp.U)is alower (resp. upper) triangular matrix. Bparsed_U decomposition [Geo81, Rei71,
Ros72, Duf84, Geo81, Geo93] there is an additional constraint: the number of non zezatslem
in L andU minus the number of non zero elements4drmust be as smallest as possible (this
number is called the number of “fill-ins”). The sparse LU decomposition stattsarsymbolic
preprocessing very similar to our. Itaims is to avoid to spend timefim@omputing coefficients
the vanishing of which is predictable. The interest of this method is that bothqmessing may
be done simultaneously.

A large number of implementation for these methods are available (mainlyGr+Cobr
Fortran) [Dav95] or even in Matlab. Unfortunately these programs and sometlaigsiare not
very robust: very often the input matrixmust be non singular or square or positive definite. On
the other hand, parallel algorithms and parallel implementations exist [Van@3,04m, Alv,
Pey]. We have modified the smms [Alv93] program in order to work with moguwoefficients
in order to evaluate the costs of different algorithms.

Solving large linear equations modulo a small prime number has been studied in cryptol-
ogy [LaM91, Mon95] for factoring integers or computing discrete logarithms (very gfte 2
in that case). These authors use a combination of structured Gaussian wimarad other
iterative algorithms. In the current implementation of thigalgorithm we use by default the
structured Gaussian elimination. Note that in an ideal implementatioprdgram should first
analysed the shape of the matrix and then decided which algorithm should be applied.
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3.3 Computer Algebra methods for solving linear systems with integer co-
efficients.

Very specific methods have been developed in Computer Algebra for solving linedioagua
when the coefficients are integers. First we recall that the Baragssithim is better than the
classical Gauss algorithm but is very inefficient for big systems.

The best way of solving linear systems: = b with integer coefficients is to useadic
computations: we choose a primgand we comput€’ = A~! mod p (very often a sparsél/
decomposition is more appropriate). Then we define

b© = b
y™) = Cb™) mod p
b(m+1) _ p(m) — Ay(m)
P
z(m) — Z;ﬁ:—ol y)pi
Theorem 3.1 (Dixon [Dix82])
o Azl — b= 0mod p™

e If B is upper bound of the coefficients dfand b it is sufficient to compute™ for
m > 2nlog,(nB) and then to apply the extended Euclidean algorithm:t® and p™
to recover the value iQ).

In fact the iteration may be stopped whelfi) becomes stable (see [S.R71] for multi modular
methods which may be generalizedteadic method).
The global complexity [Knu81] of this algorithms is

O(n°log(nB)?) Bareiss method
O(r*(n + log(nB))log(nB)) | multimodular methoo
O(n’*log(nB)?) p-adic method

Note that they-adic method is also an iterative algorithm (in fact this is a Newtgorahm)
and that we have previously noticed that this kind of algorithm is less efficiesbfeing simul-
taneous systemdx = by,---, Az = b. If £ > n itis probably better to use a multi modular
approach: we computé—'b mod p; for different primes; and we apply the Chinese remainder
theorem to find the solution modul®, p;.

3.4 Matrix compression

When the matrices are big it is necessary to adopt fairly complicateal® schemes to compress
the matrix in memory: consider @10* x 5.10* matrix with 10% non zero elements (this is
the case in Cycli® for instance); even if only one byte is allocated for each coefficients (an
optimistic assumption since some coefficients have hundred digits); the meafuixe250 + 10°
bytes to be stored ! In our implementations we do not duplicate coefficients (r@gitige fact
that some rows in the matrix are just term multiples of others); thus we drdyeto compress
the position of the non zero elements; we have experimented the following tecéinique
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(i) No compression: inefficient both for CPU time and memory usage.

(i) Bitmap compression: each row of the matrix contains zero and non i=reats:
XxX00xx000Xx ..

Ji, J2,- - . denote the indexes of the non zero elements (here 1,5, = 4,...), then
>, 2/#=! is the bitmap compression (for the example 2° + 2% = 281) . This method
is efficient but consumes a substantial amount of memory. This is the prefeyetbwa
implement the compression when the coefficients areAti2)

(iif) Distributed representation: the row is represented by the array

71 ]2 — g1 [Js — G}

using bytes when, — j._1 < 255 (this occurs very frequently). This method is most
efficient in memory than the previous one and a little slowefx).

(iv) Apply a standard compression tool (gzip for instance) to one of the previouseegpagen.
Very efficient in memory but rather slow.

For the moment our prefered methods are (ii) and (iii) (depending on the ground field), but
the compression algorithms should be seriously improved in future versions.

4 Experiments

The quality of the computer implementation of Grobner bases computations may haae a dr
matic effect on their performance. The theoretical results on compleugn(for homogeneous
systems, the complexity i$** in most cases angt” in some very pathological cases) cannot
throw light on the practical behavior of effective implementation. Thus, winbgpér and pen-

cil” analysis of polynomial solving algorithms are important, they are not enough. Our view
is that studying and using programs which implement these algorithms is an alssentpo-

nent in a good understanding of this area of Computer Algebra. To this end, we provide some
experiments and comparison with similar programs. This section should be cedsaiethe
validation of our algorithm. Thus it plays the same role as its proof for theorems.

4.1 Methodology

Empirical analysis means that we have to pay particular attention to tieéopevent of method-
ologies in the field of benchmark for linear system solving. We adopt the following points

19



. We compare the new algorithm watate of the arGrobner bases implementation (namely
Magma [Can98], PoSSo/Frisco Grobner engine [Tra97], Macaulay 2 [Sti8&®/3rSin-
gular [Gre97], Asir [Tak96], Cocoa, Axiom, Maple [Cha91] and Gb [Faub]). It soal
crucial to compare the implementation of the new algorithm with the Buchberger al
rithm implemented byhe same persofin this case the author). In our opinion it is also
important to compare low-level implementation of the algorithms to avoidguar inter-
actions with a high level language/compiléf, has been implemented  and most of
the competitors are implemented in C/C++.

. The list of examples is also a crucial issue: the examples caadily accessefFaua]
(the web site contains pointers to the Frisco test suite). The list is cadpd<lassical
benchmarks (Cyclie:, Katsurar) but also of industrial examples (coming from signal
theory, robotics). We have removed from the list all thyg examplesince nothing can be
concluded with them. Of course the toy concept is relative to current compéiarsis,
an example is toy if it takes less than 1 sec on a PC.

. This section contains two timing tables: the first one corresponds to modular @tiopstt

the second one corresponds to big integers computations. All the computations are done
several times on equivalent computers to prevent as much as possibletioteraath

other programs. For each timing the program was run several times. This eessasy to
eliminate fluctuations in the measurements stemming from some other prognamisy

on the same computer. Of course the timings are rounded.

. We rigorously use the last version of all the programs and use an appropriate aoimpute
execute them.

. An even more convincing proof of the efficiency of a new algorithm is to solve prdyious
untractable problems. So we should test the algorithm on very difficult problemeur|
case,F; solves Cycli@ and Cycli®.

. The same strategy is used for all the programs. For instance if we homogenizpuhe
polynomials for one program we try the same strategy with all other programs. sThis i
the reason why we give the timing for cychcand homogeneous cyclic Some systems
(Singular for instance) allow the user to customize the internal strategyryseveral
parameters and we retain the best method.

. The outputs of the different programs are checked to be equal.

. Last, and it is the more difficult, we compare the algorithm with other methivdsi-
gular sets (Moreno/Aubry), homotopies (J. Verschelde), Bezoutian (Mourrainpanses
resultant (Emiris). The task is more difficult since the outputs are vefgrdiit (quasi
component, floating point approximations).

e Triangular methods (Wu, Wang, Lazard, Kalkebrenner). On one hand triangular
methods seem to be less efficient than lexico Grobner bases computation {the cur
rent limitis Cyclic6 and Katsur&) but on the other hand the quality of the output is
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better. So we think that these methods are useful to simplify lexicographiobh@r
bases.

¢ Homotopy methods. J. Vershelde reports timings (Cyglan a Sparc-Server 1000
in 4h35m) which are less efficient than Grobner bases techniques. It is difficult to
handle over constrained systems.

¢ Mixed volume is extremely fast to estimate the number of isolated roots @gpclic’
12) but with our experience it is not so efficient for other systems (and the number of
solution is often over estimated).

4.2 Modular Computations

Modular computations are very useful in Computer Algebra because they give edalsi{with
a very high probability) and information on the number of solutions (Hilbert function).

Moreover, since big integer computations could be done by meanadit or multi modular
arithmetics it means that the cost of an integer computation is roughly

time of modular computation * size of the output coeffs

So itis also very important to have an efficient solver modulo a pgime

The computer is &C Pentium Pro 200 Mhz with 128 Meg of Ram

We consider only non homogeneous systems, but in the following wergivenin(momog,
Thon homog) DECAUSE Singular and Macaulay are often very slow for non homogeneous system.

Note that the PoSSo library uses generic coefficient to impleddgnt but the other soft-
wares implement inlined modular arithmetic. In other words the overhead ofidanzalls is
heavier in the PoSSo library. With a better implementation one can probabdedimings by a
factor betweer? and4.

Table 1 Academic Examples mad

FGb Gb PoSSo| Singular| Mac2 | Asir
Ky 0.8s 3.2s 46 s 10s 12s 56 s
Ky 41s 29s | 9mb8s| 1m47s | 1mb55s
K, 30s 3m48s | 1h25m| 17m4l1s| 17mlls
Ky 4ml13s | 36m23s 3h6m o0
K 30m29s 00 %) 00 %)
Cyclic 7 46 s Im15s| 9m3s | 2m34s | 2m0Os | 6m51s
Hom('; 52s 1m02s
Cyclic 8 1m55s | 26m17s| 4h38m| 1 h 56 m| 1 h 33m| 3h54m
HomCy 184.4s | 39m1l7s
Cyclic9| 4h32m 00 00 o0 0o 00
HomCy | 11 h 10 n? o0 o0 o0 o0 o0

811 h 9 min 40 s on a 500 Mhz Alpha workstation with 1Go of RAM.
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We give the shape of some generated
matrices. The matrices can have a
very different structure and the num-
ber of non zero elements varies greatly.
Upper left figure:

FromCyclic;

Matrix Ag 475 x 786 (13.8% non zero)

Upper right figure:

application example: fronfs 5 5 [Fau98b]

matrix As 1425 x 2561 (0.47% non zero)
Lower left figure:

Example: engineering problem (Nuclear)

matrix A7 1557 x 3838 (0.2% non zero)



The conclusion of Table 1 is th#te old Gb is still faster than other systems, and that FGb
> Gbh.

The following figure shows the performance results for the homogenization stiatelghe
affine strategy (the quotient “time to solve homog Cyelicdivided “time to solve non homog
Cyclic n” is plotted).

Comparison Homegeneous/ Non homogeneous

1000%-{

100%-
Cyclic 6 Cyclic 7 Cyclic 8 Cyclic 9 F 855

We conclude that for small systems the difference is small but for big sysieenSyclic 9
there is a huge difference (you add several components of dimehsiot). For Cyclic9 the
algorithm generates2051 x 317850 matrix and it is3.2 times slower!

Cyclic n - Modulo p - DRL Groebner basis

6h10m
FGb
kA5|r \4
Cocoa
g thom Singular
. 4 ‘
/% Macaulay 2
Gb
Maple 5.5 . /

C9

a 8
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4.3

In the following table, we have included a special version of the the cEd8@SSo Grobner

Integers

engine called “Rouil”, this version has been optimized by Fabrice Rodillier

In the table we remove the Singular entry because Singular and Macaulay?2 egecioge

and very slow for big integers.
Size s the size in digits of the biggest coefficient in the output.

Table 2 Academic Examples

FGb Gb | Singular| Rouil | Asir | Mac?2 | Magma| Size
K 29s 42 s 50s | 3m28s| 10m56s 53
Ky 23s 10m21s 8m23s| 8m37s| 2h17m 102
Ky 3m3s | 5h35m 1h31m 00 133
Ko 31m24s 00 00 ') ') 192
Cyclic6| 0.3s 3.2s 53s 54s 8s 195s | 2.6s | 96
HomC; | 54.2s | 1h32m | 10h35m| >25nt | 2h50m 2202s | 96
Cyclic7| 39.7s | 5h17nt o0 o >2h° o = 96
Cyclic 8| 24m4s 00 00 00 00 00 00 202
Cyclic 9| 18 day$ 00 00 00 00 00 00 800

a134 Mbyte of data when stopped.
bEstimated from an original time of 24h26m40s on Sparc 10 étrard s algorithm.
€162 Mbyte of data when stopped.
dThe size of the result in binary is 1 660 358 088 bytes. Run éh\ddg RAM PC.

22d-+1h

h

8d 5h

Maple 5.5

Cyclic n - Big Integer - DRL Groebner Basis

Singular

\Macaulay 2

Posso (Rouillier)

7

2The algorithm uses a primeto avoid syzygies. Then the algorithm checks that the regast correct. At the

8

present state the implementation sometimes does not detegrimes.
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We observe that Magma is very efficient for big integers (in fact the Magsrsion for alpha
workstations is evefi times faster).

Cyclic-9 for big integers is an example btigecomputation; we use:

e 3 Processors PPro 200 Mhz 512 Meg RAM + 1 Alpha 400 Mhz 570 Meg

¢ Total sequential CPU time8 days

e Size of the file of coefficients in the output (binar$s60 Meg

e The result contains: 1344 polynomials with 1000 monomials and 800 digits numbers !

This success is also a failure in some sense: the size of the output is sothg ttennot do
anything with this result. That is to say we are now near to the intrinsigt®aty of Grobner
bases. On the other side, the output is very big because the coefficients are thoguangl point
computation would not suffer from this exponential growth.

We conclude that for all these examples FSlGb and that it faster than other systems.

5 Final remarks

The conclusion is that, is at least one order of magnitude faster than all previously implemented
algorithms.
We recall the main features of this algorithm are:

Replace all the previous strategies (sugar([Gio91]), ...) by algorithmsparge) linear
algebra. It explains why the usual strategies in Buchberger algorithm could not bebptim

Faster for all kind of arithmetic (modular computation, integers, “generic’mgation)

In some sense it is as fast as possible for big integers coefficients or eveffigvith
parametersk(yi, . .., y,)) because the practical complexity is almost linear in the size of
the output coefficients: in the case of homogeneous polynomials the complexity of
is s't°() 4 M wheres is the size of othe result ant¥ is the time needed for modular
computation which is generally much smaller.

For homogeneous systems the algorithm generate reduction to zero or non zero polynomi-
als (completely reduced) which are all in the final Grobner basis. So thathlgaloes
not generate “parasite” intermediate data.

Very good experimental behavior for non homogeneous systems (several timedifaster t
the corresponding homogeneous system).

Parallel versions of the algorithm can be implemented (we have done a firgnmapta-
tion).
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e The algorithm is easier to implement (no polynomial arithmetic is required, doeed
an efficient power product (exponents) implementation).

e It can solve previously intractable problems: we are now able to computyg dasé new
records: Cyclie-9 for modular coefficients (4h30), Cyche for big integers coefficients
(25 mins) and the very challenging Cyché for bignum coefficients (18 days of CPU
time).

A lot of work remains to do in the linear algebra part to apply less naive aktgosito the gen-
erated matrices and to compress more efficiently those matrices.déoaisie works must also
be done to compare the algorithm with different possible strategies (sugar and harmageni
multi-weight in the case of multi-homogeneous ideals might reduce the size ot theasgas
suggest by D. Lazard and one anonymous referee)). How to use the symmetry of tleengrobl
to handle more efficiently the matrices is also an open problem. Even ifgbgtam presented
in this paper is heavily connected with the Buchberger algoritm (use the sasréedior useless
pairs), we think that an interesting work would be to use Mandache [Man94, Man®éjsitjue
to check thatt, is nota Buchberger algorithm in the sense that the Buchberger algorithm cannot
simulate the new algorithm for any strategy. When the normal strategy iswsezin plot the
functiond — deg( first(P;)); we obtain an increasing function for homogeneous systems but
in the affine case we obtain different curves:

Cyclic 8 — Total degree of critical pairs

El 50 — Total degree of critical pairs
An open issue is to understand deeply the shape of this curves.
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