
TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

Finding Structures
On Imprecise Points

By
M.J.M. Roeloffzen

Supervisors:

prof. dr. M.T. de Berg
dr. E. Mumford PDEng

Eindhoven, July 2009



Abstract

An imprecise point is a point in R2 of which we do not know the location exactly; we only
know that it is somewhere within a region in R2. On such a set of imprecise points structures
like the closest pair or convex hull are not uniquely defined. This leads us to study the
following problem: Given a structure of interest, a set R of regions and a subset C ⊆ R, we
want to determine if it is possible to place a point in each region of R such that points in
regions of C form the structure of interest. We study this problem for the convex hull and
closest pair and for various types of regions. For each variant we either give a NP-hardness
proof or a polynomial-time algorithm.
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Chapter 1

Introduction

Many geometric problems involve finding a structure in a set of points in R2, such as the
convex hull or the closest pair of a set of points. These structures are well defined for any
given set of points and many algorithms are available for computing these structures efficiently
[BCKO08].

Most real-world data however is not exact. It often comes from finite-precision computa-
tions or imprecise measurements, such as GPS coordinates. Even though such data specifies
coordinates for each point we do not know the exact location. We only know that for each
point that it is within a region around the given coordinates. This imprecision can be modeled
using a region in space for each point. For example discs can be used to model the imprecision
caused by measurement errors, whereas rectangles can be used to model imprecision on the
coordinates caused by finite precision computations. The input is then a set of regions in R2,
where inside each region a point is located. Now different placements of points inside their
regions can lead to different convex hulls and closest pairs on those points. Thus the question
is what we want to compute on a set of these imprecise points and how.

Related work. To deal with computational imprecision Guibas et al. introduced a frame-
work called epsilon geometry which is based on interval arithmetic and backward error analysis
[SSG89]. In epsilon geometry predicates on geometric objects are accompanied by a parame-
ter ε > 0 to indicate how much the objects may have to be perturbed to make the predicate
true. For example two points ε-coincide if there is a point within ε distance from both points.
A minus sign is used to indicate that a property remains intact even when all points are moved
by a certain distance. A polygon is -ε-convex if the polygon is convex for every perturbation
of its vertices by at most ε. They then show how to use these predicates to determine if a
point is δ-inside an ε-convex polygon for δ > 0. In a different paper [GSS90] they use the
framework to compute a strongly convex hull of a set S of points, which is a -ε-convex polygon
in which every point of S is δ-inside for δ > 0.

Nagai and Tokura show how the union and intersection of all possible convex hulls on a
set of imprecise points can be computed [NT01].

In light of the fact that different placements lead to different convex hulls Löffler and
van Kreveld try to find the placement of points which maximizes or minimizes the area or
perimeter of the convex hull [LK08]. They describe algorithms for this with running times
ranging from O(n log n) to O(n13) for various restrictions on the input regions. They also
prove NP-hardness for finding the convex hull with the largest area and for finding the convex
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hull with largest perimeter. They also did similar work for the smallest bounding box, smallest
enclosing circle, width, diameter and closest pair of a set of imprecise points [LK07].

Fiale et al. introduce the notion of systems of distant representatives [FKP02]. Given a
set R of sets of points and a distance d, a system of d-distant representatives is a choice of
points, one from each set in R, such that the distance between any two points is at least d.
They then show that determining if such a system exists is NP-hard when the sets of R are
unit discs and are allowed to overlap. Cabello proposes an approximation algorithm for this
problem [Cab07].

Both Löffler and van Kreveld [LK08] and [LK07] and Fiala et al. [FKP02] focus on some
numerical values, such as the area or distance, of the structures that can be made from a
set of imprecise points. They do not consider the combinatorial properties. This is the focus
of our work: To determine if a set of imprecise points can induce a structure with certain
combinatorial properties. For example, given a set S of imprecise points, is it possible that
two given points p, q ∈ S form the closest pair. Next, we define the problem more precisely.

Problem description. In general the problem we study is defined as follows. We have a
structure of interest, such as the convex hull or closest pair, a set of regions R in R2 and a
subset C ⊆ R. The question we then want to answer is: Is it possible to place a single point
in each region of R such that the points placed in regions of C form the structure of interest.
If such a placement is possible we say that C is a possible structure. For example the structure
of is the closest pair and the input is a set R of rectangles and a subset C ⊆ R which contains
two rectangles P and Q. Then C is a possible closest pair if and only if it is possible to place
a point in each region of R such that the points p ∈ P and q ∈ Q are a closest pair.

We use sets of line segments, sets of squares or sets of discs as the input setR. For different
structures we may also impose some additional constraints on these regions, for example that
regions have to be disjoint. For the rest of this document R will be used to denote the input
set of regions and C to denote the subset for which we want to determine if it is a possible
structure. The structures that we will look at are the closest pair and the convex hull.

Results. For the convex hull we introduce the notions of an exact convex hull, a subset
convex hull and a superset convex hull. In an exact convex hull the points from regions of
C are exactly its vertices, whereas for the subset (and superset) convex hull the points from
regions in C are a subset (or superset) of the vertices.

The results for the decision problem to determine if it is possible to place a point in each
region such that the points from C form a given structure are summarized in Table 1.1. Note
that n is the number of regions in R and k is the number of regions in C.

The NP-hardness proofs for the closest-pair problems are based on a reduction from the
problem of finding distant representatives to the problem of determining if two regions are
a possible closest pair and can be found in Chapter 2. We also show in Section 2.4 that
counting the number of possible closest pairs is NP-hard. It is then shown that there are only
O(n) possible closest pairs when the regions are disjoint unit discs and we give a sweep line
algorithm that runs in O(n log n) time and reports O(n) pairs where all possible closest pairs
are among the reported pairs. By placing a point in each region in a fairly simple manner it
is also possible to determine for some pairs that they are in fact a possible closest pair. These
pairs can also be found using a sweep line algorithm that runs in O(n log n) time.
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Lastly the results for the exact, subset and superset convex hull problems can be found
in Chapters 3, 5 and 4 respectively.

Regions Restrictions Solution
Possible Closest Pair

line segments disjoint, unit length, parallel NP-hard
squares disjoint, unit size, axis aligned NP-hard
discs disjoint, unit size NP-hard

Exact Convex Hull

line segments none NP-hard
Superset Convex Hull

line segments none NP-hard
line segments disjoint, unit size, parallel O(k2n log n)

Subset Convex Hull

line segments disjoint, parallel O(n log n+ k2)
rectangles disjoint, axis aligned O(n log n+ k4+ε)

Table 1.1: Results on the decision problems.

Preliminaries. Given a set S of regions, a choice of points, one from each region of S will
simply be called a placement (of points in S). Unless otherwise indicated, a placement refers
to a choice of points from the regions of the input set R.

As mentioned before, C is said to be a possible structure if and only if there is a placement of
points in which the points from C are exactly those that contribute to the structure. Similarly
C is an impossible structure if for every possible placement C does not form the structure.

To avoid confusion between sets of regions, regions and points we will use calligraphic
letters (R, C) to indicate sets of regions, capital letters (P,Q) to indicate regions and lower
case letters to indicate points (p, q). Furthermore when a point corresponds to a certain
region, the region and point will be indicated by the same letter (p ∈ P, q ∈ Q).
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Chapter 2

Closest Pair

A closest pair of a set S of points is a pair p, q ∈ S that have the shortest distance between
any pair of points in S, that is, a pair such that dist(p, q) = min{dist(r, s) | r, s ∈ S ∧ r 6= s}
where dist(p, q) is the distance between p and q. A closest pair does not have to be unique;
there can be multiple pairs of points that have the same distance between them. In terms of
imprecise points the closest pair problem is the following.

Possible Closest Pair
Input: A set of regions R and a pair P,Q ∈ R.
Output: YES if {P,Q} is a possible closest pair, NO otherwise.

In this section it is shown that determining if a certain pair of regions can form the closest
pair is NP-hard for regions modeled as discs, squares or line segments, using a reduction from
the problem of finding distant representatives, which was introduced by Fiala et al. [FKP02].
The problem of finding distant representatives is defined as follows.

Distant Representatives
Input: A set of regions R and a distance d.
Output: YES if a point can be placed in each region of R such that dist(p, q) ≥ d

for any two points p ∈ P and q ∈ Q, where P,Q ∈ R, NO otherwise.

In the rest of this section we will be using two different distance measure between regions.
Let P and Q be two regions then the minimal distance between two regions is defined as
follows dist−(P,Q) = min{dist(p, q) | p ∈ P, q ∈ Q}. Analogous the maximal distance
between two regions is dist+(P,Q) = max{dist(p, q) | p ∈ P, q ∈ Q}. Now we can show that
from an instance of Distant Representatives an instance of Possible Closest Pair
can be created that returns YES if and only if the instance of Distant Representatives
returns YES.

Theorem 1. Distant Representatives can be reduced to Possible Closest Pair in
polynomial time.

Proof. Let R be the input set for Distant Representatives and d the minimum distance
separating any two points. Add two regions P and Q such that dist−(P,Q) = d and for
every region S ∈ R we have dist−(S, P ) ≥ d and dist−(S,Q) ≥ d. This can be done by
first constructing regions P and Q of the required type, for example squares or discs. Then
compute the position of Q with respect to P by vertically aligning a lowest point p of P with
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a highest point q of Q and placing q a distance d below p. Then we can compute a leftmost
point r in these two regions and a rightmost point s of the regions of R. Then place P and
Q such that r is horizontally aligned with s and dist(r, s) = d.

If P and Q are a possible closest pair, then there is a placement in which all points from
regions in R have at least distance d between them.

If P and Q are not a possible closest pair then there is no placement such that the point
from regions in R have distance d between them.

Next we show for three different types of regions that Distant Representatives is
NP-hard. It then follows from Theorem 1 that also Possible Closest Pair is NP-hard for
those types of regions.

Later in this section we show that it is also NP-hard to count the number of possible
closest pairs. However for unit discs only pairs of discs for which the minimal distance is at
most some easily computable value can be possible closest pairs. We present an algorithm
that uses this to find a linear number of pairs of discs where all possible closest pairs are
amongst the pairs that are found. Lastly we show that for a pair of unit discs whose minimal
distance is at most some easily computable value a simple placement exists in which the
points from this pair are the closest pair.

2.1 Squares

In this section we will show that Possible Closest Pair is NP-hard when the input is a
set of disjoint axis aligned squares of unit size. We prove this using a reduction from planar
3-SAT.

A propositional formula is satisfiable if there is a valuation of its boolean variables that
makes the formula true. A SAT formula is a conjunction of clauses where each clause is a
disjunction of literals and each literal is either a variable or negated variable. In a 3-SAT
formula all clauses contain exactly three literals. From a 3-SAT formula we can construct a
graph where the variables and clauses are nodes and there is an edge between a clause node
and a variable node for each occurrence of the variable in that clause. In planar 3-SAT this
graph is planar and can be drawn without crossings such that all variable nodes are on one
line and the clause nodes are to the left and right of this line. For the remainder of this section
the following formula, φ, will be used as a running example. The graph representation of φ
is shown in Figure 2.1.

φ = (a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ d) ∧ (¬b ∨ c ∨ ¬d) ∧ (a ∨ ¬c ∨ ¬d)

Now we can define planar 3-SAT as follows.

Planar 3-SAT
Input: A planar 3-SAT formula with a planar embedding.
Output: YES if the formula is satisfiable, NO otherwise.

To make a reduction from Planar 3-SAT to Distant Representatives we have to
generate a set of regions R(ψ) from a 3-SAT formula ψ, such that ψ is satisfiable if and only
if there is a placement for R(ψ) in which every two points have at least distance d between
them. Constructing R(ψ) is done by creating a set of regions for each node and edge in the

8



Finding structures on imprecise points
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Figure 2.1: Planar embedding for the 3-SAT formula φ.

graph representation of ψ. The union of all these sets is R(ψ). These sets are called gadgets
and there are three different kinds of them, the variable gadget, the clause gadget and the
edge gadget. First a short description of the gadgets is given and then we explain them in
more detail. Then lastly we explain how to compute the gadgets from a given planar 3-SAT
formula and its graph.

• Variable gadget. The variable gadget represents a boolean variable. It allows exactly
two different placements which correspond to the true and false values of the boolean
variable.

• Edge gadget. The edge gadget propagates the value of a literal from a variable gadget
to a clause gadget. It is a sequence of squares which starts with a square in a variable
gadget and ends with a square in a clause gadget. Since values correspond to placements,
the edge gadget should only allow placements where the first square and the last square
in the sequence correspond to the same value.

• Clause gadget. The clause gadget is a fixed configuration of squares. It has the property
that if the three incoming edge gadgets it is connected to have a placement corresponding
to false then there is no placement of points in the clause gadget with distance d between
the points. If at least one of the incoming edge gadgets has a placement corresponding
to true then such a placement does exist.

2.1.1 Variable gadget.

The basis of the variable gadget are two vertically aligned squares which are placed such that
the distance between two opposite corners is exactly d. Then the only possible placements
are a point on the top left corner of the top square and a point on the bottom right corner of
the bottom square or a point on the top right corner of the top square and the bottom left
corner of the bottom square. This can then be extended to a sequence of squares by adding
squares, again vertically aligned, below the bottom one such that the distance between the
bottom left corner of one square and bottom right corner of the next is exactly d. This is
illustrated in Figure 2.2a.

The two placements for the entire variable gadget correspond to the two values of the
variable. Each edge gadget has one square in a variable gadget. A placement in this square
is considered to correspond to a false value of the literal that the edge represents if a point
in that square is placed towards the clause that the edge is connected to. For an edge gadget
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representing a non-negated literal which is to the right of the variable gadget the placement
corresponding to a false value for that literal has a point placed to the right. When the
variable is true then the non-negated literals are also true, so a true placement of the variable
should also imply a true placement for the square that is part of the edge gadget of a non-
negated literal. As can be seen in Figure 2.2b for edges on the right side they can only start at
odd squares when starting to count from zero at the top square whereas on the left side they
can only start at even squares. Edges corresponding to negated literals however should start
at even squares on the right side and odd squares on the left. Figure 2.5 shows R(φ), the set
of squares corresponding to the formula φ. It is a good illustration of how edge gadgets are
connected to the variable gadgets which are market by grey rectangles.

The number of squares in the variable gadget depends on the number of edges connected
to a variable node. Because we don’t want different edge gadgets to influence each others
placements, other then through a clause of variable gadget, there should be enough space
between squares of different edge gadgets. Therefore there should be at least two squares
between two squares of the variable gadget that are part of an edge gadget. If we combine
that with the fact that an edge can only connect to either the odd or even squares on one
side we may need 4k squares for a variable node with k edges. Note that in the example of
Figure 2.5 edges are placed closer together to keep the example small, but this may cause
problems for the set of regions corresponding to other formulas.

d

d

(a) (b) (c)

Figure 2.2: A variable gadget without placement (a), with a placement corresponding to true
(b) and with a placement corresponding to false (c)

2.1.2 Edge gadget

The edge gadget is a sequence of squares S1 . . . Sk where S1 is also part of a variable gadget
and Sk is part of a clause gadget. We consider a placement of S1 on the bottom corner towards
the clause to correspond to false and the bottom corner away from the clause to correspond
to true. We define true and false placements for Sk in the same way, bottom corner towards
the clause means the literal is false and bottom corner away from the clause means true. The
sequence of squares is x-monotone. This means that for an edge going from a variable to
a clause on the right, each square Si will be completely to the right of Si−1. Because the
gadget for an edge going from right to left is symmetric to an edge going from left to right,
we assume the gadget goes from left to right.

The edge gadget should propagate the value of a literal from a variable gadget to a clause
gadget. We can achieve this by only allowing placements where either s1 and sk are in a true
position or both are in a false position. However we can relax this requirement a little. If s1 is
in a true position and sk in a false position then this only makes it harder to find a placement
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for the clause gadget. So instead we only require that if s1 is in a false position then sk must
also be and that if s1 is in a true position there has to be some placement where sk is also in
a true position.

To ensure that sk is in a false position if s1 is also in false position we will ensure that for
each Si its false position sf

i is exactly distance d from sf
i−1 and for every point si ∈ Si, such

that si 6= sf
i , we have dist(si, s

f
i−1) < d. How this is achieved depends on the direction of the

edge.
The edge gadget can be split into three parts as shown in Figure 2.3a. We define

E1 = {S1 . . . Sl}, E2 = {Sl+1 . . . Sm} and E3 = {Sm+1 . . . Sk}. In the E1 and E3 squares
are horizontally aligned and spaced such that a top right corner of one square is exactly dis-
tance d from the bottom right corner of the next, like the squares in a variable gadget are
spaced vertically. We need to make sure that the edge gadget can have a certain width, as
indicated by w, where the width of a sequence of squares is the horizontal distance between
the lower right corner of the first square in the sequence and the lower right corner of the
last square. We will do this by making the width of E3 variable. By only placing horizontally
aligned squares only widths that are multiples of d′ can be achieved, where d′ is the distance
between two lower right corners of consecutive squares in the sequence of horizontally aligned
squares. To give E3 a width l that is not divisible by d′ we start with a sequence of dl/d′e
horizontally aligned squares. Then we make the sequence shorter by lifting a square Si out
from the sequence such that the previous and next square can move closer together while still
maintaining that sf

i is the only point in Si that is is exactly distance d from sf
i−1 and sf

i+1.
This is illustrated in Figure 2.3b. Note that this can also be used to ensure that the false
position of sk is the bottom right corner and not the top right corner by adding an extra
square if needed and then making the edge shorter by lifting squares out to get the right
width to connect the edge to the clause. How to compute what this width is will be discussed
in Section 2.1.4.

Then there is E2 that is used to compensate for a difference in height h between S1 and
Sk, where the height of a sequence is the vertical distance between the lower right corners of
the first and last square. A square can be placed higher or lower than the previous square
in the sequence by making sure that the whole square except a corner is inside a circle with
radius d from the previous false position, as illustrated in Figure 2.3c. Say that E3 has to go
down by some distance h then we can compute how many squares we need at least to cross
this height, namely using an as steep as possible slope while maintaining that the sequence is
x-monotone. Then using the maximal slope we may actually cross more than height h, but
since the number of squares in the sequence is now known we can compute which slope we
need to ensure that Sm is at the right height as illustrated in Figure 2.3d.

Because the sequence of squares is x-monotone it is easy to see that there is a placement
where Sk has a true placement if S1 has a true placement. Simply take the placement where
all points are in false position so at the top right or bottom right corner of their squares and
then shift all points to the left corner. The distances between the points remain the same
since they are all shifted over the same distance in the same direction, so the placement still
has at least distance d between all points, but now both s1 and sk are in a true position.

2.1.3 Clause gadget

The clause gadget is a fixed configuration of squares and is shown in Figure 2.4a. Black
double arrows indicate that the distance between the two endpoints of the arrow is exactly d.
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{h {
w

S1

Sk

Sl

Sm

(a) Three segments of edge
gadget

(b) Shortening
a horizontal
segment

d

(c) Placing
squares under
different slopes

Sl

Sm

(d) Finding the right slope

Figure 2.3: Constructs used for building an edge gadget

Squares with grey circles around them are the squares that are also part of an edge gadget
and are called the incoming squares. Square with grey squares around them are merge squares
where the values of two incoming squares are combined. The arrows indicate the frame along
which values are propagated between squares. Lastly the two squares with a dashed rectangle
around them are a small construct outside the frame which only allows one placement, namely
with points on opposite corners. This structure is used to limit the possible placements for a
point in the square below it.

The clause gadget has two important properties. The first is that if all points on the
incoming squares are in a false position, that is at the bottom right corners, then no placement
with distance d between points is possible for the clause gadget. If all points at the incoming
squares are indeed placed at their lower right corners then the squares along the arrows to
the merge squares have only one placement with distance d. This is shown in Figure 2.4b.
This is because every next square along the arrows has only one point at distance d from the
placement of the previous square. Then the point in the top merge square can only be placed
in the middle of its right edge. The point on the square between the two merge squares can
then only be placed at the lower right corner. The point on the lower merge square must
then be placed in the middle of the right edge. Then all points in the square on the right
have a distance smaller then d from the point in the lower merge square so there is no valid
placement for this point. Hence, there is no placement with distance d possible if all incoming
squares have false placements.

The second property is that if at least one incoming square has a true placement, that
is in the lower left corner, then a placement for the clause gadget is possible. First we look
at the case where the middle incoming square has a point in true position and the top and
bottom incoming square a point in false position. The placement of points of squares along
the arrows from the bottom and top incoming squares to the merge squares remains the same.
The point on the square between the middle incoming square and the top merge square can
be placed at the lower left corner now. The point on the top merge square can then be placed
at the lower right corner. The point on the square between the merge squares can then be
placed a little to the left and the point on the lower merge square can be placed a little higher.
Then the lower right corner of the square to the right of the lower merge square has distance
more then d from the point on the merge square so a point can be placed there. The resulting
placement is shown in Figure 2.4c. A placement when either the top or bottom incoming
square has a point in true position is similar, point along the arrows are moved back and then
the points in the merge square can be moved either up or down.
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It is easy to see that if more then one incoming square has a true placement a placement
for the clause gadget is also possible, since it only allows more freedom to place the points.

(a) Squares of the clause gadget,
black arrows indicate a distance
d

(b) Placement for a clause that
is false

(c) Placement for a clause that is
true

Figure 2.4: The clause gadget and a false and true placement, grey elements are not part of
the gadget.

2.1.4 Computing gadgets from a formula

With these gadgets we can construct the set R(ψ) from a planar 3-SAT formula ψ and the
planar embedding of its graph representation G(ψ). For the formula φ the set R(φ) is shown
in Figure 2.5.

First we compute the squares for the variable gadgets. The number of edges for each
variable can be extracted from the graph. In the graph representation all variables occur on
one line so we vertically align all variable gadgets such that they are in the same order as in
the graph. The distance between the lowest point of one gadget and the highest point of the
next should be at least the height of a clause gadget.

Next the edge gadgets will be computed. Again from G(ψ) we can get the order in which
the edges are on the right and left side of a variable node. From this order and the literal the
edge represents we compute which squares in the variable gadget start an edge. The edges
can be stored in two lists, one on the right side and one on the left. An edge gadget that is
not yet connected to a clause gadget is called an open edge whereas an edge that is connected
to a clause gadget is called a closed edge. From this list we take three open edges that will
have to connect to the same clause and have no open connections between them in the list.
Such three edges always exist because the graph representation is planar and the variables are
in the same order as in the planar embedding. Without loss of generality assume these three
gadgets go to the right of the variables. The edge gadgets are then constructed as follows.
First all three are extended horizontally until the rightmost square of the edge gadgets is at
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ba dc

¬b ∨ c ∨ ¬d

¬a ∨ b ∨ d

a ∨ ¬b ∨ c

a ∨ ¬c ∨ ¬d

Figure 2.5: The set R(φ) of squares for the planar 3-SAT formula φ. The placement corre-
sponds to the valuation where all variables are true. Note that the figure is rotated 90◦
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least is distance d to the right of the squares of any other gadget that is constructed so far.
The clause will be placed such that the middle connection is already at the right y-coordinate.
Since the clause is a fixed configuration the y-coordinates for the top and bottom connection
can then be computed. Then we can construct the sloped part of the edge to get the edge
gadget at the right y-coordinate. Lastly we add another horizontal part to get last squares
and possibly lift out squares to give this horizontal part the right length. Then the clause can
be placed at the end of the edges. These three edges are then closed and we can find another
three open edges.

Lemma 1. The set R(ψ) of squares of a planar 3-SAT formula ψ has a placement where all
points have at least distance d between them if and only if ψ is satisfiable.

Proof. First note that the squares in different edge gadgets do not influence each others
placements other then through the variable or clause gadget. This is because we leave at
least two squares between the starting squares of different edge gadgets.

If we assume that ψ is not satisfiable then for each valuation Vu of the variables there
is a clause C of which all literals are false. If we place points in the variable gadgets such
that they correspond to the valuation Vu, then for the clause gadget representing C the first
square of all the edge gadgets connected to this clause gadget have a false placement. Then
by construction of the edge gadgets the only valid placement will have the last square of the
edge gadgets in a false position as well. Then there is no placement possible with distance d
between points in the clause gadget, so also not for R(ψ). Because every placement of points
in the variable gadgets corresponds to some valuation V , every placement of the variable
gadgets leads to some clause not having a placement with distance d between points, hence
there is no placement with distance d between points for R(ψ).

If ψ is satisfiable then there is a valuation Vs for which all clauses have at least one literal
that is true. By placing the points in the variable gadget according to Vs it is guaranteed that
for every clause there is at least one edge gadget where the first square has a true placement.
Then we also know there is a placement for the edge gadgets such that there is an incoming
square in each clause gadget that has a true placement. In every clause gadget there is then
a placement for which the points have distance d from each other. Because squares do not
interfere with each others placements other then at the connection points all points in R(ψ)
have at least distance d between them.

To be able to use this to show that Distant Representatives is NP-hard for squares
it also has to be shown that R(ψ) can be constructed in polynomial time.

Lemma 2. The set R(ψ) of regions can be constructed in polynomial time from a planar
3-SAT formula ψ.

Proof. Placing a single square in a gadget can be done in O(1) time, so the only issue is how
many squares there are in R(ψ). The number of squares in the variable gadget is linear in
the number of literals n in ψ. Because d is just a constant that also means that the distance
between the highest and lowest square is O(n). Each edge is first extended past all other
squares that are already placed and then adds something to the width the bounding box of
the squares that are placed so far. The last horizontal part only adds a constant number of
squares, however the diagonal section may add O(n) to the width since O(n) squares may
be needed to cross the difference in height between the start and end of an edge and these
squares are x-monotone. Since there are O(n) clauses the width of the bounding box of all
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squares is O(n2). Each edge can then only contain O(n2) squares. Lastly the clause gadget
only has a constant number of squares.

There are O(n3) squares and each can be placed in O(1) time, so R(ψ) can indeed be
computed in polynomial time in n.

From Lemma 1 and 2 we can then conclude the following Theorem.

Theorem 2. Distant Representatives is NP-hard for regions that are disjoint axis
aligned squares of unit size.

From this and Theorem 1 we conclude the following corollary.

Corollary 1. Possible Closest Pair is NP-hard for regions that are disjoint axis aligned
squares of unit size.

2.2 Discs

For unit discs that may intersect NP-hardness of Distant Representatives was proven by
Fiala et al. [FKP02], but this leaves the problem open for disjoint unit discs. In this section
we prove NP-hardness of Distant Representatives for disjoint unit discs using in a similar
way as for squares in Section 2.1, namely using a reduction from Planar 3-SAT. The only
difference are the gadgets, which are now sets of discs instead of squares. Putting the gadgets
together is done in the same way as for squares, so we will only describe the gadgets.

2.2.1 Variable gadget

The variable gadget is a sequence of vertically aligned discs spaced such that for two consecu-
tive discs it holds that the distance between the rightmost point of one disc and the leftmost
point of the other is exactly d. On each end of the sequence three extra discs are placed to make
sure points can only be placed on the right and leftmost points of the discs in the sequence.
A variable gadget with four discs in the sequence in shown in Figure 2.6a. The two possible
placements, one corresponding to true and one to false have points alternating between the
left and rightmost point of the discs in the sequence, as shown in Figure 2.6b and 2.6c.

The discs in the sequence are the discs that can be used in an edge gadget. A true
placement for the literal of that edge gadget is then a placement with the point away from
the clause. So for an edge going to the right the true position is the leftmost point of the disc.
The length of the sequence again depends on the number of edges that the variable node has
in the graph representation. Also to make sure that discs in different edges don’t influence
each others placements directly there should be at least four discs between two discs that are
part of two edge gadgets. Combining that with the fact that edges can only be attached to
every second disc in the sequence of the variable gadget we may need up to 6k discs for a
variable node with k edges.

2.2.2 Edge gadget

The main part of the edge gadget is a sequence of discs S1 . . . Sk where S1 is a disc in the
variable gadget and Sk is a disc in the clause gadget.

Lets consider an edge gadget that goes from a variable gadget on the left to a clause
gadget on the right. As with squares the sequence is split into three parts. E1 = {S1 . . . Sl}
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(a) no placement (b) true placement (c) false placement

Figure 2.6: A variable gadget

is a horizontal alignment of discs that is starts in the variable gadget, false positions are the
rightmost points of the discs. E2 = {Sl+1 . . . Sm} has its discs aligned along some slope and is
used to bridge the difference in y-coordinate between S1 and Sk. The false positions for discs
in E2 are the points furthest along the slope towards Sm. E3 = {Sm+1 . . . Sk} is a horizontal
alignment of discs connected to the clause gadget, where false positions are the rightmost
points of the discs. In general the distance between two false positions of consecutive discs in
any of the three parts is exactly d. The exceptions are described below.

The difficulty with the edge gadget for discs is in the bends between the different parts.
This occurs between Sl and Sl+1 and between Sm and Sm+1. We look at the bend between
Sl and Sl+1. When placing Sl+1 along the slope it is easy to place it such that only its false
position sf

l+1 has distance d from the false position sf
l of Sl as shown in Figure 2.7a. However

in this placement the true positions st
l+1 and st

l , which are at the opposite sides of the discs
have a distance less then d from each other, as illustrated by the open points in Figure 2.7a.
The disc along the slope can be moved further away such that dist(st

l , s
t
l+1) = d, but then

other points in the disc along the slope also have distance d or more from the false position
of the other disc. To avoid that we add two discs above and below Sl−1 and Sl+2 to force
a point placed in that disc to either be on the true or false position, but not on any other
position. This is illustrated in Figure 2.7b.

The same extra discs can also be used to stretch an edge so that it can have any length
and not just multiples of d. By placing discs above and below two consecutive discs, Si and
Si+1, in the sequence they can be moved some distance apart while still maintaining that if
Si has a false placement then also Si+1 must have a false placement.

In such a connection it is also easy to see there is a placement where all points are in true
position. If all points along the sequence are placed in true position then by construction
the points in a straight section have distance d between them and we also ensured that the
true positions in a bend also have distance d between them, hence all points have distance d
between them.
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d
< d

(a) True positions have
distance less then d be-
tween them

d

> d

Sl

Sl+2

(b) Adding discs forces points to be on
true or false position

Figure 2.7: Problem and solution for making a bend in an edge gadget. Solid points are false
positions whereas open ones are true positions.

2.2.3 Clause gadget

The clause gadget is shown in Figure 2.8a and consists of a framework used to propagate true
or false positions from the incoming discs, marked by grey circles, to merge discs which are
marked by grey squares. The incoming discs are also part of edge gadgets. Note that false
positions are rightmost points on the incoming discs, so towards the clause, and true position
are leftmost points on the incoming discs, so away from the clause.

If the points on the incoming discs are in a false position then the point on the top
merge disc can only be placed at its rightmost position. In turn there is only one position
at distance d on the next disc along the grey arrows. Similarly the false position from the
bottom incoming disc is propagated to the bottom merge square where the only point at
distance d from the other points is the rightmost point of the disc. However if a point is
placed on the rightmost point there is no placement possible for the disc to the right of the
merge disc, so no placement with distance d between the points is possible when the points
on the incoming discs are in false position. The placement for all discs of the clause gadget
except the rightmost disc is shown in Figure 2.8b. For the rightmost disc no placement is
possible with distance d to all other points.

If one of the points on the incoming discs is on its true position, say the point on the top
incoming disc, then points can be placed differently. The points along the arrow from the top
incoming disc to the top merge disc can be placed back along that arrow. Then the point
on the top merge disc can be placed at the top most point. Then also the point on the disc
between the two merge discs can be placed at its topmost point as well as the point on the
bottom merge disc. Then also the point on the disc to the right of the bottom merge disc
can be placed. The other points can be placed in the same way as when all incoming discs
are in false position. Then all points are placed and have distance d between each other so a
placement for the clause gadget is possible when the top incoming disc has a true placement.
This placement is show in Figure 2.8c

When one of the other incoming discs has a true placement also the points can be moved
back along the arrows such that there is eventually enough space for the point in the rightmost
disc to be placed.
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(a) No placement (b) False placement (c) True placement

Figure 2.8: The clause gadget for discs with two different placements.

2.2.4 Computing gadgets from a formula

The construction of the gadgets is basically the same as for squares. First the variables are
constructed and positioned then the starting discs for the edges are computed. Then the
edges are extended and clauses are added. An example of such a construction is shown in
Figure 2.9, which is R(φ). Note that the clause gadgets used here are smaller versions of
the clause gadget that is described, in this example they work, but the smaller clauses are a
problem when edges are close together. They are merely used to keep the example small.

Since we can construct R(ψ) for a formula ψ in polynomial time in the size of ψ and R(ψ)
has a placement of points with distance d between points if and only if ψ is satisfiable we can
conclude with the following theorem.

Theorem 3. Distant Representatives is NP-hard for regions that are disjoint unit discs.

From this and Theorem 1 we conclude the following corollary.

Corollary 2. Possible Closest Pair is NP-hard for regions that are disjoint unit discs.

2.3 Line segments

Also for disjoint horizontal line segments of unit length we can show NP-hardness of Distant
Representatives using a reduction from Planar 3-SAT. Since the reduction is similar to
that for squares and discs, only the gadgets will be given and R(φ) as an example.

2.3.1 Variable gadget

The variable gadget is a vertically aligned sequence of line segments. The distance between
the rightmost endpoint of one segment and the leftmost of the next is exactly d, so both
possible placements have points alternating between the left and right endpoint along the
sequence as illustrated in Figure 2.10.
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a b c d

¬b ∨ c ∨ ¬d

¬a ∨ b ∨ d

a ∨ ¬b ∨ c

a ∨ ¬c ∨ ¬d

Figure 2.9: The set R(φ) of discs with a placement according to the satisfying assignment in
which all variables are true.
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To ensure that the line segments in different edge gadgets are not to close together there
should always be at least one line segment between two line segments of the variable gadget
that are part of different edge gadgets. Since false placements are again the endpoints towards
the clause and true placements away from the clause we may need up to 3k line segments for
a variable node with k edges.

d

(a) (b) (c)

Figure 2.10: A variable gadget without placement (a), with a placement corresponding to
true (b) and one corresponding to false (c)

2.3.2 Edge gadget

The edge gadget for line segments also consists of two horizontal parts and a section with a
slope. For the horizontal part line segments are just aligned horizontally and one line segment
can be lifted out of the sequence to shorten it in the same way as described for squares. For
the sloped section line segments are aligned along the slope. The slope cannot be to steep to
ensure that every next line segment is completely to the right of the previous one for an edge
going to the right. Figure 2.11 shows an example of an edge gadget for line segments.

2.3.3 Clause gadget

The clause gadget for line segments is shown in Figure 2.12a. The grey circles indicate the
incoming line segments which are also part of edge gadgets, and the grey rectangles indicate
the merge line segments where the values of two incoming line segments are combined. The
arrows indicate how placements are propagated. In case the incoming line segments have a
false placement, so the points are placed at the right endpoint then for each line segment
along the arrows there is only one point at distance d from the previous points along the
arrow. This then leads to the placement show in Figure 2.12b where the distance between the
lowest two point is less then d. So a placement with distance d between points is not possible
when all points in the incoming line segments are in false position.

When one of the incoming line segments has a true placement, so a point placed on the
left endpoint of the line segment. Then there is more room to place points further back along

Figure 2.11: Example of an edge gadget with line segments
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the arrows. The case when the middle incoming line segment has a true placement is shown
in Figure 2.12c.

d

d

d

d
(a) line segments of the clause
gadget

(b) Placement for a clause
that is false

(c) Placement for a clause
that is true

Figure 2.12: The clause gadget and a false and true placement, grey elements are not part of
the gadget.

2.3.4 Computing gadgets from a formula

For line segments this is done in the same way as for squares so we will only show R(φ) here,
which can be seen in Figure 2.13. Note that we cheated a little on the construction, since
some edge do not have an edge between them in the variable gadget, but this is done simply
to keep the example small.

Since we can construct R(ψ) for a formula ψ in polynomial time in the size of ψ and R(ψ)
has a placement of points with distance d between points if and only if ψ is satisfiable we can
conclude with the following theorem.

Theorem 4. Distant Representatives is NP-hard for regions that are horizontal line
segments of unit size.

From this and Theorem 1 we conclude the following corollary.

Corollary 3. Possible Closest Pair is NP-hard for regions that are horizontal line seg-
ments of unit size.

2.4 Number of possible closest pairs

Here we consider the problem of counting the number of possible closest pairs, which we will
name Count Closest Pairs.

Count Closest Pairs
Input: A set of regions R.
Output: The number of possible closest pairs in R.

Although it is NP-hard to determine if a certain pair of regions is a possible closest pair,
this does not imply it is not possible to count the number of possible closest pairs. Showing
that counting the number of possible closest pairs is NP-hard requires a separate proof.
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a b c d

a ∨ ¬b ∨ c

a ∨ ¬c ∨ ¬d

¬b ∨ c ∨ ¬d

¬a ∨ b ∨ d

Figure 2.13: the set R(φ) of line segments corresponding to the formula φ with a placement
where all variables are true.
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Theorem 5. Count Closest Pairs for regions modeled as disjoint unit discs, disjoint axis
aligned squares of unit size or disjoint horizontal line segments of unit length is NP-hard.

Proof. We prove this using a reduction from Distant Representatives. Let S be the set
of input regions for Distant Representatives and d the distance that should be between
any two points.

Let R and S be two regions, such that dist+(R,S) = d and for any region T ∈ S we have
dist−(T,R) > d and dist−(T, S) > d. Let S1 = S ∪ {R,S}, then we count the number of
possible closest pairs in S1. Let k be the number of possible closest pairs. Note that because
dist+(R,S) = d, for each placement the closest pair has at most distance d between them.

Next another two regions, P and Q, are constructed such that dist−(P,Q) = d and for
every T ∈ S1 we have dist−(T, P ) > d and dist−(T,Q) > d. Let S2 = S ∪ {P,Q}, then we
count the number of possible closest pairs in S2. Let T,U ∈ S1 be one of the k possible closest
pairs in S1. Then there is a placement of points in S1 where (t, u) is a closest pair. Moreover
because of R and S we know dist(t, u) ≤ d. Since P and Q have minimum distance d to each
other and to any other region, this implies that (t, u) is also a possible closest pair in S2. So
all closest pairs for S1 are also possible for S2.

The regions that can form a possible closest pair in S2 that is not in S1 are P and Q.
Since they have a minimal distance of more than d to any other region, there is no placement
in which a point from P or Q forms a closest pair with a point from a region of S1. Hence
Count Closest Pair will either return k or k + 1 for S2, with k meaning (P,Q) is not a
possible closest pair and k + 1 that (P,Q) is a possible closest pair.

If (P,Q) is a possible closest pair then there is a placement for S1 and, hence, for S, such
that all points have distance d between them. So the answer to Distant Representatives
on S would be YES.

If (P,Q) is not a possible closest pair then there is no placement for S1 such that all points
have distance d between them. Because points in R and S can always be placed such that
they have distance d from any other point and from each other this also implies there is no
placement for S where all points have at least distance d to each other. So then the answer
to Distant Representatives on S is NO.

If Count Closest Pairs could be solved in polynomial time then using this method also
Distant Representatives could be solved in polynomial time. From Theorems 2, 3 and 4
we know that Distant Representatives in NP-hard for line segments, squares and discs.
Hence Count Closest Pairs is NP-hard as well.

2.4.1 Number of possible closest pairs for disjoint unit discs.

Theorem 5 shows that it is hard to count the exact number of possible closest pairs. In some
cases, however is is possible to find good (subquadratic) bounds on the number of possible
closest pairs. Next we show how to do this in the case of disjoint unit discs.

Let S be a set of disjoint unit discs. We define d− = min({dist−(P,Q)|P,Q ∈ S∧P 6= Q})
and d+ = min({dist+(P,Q)|P,Q ∈ S ∧ P 6= Q}). For disjoint unit disks d− and d+ are easy
to determine, since they are both defined by the pair of discs P,Q ∈ R for which it holds that
for all R,S ∈ R we have dist(rc, sc) ≥ dist(pc, qc), where rc, sc, pc and qc are the center points
of R,S, P and Q respectively. This pair of discs can be found using a closest pair algorithm
on the center points of the discs [CLRS01, Section 33.4].

Next note that only pairs that have distance at most d+ + 2 between their centers can be
a possible closest pair and that any pair has at least distance d− + 2 between their centers.
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Since d+ and d− come from the same pair it holds that d+ = d− + 4. This is used to prove
Lemma 3.

Lemma 3. Every disc P can form a possible closest pair with at most a constant number of
other discs.

Proof. For every disc P with center point pc only discs whose center points have at least
distance d− + 2 to pc and at most distance d− + 6 to pc can form a possible closest pair with
P . If a disc Q with center point qc would have dist(pc, qc) < d− + 2 then dist−(P,Q) < d−

which is in contradiction to the definition of d−. If Q is such that dist(pc, qc) > d− + 6 then
P and Q can never form a possible closest pair.

If we construct circles around each center point of a disc with radius 1
2d
− + 1 then these

discs do not intersect each other. If two such discs were to intersect each other the center
points would be a distance smaller then d− + 2 apart which is impossible. Since only discs
with center points with distance smaller then d− + 4 to pc can form a possible closest pair
with P all these circles must be contained within the disc with radius 11

2d
− + 7 around pc

as illustrated in Figure 2.14. It easily follows that only there can only be a constant number
of these circles without intersecting each other. Hence, there are only a constant number of
regions that can form a possible closest pair for each disc P .

d− + 2

d− + 6

1 1
2d
− + 5

Figure 2.14: Only a constant number of circles with radius 1
2d
− + 1 can fit in a disc with

radius 11
2d
− + 7 around pc.

From Lemma 3 we can conclude the following theorem.

Theorem 6. Any set of disjoint unit discs has O(n) possible closest pairs. Where n is the
number of unit discs in the input.

Finding pairs with a bound on minimal distance. We used the fact that all possible
closest pairs have at most distance d+ + 2 between their centers to show that there is only
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a linear number of possible closest pairs. The same observation can be used to find a set
of pairs of points that is at most linear in the size of the input set R, but still contains all
possible closest pairs. This algorithm finds all pairs of discs that have a distance less then
d+ + 2 between their center points.

To find these pairs of points we use a sweep line. The sweep line goes through the plane
from left to right and stores the center points of regions of R that have an x-coordinate
between the current position of the sweepline xs and xs − (d+ + 2). These points are stored
in a data structure S which can report all points which have y-coordinate between a lower
and upper bound in O(log k + m) time, where k is the number of elements stored and m
the number of elements reported. Insertion and deletion on S can be done in O(log k) time.
Whenever a the sweep line hits a new center point p a range query is used to find center
points in S that may have distance less then d+ + 2 from p. For each of the reported points,
say a point q, the actual distance to p is checked and if dist(p, q) ≤ d+ +2 it is reported. Then
p is added to S and the sweep line can continue. Deleting points from S is done in a lazy
way; a point is deleted if it is reported during a range query but its x-coordinate is already
smaller then xs − d+ + 2. Because some points may be vertically aligned the sweep line just
goes through the center points in lexicographical order. Algorithm 1 shows the pseudocode
for this.

Algorithm 1: FindPairsWithMinimalDistance(R)
Q← centerpoints of R in lexicographical order
while Q 6= ∅ do
p← pop(Q)
L← RangeQuery(S, yp − d+ − 2, yp + d+ + 2)
S ← S ∪ p
for q ∈ L do

if distance(p, q) ≤ d+ + 2 then
(p, q) is reported

else
(p, q) is not possible closest pair
if xq < d+ + 2 then S ← S\{q}

Next, we show that Algorithm 1 indeed reports all pairs of points with distance at most
d+ + 2 between their center points.

Lemma 4. Algorithm 1 reports exactly all pairs of regions with distance d+ + 2 between their
center points.

Proof. The if-statement ensures that only pairs of center points are reported that have at
most distance d+ + 2 between them, so we only need to prove that all pairs of points with
this property are reported.

Let p, q be two center points that have a distance of less then d+ + 2 between them.
Without loss of generality assume that q is hit by the sweep line first. Some time later p is
hit by the sweep line, so xs = xp. Because dist(p, q) ≤ d+ + 2 and q was hit by the sweep
line before p it holds that xs − d+ + 2 ≤ xq ≤ xs. This means q is still in S. Also from
dist(p, q) ≤ d+ + 2 it follows that yp − (d+ + 2) ≤ yq ≤ yp + d+ + 2, so the range query will
report q and the pair (p, q) is reported by the algorithm. Since this holds for any two points
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that have distance at most d+ + 2 between their centers all these pairs of points are reported
by the algorithm.

Lemma 5. Algorithm 1 runs in O(n log n) time where n = |R|.

Proof. For every event point a range query is done. Because the range query only finds points
in a (2 ∗ d+ + 4)× (d+ + 2) and all points have at least distance d− + 2 between them only a
constant number of points is reported. Since there are at most n points in S the range query
takes O(log n) time. The point p is then added to S which can also be done in O(log n) time.
Lastly a check is done on each of the points reported by the range query, each operation in
this check only takes O(1) time and there is only a constant number of reported points so
this takes a constant amount of time.

Since there are n events, handling all of them takes O(n log n) time. Sorting the event
points also takes O(n log n) so the running time for Algorithm 1 is O(n log n).

Finding possible closest pairs. For two discs with at least a distance d−+x+ 2 between
their centers a simple placement can be used to show that this pair is indeed a possible closest
pair. In this paragraph we will describe this simple placement and what x is.

Given two discs P,Q ∈ R with distance d− + x + 2 between their centers pc and qc we
can place a point p ∈ P and q ∈ Q such that dist(p, q) = d− + x as shown in Figure 2.15.
Points in other discs are then placed as follows. Discs with center points below the line pq
have their points placed as far down as possible and discs with center points above or on the
line pq have their points placed as far up as possible.

By definition of d− every two center points have at least distance d− + 2 between them.
Because we have placed all points below the line pq as low as possible the displacement from
their center point is the same, so points below the line pq have at least distance d− + 2 from
each other. The same holds for points above or on the line pq (excluding p and q). A point
above and a point below the line pq are displaced in opposite directions with respect to the
center points of their discs so they also have at least distance d− + 2 between them. So only
the discs shown in Figure 2.15 can have a distance less then d− + 2 between them. Of course
not for each pair of discs there are discs above and below them as shown in Figure 2.15,
however this is a worst case configuration. If a the disc D is placed somewhere else then y is
always longer, because the distance between p and the center of D and q and the center of D
has to be at least d− + 2.

d− + x+ 2

h′

d− + 2

pc qc
p q

D

(a) h′ depends on x

d− + x

hy

qc
p q

D

pc

(b) y depends on h

Figure 2.15: When using the placement described in this section y depends only on x

Using this placement, a maximal value for x can be determined, where p and q still form
a closest pair. When we find this value for x we can use a plane sweep to find all pairs that
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have less then d− + x + 2 between their center points and report them as possible closest
pairs.

Pythagoras gives:

h = 1 +
√

(d− + 2)2 − (1/2(d− + 2 + x))2

y =
√
h2 + (1/2(d− + x))2

To ensure that (P,Q) indeed is a possible closest pair it must hold that d− + x ≤ y. For
d− = 0 this gives that any pair is closest pair in some placement when their minimal distance
is smaller then d− + x for x ≤ 1.82. For d− ≥ 1, x becomes greater then 2. However for a
pair (P,Q) of regions for which d− + 2 < dist−(P,Q) ≤ d− + x the placement described here
may not have (p, q) as as closest pair. A pair (R,S) of regions that defines d− has distance
d− + 2 between center points, so if r and s are on the same side of the line through p and q
they are still distance d− + 2 from each other. Therefor we only guarantee that (P,Q) is a
possible closest pair if dist−(P,Q) ≤ d− + min(x, 2).

To find the pairs or regions that have at most distance d−+ x between them Algorithm 1
can be used, except there should be a test to see if dist(p, q) < d− + min(x, 2).
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Chapter 3

Exact Convex hull

The convex hull of a set S of points in R2 is defined as the intersection of all convex sets in
which S is contained. For finite sets the convex hull is a polygon.

In the context of imprecise points we are interested in whether a given set of imprecise
points can determine the vertices of the convex hull.

Exact Convex Hull
Input: A set of regions R and a subset C ⊆ R.
Output: YES if there is a placement for R such that the points from regions in C

are exactly the vertices of the convex hull of this placement, NO otherwise.

In this section we show that Exact Convex Hull is NP-hard when the regions are
arbitrary line segments. The number of regions in C will be denoted by k during the rest of
this section as well as in the sections on Superset Convex Hull (Chapter 4) and Subset
Convex Hull (Chapter 5).

3.1 Arbitrary Line Segments

When the regions of R are arbitrary line segments which are allowed to have any size and
orientation and to intersect each other, the exact convex hull problem is NP-hard. This can
be proven using a reduction from 3-SAT, which is defined as follows.

3-SAT
Input: A 3-SAT formula ψ.
Output: YES if ψ is satisfiable, NO otherwise.

As with Planar 3-SAT which is described in Section 2.1, a 3-SAT formula consists
of a disjunction of clauses where each clause is a conjunction of literals. Every literal is
either a negated or non-negated occurrence of a boolean variable. In 3-SAT every clause
consists of exactly three literals, but unlike with Planar 3-SAT we do not require the graph
representation to be planar.

For a given formula ψ we will show how to construct a set of line segments R(ψ) with
a subset C(ψ) ⊆ R(ψ) such that Exact Convex Hull on these sets returns YES if ψ is
satisfiable and NO otherwise. For the reduction one basic construct is used to represent a
literal. Each of these constructs is placed inside a circle arc such that it is on the boundary of
the convex hull, these circle arcs are shown in Figure 3.1a as grey areas. The number of circle
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arcs is exactly the number of literals in the 3-SAT-formula. We place the literal constructs
of one clause next to each other on the circle. The order in which these groups of literals
belonging to one clause appear on the circle does not matter, neither does the order of the
literals within a clause.

A literal construct for a non-negated literal is shown in Figure 3.2a. Note that this can
easily be scaled to fit into a circle arc. For each literal in the 3-SAT formula such a construct
is created and placed in one of the circle arcs. The leftmost and rightmost point, P and Q,
are degenerate line segments (points) and part of C(ψ). Because they are on the boundary
of the circle they are always guaranteed to be vertices of the convex hull. The point labeled
with L is a degenerate line segment and is not in C(ψ) this point should not be a vertex
on the convex hull. The line segment A is in C(ψ). The endpoints, at and af , denote true
and false values for the variable. For a negated variable the point L is located under the
af endpoint as shown in Figure 3.2b. The point L for a non-negated literal is placed such
that a placement near the endpoint at protects L from becoming a vertex on the convex hull,
whereas a placement near the af endpoint does not. For a negated literal a placement near
the af endpoint protects L and a placement near the at endpoint does not.

For the rest of this section we will use the following formula φ as a running example.

φ = (a ∨ b ∨ c) ∧ (¬a ∨ ¬c ∨ d) ∧ (¬a ∨ ¬b ∨ ¬d)

The literal constructs of φ are shown in Figure 3.1b

(a) Placement of literal constructs

a

b
c

¬a

¬c

d
¬a

¬b

¬d

(b) literal constructs of the 3-SAT formula φ

Figure 3.1

During the description of the literal construct we say that an endpoint of a line segment
is outside the convex hull if it is outside the convex hull of the placement that is described in
the context or it is a vertex of that convex hull. If an endpoint of a line segment is outside the
convex hull then also a point can be placed on this line segment such that it is a vertex of the
convex hull. An endpoint is said to be inside the convex hull if it is inside the convex hull of
the placement that is described and not a vertex of this convex hull. For a line segment that
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L

at afA

P Q

(a) non-negated literal

L

at afA

P Q

(b) negated literal

Figure 3.2: literal constructs for reducing SAT to convex hull test

has both end points inside the convex hull no placement exists that makes the point from
that line segment a vertex on the convex hull.

The line segment A in different literal constructs of the same variable should have a
placement reflecting the same value. So either all points should be placed near the true
endpoint or all points should be placed near the false endpoint. To ensure this we place line
segments in a cyclic order between all literal constructs of the same variable as shown for the
variable a of our example formule φ in Figure 3.3a. Let V1 . . . Vk denote the line segments of a
variable and vs

i and ve
i the two endpoints of the line segment Vi. Then the endpoints of these

these line segment in a literal construct are shown in Figures 3.3b and 3.3c. The lines Pve
i

and Qvs
i+1 divide the line segment A into three parts. If a point a is placed in the leftmost

part of A then the endpoint ve
i of C will be below the lines Pa and aQ, so ve

i is inside the
convex hull. However vs

i+1 is above the line aQ, so it is outside the convex hull. If a is placed
on the rightmost part of A, then vs

i+1 is inside the convex hull and ve
i is outside. Lastly if a

is placed in the middle part of A then both ve
i and vs

i+1 are inside the convex hull. With this
construction we can prove the following lemma.

a

b
c

¬a

¬c

d¬a
¬b

¬d

V1

V2
V3

(a) linesegments between literals
of the variable a in φ

L

at afA

P QVi

Vi+1

ve
i vs

i+1

(b) non-negated literal

L

at afA

P QVi
Vi+1

ve
i

vs
i+1

(c) negated literal

Figure 3.3

Lemma 6. For literals of the same variable either the points on the line segments labeled
with A are all placed near the true endpoint (at) or all near the false endpoint (af ) in any
placement such that the points of the line segments connecting literals of the same variable
are vertices of the convex hull.
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Proof. Let there be k literals for a variable. Then there are k line segments connecting the
literal constructs and in each literal construct at least one endpoint of these line segments is
kept from being outside the convex hull. It is then easy to see that for no literal a point can
be placed in the middle part of A since then there has to be a line segment for which both
endpoints are inside the convex hull. A point on this line segment can never be a vertex of
the convex hull. If one some literal construct the point on A is placed on the af endpoint
and for the next construct in the cycle a points is placed near the at endpoint, then the line
segment between these two constructs has both endpoints inside the convex hull. Therefore
either all points of literal construct of the same variable are placed near the at endpoint or
all points are placed near the af endpoint.

In a satisfying assignment for a 3-SAT formula only one literal in each clause has to be
true. In terms of our literal constructs that means that if for one of the literals in a clause
the point L is protected from being a vertex on the convex hull by the placement of a point
on A then the other two can also be protected. We do this using two line segments that have
endpoints just above the point labeled with L in each line segment. For our example φ this
is shown in Figure 3.5, which is shows all the line segments of R(φ). We denote these line
segments by W1 and W2. W1 and W2 are part of C(ψ) and should be outside the convex hull.
As can be seen in Figure 3.4 these points can always be placed outside the convex hull since
the endpoints are above the line Pat for a non-negated literal or Paf for a negated literal.
With these line segments we can prove the following lemma.

L

at afA

P Q

W1 W2

Figure 3.4: Literal construct with lines W1 and W1 which extend to other literal constructs
of the same clause.

Lemma 7. For every clause if either of the three points labeled with L is protected from being
a vertex on the convex hull by the point a ∈ A then then we can place points on W1 and W2

such that the other point L on the other two literals is also inside the convex hull.

Proof. It is easy to see that in whichever literal the point L is protected by a a point on W1

and a point on W2 can be placed above L in the other two literals.

Now that we have shown how to construct R(ψ) and C(ψ) and explained the basic prop-
erties of the line segments connecting literals of the same clause and of the same variable we
can prove the following.

Lemma 8. A SAT-formula ψ is satisfiable if and only if there is a placement of points for
R(ψ) such that the points from regions in C(ψ) are exactly the vertices of the convex hull.
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a

b

c

¬a

¬c

d

¬a

¬b

¬d

Figure 3.5: The set of line segments R(φ), dotted lines are not part of the set and grey line
segments connect literals of the same clause.
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Proof. If ψ is satisfiable then there is a satisfying assignment S. For each literal the point on
the line segment A can be placed either on at or af depending on the value of that variable
in S. From Lemma 6 it follows that there is a placement possible for the points on the line
segments connecting literals of the same variable such that each of them occurs on the convex
hull. Because V is a satisfying assignment there is one literal for every clause that is true.
For R(ψ) that means that for every clause there is one literal where L is inside the convex
hull due to the placement of a point on A. It then follows from Lemma 7 that points on the
clause connections can also be placed such that they are on the convex hull and points that
should be inside the convex hull are inside.

If ψ is not satisfiable then for every possible assignment there is at least one clause for
which all literals are false. In terms of the line segments that means that for every placement
of points on the line segments labeled with A there is at least one clause for which in all
literal constructs L is not inside the convex hull by the placement of the point on A. Then
by Lemma 7 there is no placement possible such that all points from regions not in C(ψ) are
not a vertex on the convex hull and points from regions in C(ψ) are vertices of the convex
hull.

Computing R(ψ) and C(ψ) can be done in polynomial time, because each literal construct
has at most four connections each of which can easily be computed by giving all literals an
identifier and connecting variables and clauses in the order induced by the identifier. From
this we can then conclude the following theorem.

Theorem 7. Given a set R of arbitrary line segments and a subset C ⊆ R, Exact Convex
Hull is NP-hard on these sets.
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Chapter 4

Superset Convex hull

Instead of determining if there is a placement where the points from regions in C are exactly
the vertices of the convex hull, we can also try to determine if there is a placement for which
the points from C are a superset of the vertices of the convex hull.

Superset Convex Hull
Input: A set of regions R and a subset C ⊆ R.
Output: YES if there is a placement of points such that the points from the regions

in C are a superset of the vertices of the convex hull, NO otherwise.

In this section we will show that Superset Convex Hull is NP-hard for arbitrary line
segments, but can be solved in O(k2n log n) time for disjoint vertical line segments of unit
size.

4.1 Arbitrary line segments

Proving that Superset Convex Hull is NP-hard for arbitrary line segments will be done
using a reduction from 3-SAT. The proof is very similar to that of Section 3.1. There we
defined a literal construct which is connected to other literal constructs of the same clause
and variable. For Superset Convex Hull we do not require every point from a region in
C to be on the convex hull. So if we would use the same literal constructs, then the points
on the line segments that connect literals of the same variable do not have to be vertices
of the convex hull. Hence, Lemma 6 does not hold. However, now we do not require the
points on line segments connecting literals of the same clause to be vertices of the convex
hull. Therefore we use one construct for a variable and all literals are represented as points
L1 . . . Ll in that construct as shown in Figure 4.1. As before a point placed at at corresponds
to the variable being true and a point placed at af corresponds to the variable being false.

L1 . . . Lm are the non-negated literals and Lm+1 . . . Ll are the negated literals. They are
placed on convex curves as indicated by the dashed lines in Figure 4.1. A point a ∈ A is never
above both curves, so it can never occur that a literal point from L1 . . . Lm is below the line
pa and a literal point from Lm+1 . . . Ll is below the line aq.

Literals that are part of the same clause are again connected with line segments in the
same way as in the reduction from 3-SAT to Exact Convex Hull; every clause is connected
by two line segments which have endpoints just above the literal points of the clause. For the
example formula φ the resulting set of line segments is shown in Figure 4.2. Let Li represent
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at afA

L1 . . . Lm Lm+1 . . . Ll

P Q

Figure 4.1: Variable gadgets for reducing 3-SAT to Superset Convex Hull on line seg-
ments

a non-negated literal which is connected to another literal of the same clause by the line
segment V with endpoint v just above Li. Then the position of v is such that Li is under
the polyline avP for any point a ∈ A. Hence, regardless of where a is, Li will not become a
vertex of the convex hull if a point on V is placed at v. The point v is also close enough to
Li such that it does not protect any other literal point from being on the convex hull when a
is placed to the right of the arc containing Li. This implies that the only way to keep a point
Li from becoming a vertex of the convex hull is by placing a point above it on a line segment
that connects it to other literals of the same clause or by placing the point a far enough to
the at endpoint. For a point representing a negated literal the same holds.

Now we can show that the set of regions R(ψ) derived from a 3-SAT formula ψ allows a
placement such that only points from regions in C(ψ) are vertices of the convex hull if and
only if the corresponding 3-SAT formula is satisfiable.

Lemma 9. A 3-SAT formula ψ is satisfiable if and only if there is a placement for R(ψ)
such that only points from regions in C(ψ) are vertices on the convex hull of this placement.

Proof. If ψ is satisfiable then let Vs be a satisfying assignment. For each variable A a point
is placed at at if the variable is true in Vs and at af if the variable is false. Because this is
a satisfying assignment in every clause at least one literal will be inside the convex hull due
to a placement of the variable points. The other literals in the clause can then be kept inside
the convex hull by placing the points on the line segments of that clause just above the literal
points.

If ψ is not satisfiable then for any valuation V there is a clause c in which all literals are
false. If the points are placed on the variable line segments at the at or af endpoint according
to V then all literals of c will still be vertices of the convex hull. Each clause line segment can
only keep one literal of c from becoming a vertex of the convex hull, but there are only two
line segments and three points. At least one literal will still be a vertex of the convex hull.
Placing points on different places on the variable line segments then at at or af does not help
either since it is never possible to keep both a negated and non-negated literal from being a
vertex of the convex hull only by the point on a variable line segment. Hence no placement
will have only points from C as vertices of the convex hull if ψ is not satisfiable.

Since it is also easy to see that we can construct R(ψ) and C(ψ) in polynomial time we
can conclude with the following theorem.

Theorem 8. Given a set R of arbitrary line segments and a subset C ⊆ R, then Superset
Convex Hull is NP-hard for these sets.
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a b

cd

Figure 4.2: Set of line segments R(φ) corresponding to the example formula φ

4.2 Disjoint parallel line segments of unit length

For disjoint parallel line segments of unit size we give an algorithm that solves Superset
Convex Hull. We first reduce it to a different problem called Maximal Convex Hull. If
we view possible convex hulls as sets of points then they form a partial order under inclusion.
This partial order has some maximal elements. A maximal convex hull CHmax of a given set
S of regions is a possible convex hull of S with the property that there is no other possible
convex hull CH of S such that CH ⊃ CHmax. Maximal Convex Hull is then defined as
follows.

Maximal Convex Hull
Input: A set R of regions and a subset C ⊆ R.
Output: YES if there is a placement of points in C such that the resulting convex

hull CHmax is a maximal convex hull of C and every region of R\C has a
point inside CHmax.

Next we show that Maximal Convex Hull and Superset Convex Hull are equiva-
lent for convex regions.

Lemma 10. Let R be a set of disjoint convex regions and C ⊆ R. Then Maximal Convex
Hull will return YES if and only if Superset Convex Hull would return YES.

Proof. If Maximal Convex Hull returns YES with R and C as input, then there exists
a placement for C with a maximal convex hull CHmax such that each region of R has a
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point inside CHmax. Then by placing all points of regions of R inside CHmax, it becomes a
valid convex hull for a placement of points for R where only points of C are vertices. Hence,
Superset Convex Hull also returns YES.

If Superset Convex Hull returns YES with R and C as input, then there exists a
placement V for R such that the convex hull CH has only points of C as vertices. CH is not
necessarily a maximal convex hull for the regions of C. By definition there exists a maximal
convex hull CHmax for regions of C that is a superset of CH. CHmax then still has only
points from regions in C as vertices and all points of V are inside CHmax. So CHmax is a
solution to Maximal Convex Hull.

From now on we assume, without loss of generality, that the input line segments are
vertical. In a maximal convex hull on vertical line segments all vertices except the leftmost
and rightmost vertex have to be an endpoint of a line segment. If that is not the case then
the convex hull can easily be made larger by simply moving the point up or down towards
an endpoint. The leftmost and rightmost vertex are located somewhere on the leftmost and
rightmost line segment. For now we will assume there is one unique leftmost line segment Sl

and one unique rightmost line segment Sr. At the end of this section we argue that Maximal
Convex Hull can still be solved if the leftmost or rightmost line segment is not unique.

Let C′ denote the set C\{Sl, Sr}. We can look for a solution to the maximal convex hull
problem by first looking at different placements for C′. As said we only need to consider
placements where points are placed at the endpoints of line segments. Also we are only inter-
ested in maximal convex hulls. Solving Maximal Convex Hull is then done as described in
Algorithm 2. FindPlacement is an algorithm that returns YES if there is a placement for
Sl and Sr given a convex hull on C′, such that all regions of R intersect the resulting convex
hull, and NO otherwise. How FindPlacement works will be explained later. For now we
assume that FindPlacement(CHmax, Sl, Sr) returns the correct result.

Algorithm 2: FindMaxHull(R, C)
C′ ← C\{Sl, Sr}
\\ Only consider placements at endpoints of line segments in C′
forall Maximal convex hulls CHmax on C′ do

if FindPlacement(CHmax, Sl, Sr) = YES then
return YES

return NO

First we show that Algorithm 2 returns YES if and only if there is a maximal convex
hull such that all regions of R intersect it by showing that every maximal convex hull on C
consists of a maximal convex hull on C′ and points on Sl and Sr.

Lemma 11. Every maximal convex hull on C is the convex hull of a point sl ∈ Sl, a point
sr ∈ Sr and a maximal convex hull on C′ where points are only placed at endpoints of regions
in C′

Proof. Let CHmax be a maximal convex hull on C. Then there is a placement V which has
CHmax as its convex hull and only contains endpoints for the line segments in C′. Let sl be
the placement of a point on Sl in V , and let sr be the placement of a point on Sr in V . Let V ′

be the placement of points for C′ in V . The convex hull CH(V ′) of V ′ may not be maximal
for C′, but by definition there is also a maximal convex hull CHC′ which contains CH(V ′).
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h ≥ 1

(a) Fat convex hull

h < 1

(b) Thin convex hull

Figure 4.3: Fat and thin convex hulls, the height is denoted by h

Then CHC′ must be contained in CHmax, otherwise CHmax would not be a maximal convex
hull. Then because CHC′ contains CHV ′ the convex hull of CHC′ , sl and sr is CHmax.

The running time of FindMaxHull now depends on three things; the number of maximal
convex hulls on C′, the time it takes to compute all maximal convex hulls on C′, and the running
time of FindPlacement.

First we look at the total number of maximal convex hulls on C′ which only have points
placed at the endpoints of regions in C′. We look at two different types of convex hulls which
can be distinguished by their height. We define the height of a convex hull as the maximum
length of a vertical line segment between the upper and lower boundary of the convex hull as
illustrated in Figure 4.3. A fat convex hull is a maximal convex hull which has a height of at
least one, whereas a thin convex hull has a height of less then 1. Because we are using unit
size line segments this means that in a fat convex hull at least one line segment is completely
contained inside the convex hull and in a thin convex hull no line segment is contained in it,
see Figure 4.3.

Before computing bounds on the number of fat and thin convex hulls we first define
functions lt and lb. Let S1 . . . Sm be the line segments of C′ then lt(Si, Sj) is the line between
the upper endpoint of Si and the upper endpoint of Sj . Similarly lb(Si, Sj) is the line segment
between the two lower endpoints. Now we can determine how many fat and thin convex hulls
there can be on C′.

Lemma 12. There are O(k2) fat convex hulls on C′ when placing points only at the endpoints
of regions in C′. Moreover, this bound is tight in the worst case

Proof. In a fat convex hull there is at least one line segment which is completely inside
the convex hull. Because it is a maximal convex hull all line segments that are completely
contained in the convex hull are consecutive. Let S1 . . . Sm be the line segments of C′ from left
to right. Suppose the line segments Si . . . Sj are the only line segments that are completely
inside the convex hull. Then there is a unique placement for Si+1 . . . Sj−1 because each of
these line segments can have only one endpoint outside the convex hull of the endpoints of
Si and Sj as shown in Figure 4.4.

For the segments S1 . . . Si−1 we first make the following observation. Let Sa and Sa+1

be two consecutive line segments in S1 . . . Si−1. Then either the line lt(Sa, Si) is above Sa+1

or the line lb(Sa, Si) is below the Sa+1. Because we know Si is completely inside the convex
hull either placing a point at the upper endpoint of Sa or at the lower endpoint will cause
Sa+1 to be completely inside the convex hull. For example if the line between the upper
endpoints of Sa and Si is above Sa+1 then if we place sa at the upper endpoint of Sa then
we must place sa+1 at the lower endpoint of Sa+1 to get a maximal convex hull. In that case
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Si

Sj

Figure 4.4: Unique placement of middle part of a fat convex hull

Sa+1 is completely inside the convex hull contradicting our assumption that Si is the first line
segment completely inside the convex hull. Therefore the point on S1 can only be placed at
one endpoint. This same arguments holds for S2 . . . Si−2, but for Si−1 it does not hold since
there is no line segment between Si−1 and Si. For this line segment a point can be placed at
either endpoint. So for the left part, S1 . . . Si−1, there are at most two placements possible.
Similarly there are only two placements for the right part, Sj+1 . . . Sm. This means that there
are at most four placements that lead to a fat convex hull where Si is the first line segment
inside the convex hull and Sj is the last. Since there are O(k2) different ways to choose i and
j there are also O(k2) fat convex hulls.

The set of line segments in Figure 4.5a shows that there can be Ω(k2) fat convex hulls.
In this set of line segments the upper endpoints of all line segments form a convex chain. In
a fat convex hull at least one endpoint of a line segment is inside the convex hull. It can
also be on the boundary as long as it is not a vertex. If we look at the middle line segment
Sbk/2c, then the lower endpoint of this line segment is inside the convex hull if for a line
segment in S1 . . . Sbk/2c−1 a point s placed on the lower endpoint and for a line segment in
Sbk/2c+1 . . . Sk a point is placed on the lower endpoint. There are Ω(k2) choices for these two
line segments and each of them gives a different fat convex hull. Therefore there are Ω(k2)
fat convex hulls.

Lemma 13. There are O(k) thin convex hulls on C′ when placing points only at the endpoints
of regions in C′ and this bound is tight in the worst case.

Proof. In a thin convex hull no line segment is completely inside the convex hull. Let S1 . . . Sm

be the line segments of C′ then for any line segment Si, where 3 ≤ i ≤ m, it holds that either
lt(S1, Si) is above S2 or lb(S1, Si) is below S2. If lt(S1, Si) is above S2 then we cannot place
s1 and si at the upper endpoints of S1 and Si, since then S2 would be completely inside the
convex hull. Because we are only looking for thin convex hull this placement is not allowed.
Similarly, if lb(S1, Si) is below S2 then we cannot place s1 and si at their lower endpoints. This
means that if we place s1 at the upper endpoint of S1 then for some regions St ⊆ {S3 . . . Sm}
we cannot place a point at the upper endpoint whereas if we place s1 at the lower endpoint
we cannot place a point at the lower endpoint of the other regions of S3 . . . Sm. We denote
this second set of line segments by Sb ⊆ {S3 . . . Sm}. If we place s1 at the upper endpoint of
S1 then for the line segments St ∪ {S2} we are still free to place points and either endpoint.
However the convex hull of St ∪ {S2} should also be thin since it is a subset of the convex
hull on C′. Now let x denote the number of regions in St ∪ {S2} then the number of regions
in Sb ∪ {S2} is m − x. If we denote the number of possible placements for m line segments
by T (m) then T (m) is defined by the following recurrence.
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S1
Sk

Sbk/2c

(a) a fat convex hull

S1
Sk

(b) a thin convex hull

Figure 4.5: Examples to show bounds on number fat and thin convex hulls are tight

T (m) =

{
T (m− x) + T (x) if m > 0
2 if m = 1

Solving this recurrence we get that T (k) = 2k. Hence, there are O(k) thin convex hulls.
The same set of line segments that we used to show that there are Ω(k2) fat convex hulls

can also be used to show there are Ω(k) thin convex hulls. If we place the point on one line
segment down and the rest up then it is easy to see that no line segment has both endpoints
inside the convex hull as illustrated in Figure 4.5b. Because there are k line segments there
are Ω(k) different thin convex hulls.

The next problem is that of computing these maximal convex hulls on C′. For both the
fat and thin convex hulls an algorithm to compute them follows easily from the proof of
Lemmas 12 and 13. Therefore we only describe the algorithms shortly while showing the
running time.

Lemma 14. We can compute all maximal convex hulls on the set C′ of line segments where
points are only placed at the endpoints of the line segments in C′ in O(k3) time.

Proof. For the fat convex hulls we simply try any two line segments Si and Sj and then
compute the left middle and right part. Since for every region the correct placement of a
point only depends on a constant number of line segments this takes O(1) time for each
point. The convex hull of this placement can then be computed in O(k) time since the line
segments can be sorted at the start of the algorithm. There are O(k2) choices for Si and Sj ,
so all fat convex hulls can be computed in O(k3) time.

For the thin convex hulls we can simply place a point on the upper endpoint of the first
line segment S1 and then recurse on St ∪ {S2}. We then place a point on the lower endpoint
of S1 and recurse on Sb ∪ {S2}. This means that on a set of k line segments we need O(k)
time to determine for all line segment if we can place a point already or if it should be placed
in the recursion. Also when all points are placed the convex hull has to be computed which
takes O(k) time. Let S(k) denote the time required to find all thin convex hulls for k line
segments. Then S(k) is defined by the following recurrence.

S(k) =

{
O(k) + S(k − x) + S(x) if k > 0
O(k) if k = 1

This recurrence solves to O(k2), so we can find all thin convex hull on a set of k line
segments in O(k2) time.
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Now we discuss how FindPlacement works and what the running time is. Let CHC
denote a maximal convex hull on C which is the convex hull of CHC′ , a point sl ∈ Sl and
sr ∈ Sr. Let s be a point that is either on the vertical line through Sl or the vertical line
through Sr. Then we define tl′t(s) as the line that is tangent to CHC′ such that CHC′ is below
the line, and that passes through the point s. Then tlt(s) is the line segment of tl′t(s) from s
to the nearest point on CHC′ . Similarly tl′b(s) is the tangent line that contains s and is below
CHC′ . Again, tlb(s) is the line segment from s to the nearest point on CHC′ . These tangent
lines are illustrated in Figure 4.6a.

We have to find a placement for Sl and Sr such that all upper endpoints of line segments
in R\C are above or on the lower boundary of CHC and all lower endpoints of R\C are below
or on the upper boundary. Let R′t be the set of upper endpoints of regions in R\C and R′b
the set of lower endpoints. Then not all points of R′t and R′b are interesting. Points of R′t
that are in CHC′ or straight above are guaranteed to be above the lower boundary regardless
of the placement for Sl and Sr. Therefore we define Rt to be the subset of R′t which contains
only points that are not in CHC′ or straight above it. Rb is defined similarly. Lastly we
define functions Qlt, Qlb, Qrt and Qrb. Let pt ∈ Rt, then Qlt(pt) is a point on the vertical
line through Sl such that pb ∈ tlt(Qlt(pb)). In other words Qlt(pb) is the point such that
the tangent line to the upper chain through this point passes through pb. This means that
placing a point sl on Sl lower than Qlt(pb) will put pb above tlt(sl) whereas placing sl higher
will put pl below tlt(Qlt). Note that Qlt(pb) is not defined if pb is to the right of CHC′ , but
in that case we can simply define Qly(pb) as the point with y-coordinate ∞. The other three
functions are defined in a similar manner as illustrated in Figure 4.6b.

CHC′

Sl

Sr

sr

sl

tlb(sl)

tlt(sr)

(a) tlt and tlb

CHC′

Sl

Sr

p

q

Qrt(p)

Qrb(p)

Qlb(q)

Qlt(q)

(b) Qlt, Qlb, Qrt and Qrb

Figure 4.6: Illustration of several functions

A maximal convex hull CHC′ on C′ is always between Sl and Sr. However we can distin-
guish two cases which are dealt with separately by FindPlacement. Let slt and srt denote
the upper end points of Sl and Sr respectively and slb and srb denote the lower endpoints.

In the first case CHC′ has some part outside the quadrangle sltsrtsrbslb or on the upper
or lower boundary of the quadrangle. For now we assume that the top part is outside this
polygon. In this case we know the upper boundary of the convex hull on C will consist of
tlt(sl), a part of the upper boundary of CHC′ and tlt(sr) as shown in Figure 4.7a. Hence,
lower endpoints that should be below the upper boundary of the CHC can be divided into
two sets, Rbl and Rbr. All points of Rbl can only be below the upper boundary by placing sl

high enough and the points in Rbr can only be below the upper boundary by placing sr high
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enough. We simply compute what the lowest possible placement is for sl and sr such that
all lower endpoints are below upper boundary of CHC . Then we test if all points of Rt are
above the lower boundary of CHC . If this is not the case, then no solution is possible with
this CHC′ . Algorithm 3 describes this is in a little more detail.

Algorithm 3: FindPlacementCase1(CHmax, Sl, Sr)
q ← a topmost point of CHC′
Rll ← points of Rb right of q
Rlr ← points of Rb left of q
sl ← lower endpoint of Sl

forall p ∈ Rbl do
if Qlt(p) is below sl then sl ← Qlt(p)

sr ← lower endpoint of Sr

forall p ∈ Rbr do
if Qrt(p) is below sr then sr ← Qrt(p)

if sr is above Sr or sl is above Sl then
return NO

else
lb← lower boundary of convex hull of CHC′ , sr and sl

forall p ∈ Rt do
if p is under lb then return NO

return YES

Now we prove that FindPlacementCase1 returns the correct answer and that it runs
in O(n log k) time.

Lemma 15. FindPlacementCase1 returns YES if and only if there is a placement for Sl

and Sr such that CHC has a non-empty intersection with each region of R.

Proof. If FindPlacementCase1 finds a solution then sl is below or on Qlt(pbl) for all points
pbl ∈ Rbl, and sr is below or on Qrt(pbr) for all points pbr ∈ Rbr. If Rb ⊃ Rbl ∪ Rbr then the
algorithm returns NO, since a point that is between the two points will never be below the
upper boundary of the convex hull. Hence, every point of Rb is either in Rbl or Rbr. This
implies that all points of Rb are below the upper boundary of the convex hull. The algorithm
also tests if all points of Rt are below the convex hull so the solution that is found is correct.
If FindPlacementCase1 does not find a solution then either the placement found for sl or
sr was above Sl or Sr in which case there is no placement on Sl or Sr such that all points
of Rbr and Rbl are below the upper boundary of the convex hull. The other case when the
algorithm returns NO is when the placement that is found based on Rbr and Rbl still has one
or more points from Rt below the lower boundary of the convex hull. This can only be solved
by moving either sl or sr down. In either case a point from Rb will go above the convex hull,
hence there is no correct placement.

Lemma 16. FindPlacementCase1 runs in O(n log k) time.

Proof. For a point p ∈ Rt ∪ Rb the point Qlt(p) can be computed in O(log k) time using a
binary search on the points of the upper boundary of CHC′ to find the tangent point. Since
there are O(n) points in Rb finding a placement for sl and sr can be done in O(n log k) time.

43



Marcel Roeloffzen

CHC′

Sl Sr

(a) CHC′ has a part above or on the line
between upper endpoints of Sl and Sr.

CHC′Sl Sr

CHC

(b) CHC′ is completely between Sl and
Sr. The lower boundary of CHC is a di-
rect connection and upper boundary an
indirect connection.

Figure 4.7: Different cases for FindPlacement

The lower boundary lb of CHC then consists of O(k) line segments, so for each point in Rt

it takes O(log k) time to determine if it is above or below lb. Hence FindPlacementCase1
takes O(n log k) time.

If a lower part of CHC′ is below the quadrangle sltsrtsrbslb then a similar algorithm can
be used. If CHC′ sticks out at the top as well as the bottom then either of the two algorithms
can be used. For the rest of this section we only consider the top part of CHC′ to be above
the line sltsrt.

In the other case CHC′ is inside the quadrangle sltsrtsrbslb. The upper boundary of CHC
can be a straight line between sl and sr that does not intersect the interior of CHC′ in which
case we say the upper boundary is a direct connection between sl and sr. The upper boundary
of CHC can also be a polyline consisting of tlt(sl), a polyline along the upper boundary of
CHC′ and tlt(sr) as illustrated in Figure 4.7b. In this case we say that the upper boundary
is an indirect connection between sl and sr.

Observe that for any choice of points on Sl and Sr the convex hull CHC can not have
a direct connection as the upper and lower boundary. Either both the upper and lower
boundary are indirect connections or one of the two is a direct connection. We can then
determine if there is a suitable placement for sl and sr by assuming one of these three choices
for the upper and lower boundary and trying to find a placement for sl and sr accordingly.

Upper and lower boundary are both indirect connections. We can solve this case
by assuming that for any point sl ∈ Sl we have that sl is connected to the lower and upper
boundary of CHC′ with tlt(sl) and tlb(sl). We make the same assumption for any point
sr ∈ Sr. Each point pt ∈ Rt should be above the lower boundary of CHC . This is the case
when either sl is placed below or on Qlb(pt) or sr is placed below or on Qrb(pt). Symmetrically
each point pb ∈ Rb is below the upper boundary of CHC if sl is placed above or on Qlt(pb) or
sr is placed above or on Qrt(pb). We can then find a suitable placement by first placing sl at
the upper endpoint of Sl and sr at the lower endpoint of Sr. If there is still a point pb ∈ Rb

such that neither sl is above or on Qrt(pb) nor sr is above or on Qlt(pb) then either of the
two will have to move up. However because sl is already at its highest point, sr is moved up
to Qrt(pb). Because of this it is possible that another point pt ∈ Rt now has Qlb(pt) above
sl and Qrb(pt) above sr. Then either sr or sl has to be moved down. However, sr cannot be
moved down so sl should be moved down. This process then continues until either a suitable
placement is found, sl reaches the lower endpoint of Sl, or sr reaches the lower endpoint of Sr.
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To do this more efficiently we define lists TSl
, TSr , BSl

and BSr as follows. The lists TSl

and TSr both contain all points of Rt. In TSl
the points are ordered such that for two points

p1, p2 ∈ Rt it holds that p1 occurs before p2 in TSl
if and only if Qlb(p1) is above Qlb(p2).

When moving sl down along Sl the points of Rt get inside the convex hull in the order of TSl
.

In TSr the points are sorted such that they go outside the convex hull in the order they are
listed when moving sr up. The lists BSl

and BSr both contain all points of Rb and are ordered
similarly. The list BSl

has the points sorted to correspond to moving sl up and BSr has the
points sorted to correspond with moving sr down. Using these lists FindPlacement deals
with this case as described in Algorithm 4.

Algorithm 4: FindPlacementCase21(CHmax, Sl, Sr)
Compute TSl

[1 . . . l], TSr [1 . . . l], BSl
[1 . . .m], BSr [1 . . .m]

i1 ← 1; i2 ← 1; i3 ← 1; i4 ← 1
sl ← upper endpoint of Sl

sr ← lower endpoint of Sr

R′t ← points of Rt below tlb(sl) or tlb(sr)
R′b ← points of Rb above tlt(sl) or tlt(sr)
while R′t 6= ∅ or R′b 6= ∅ do

while R′t 6= ∅ do
i1 ← i1 + 1
R′t ← R′t\{TSl

[i1]}
sl ← Qlb(TSl

[i1])
while Qlt(BSl

[i2]) is above sl do
R′b ← R′l ∪ {BSl

[i2]}
i2 ← i2 + 1

while R′b 6= ∅ do
Symmetric to when R′t is not empty

if sl ∈ Sl and sr ∈ Sr then return YES else return NO

Next, we prove that this algorithm finds a placement for Sl and Sr such that all line
segments of R have some part inside CHC if there is a such a placement for which CHC
has two indirect connections. Also we show that FindPlacementCase1 never returns an
placement such that not every region of R has a point inside CHC .

Lemma 17. If there is a placement for Sl and Sr such that CHC has a non-empty intersection
with every region of R and the upper and lower boundary of CHC are both indirect connections
then FindPlacementCase21 returns YES.

Proof. This is equivalent to proving that if the algorithm reports no solution then there is no
solution with two indirect connections. The algorithm keeps invariant that any placement of
sl higher then its current position or sr lower then its current position is not a solution. At
the start of the algorithm this is trivially true. Then every time we move sl there is a region
P ∈ R\C completely below tlb(sl) or tlb(sl). From our invariant we know that any placement
of sr lower then its current position does not lead to a solution hence we can only move sl

down. Then sl is moved down only as far as needed to get a part of P inside the convex hull.
It then follows that any placement of sl higher then its current position does not lead to a
solution. Similarly moving sr keeps the invariant valid.
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It then follows that if sl is below the lower endpoint of Sl then no placement of sl on Sl

leads to a solution. Hence, there is no solution. The same holds when sr is above the upper
endpoint of Sr

Lemma 18. If FindPlacementCase21 returns YES then there is a placement of sl and
sr such that CHC has a non-empty intersection with each region of R.

Proof. The algorithm returns YES only if it finds a placement of sl and sr such that R′t
and R′b are empty and the points sl and sr are on Sl and Sr. This means that for the final
placement of sl and sr all lower endpoints of regions in Rb are below either tlt(sl) or tlt(sr)
and all up endpoints in Rt are above tlb(sl) or tlb(sr). If the placement does have two indirect
connections as we assumed then obviously all regions of R have a non-empty intersection
with CHC . It is also possible that CHC has one direct connection, but then still the line
segments tlt(sl), tlt(sr), tlb(sl) and tlb(sr) are inside the convex hull. Then the points of Rt

must still be above the lower boundary of the convex hull and the points from Rb must still be
below the upper boundary. Hence, also in this case the resulting convex hull has a non-empty
intersection with each region of R.

Lastly we prove that FindPlacementCase21 runs in O(n log n) time.

Lemma 19. FindPlacementCase21 runs in O(n log n) time.

Proof. First we compute the lists TSl
, TSr , BSl

and BSr . If we precompute all the values of
Qlt, Qlb, Qrt and Qrb for points in Rt and Rb then we can sort them in O(n log n) time. Then
determining if a point from Rt is below the convex hull or if a point from Rb is above the
convex hull can be done in O(1) time using the lists so computing R′t and R′b takes O(n) time.
In each of the while loops at least one of the indices of the lists is increased, so we can make
O(n) passes through the loops. The other operations in the loops each take just constant
time. The running time of FindPlacementCase21 is O(n log n).

Either upper of lower boundary is a direct connection. Since the approach is sym-
metric when the lower or upper boundary is a direct connection we only describe it for the
upper boundary being a direct connection.

First we assume that the upper boundary is a direct connection, so the upper boundary
will be a straight line slsr which is above CHC′ . We should ensure that all points of Rb are
below slsr and all points of Rt are above the lower boundary of CHC . To ensure all points
of Rt are above the lower boundary we would like to place sl and sr as low as possible. For
this reason we will only look at placements where the line slsr is tangent to CHt, which is
the convex hull of Rb and CHC′ . Then placing either sl or sr lower will cause the line slsr to
intersect the interior of CHC′ or have a point of Rb above it.

We can compute for every placement of sl the corresponding placement of sr. We will
denote the placement of sr that corresponds to sl as Yl(sl) and the placement of sl that
corresponds to sr as Yr(sr). Note that Yl(sl) may also be a point on the vertical line through
Sr, since the tangent line to CHt may go below Sr. Now for Rt we can make lists TSl

and
TSr as before and start by placing sl at the upper endpoint and compute where sr is. Then
if there is still a point pt ∈ Rt below the lower boundary of CHC we move sl down until pt

is inside the lower boundary, then we can compute the new placement for sr and go through
TSr to find see if there are any new points of Rt that are below the lower boundary.
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We continue this until either no points of Rt are still below the lower boundary or until
either sl reaches the lower endpoint of Sl or sr reaches the upper endpoint of Sr. In the
first case a solution for Maximal Convex Hull is found. In the second case no solution
is possible where the top boundary is a direct connection. This approach is described in
Algorithm 5.

Algorithm 5: FindPlacementCase22(CHmax, Sl, Sr)
Compute TSl

[1 . . . l] and TSr [1 . . . l]
i1 ← 1; i2 ← 1
CHt ← convex hull of CHC′ and Rl

Sl ← top endpoint of Sl

if Yl(sl) is above Sr then return NO
if Yl(sl) is below Sr then
sr ← lower endpoint of Sr

sl ← Tr(sr)
R′t ← points in Rt that are below convex hull of CHC′ , sl and sr

while R′t 6= ∅ do
i1 ← i1 + 1
R′t ← R′t\TSl

[i1]
Sl ← Qlb(TSl

[i1])
Sr ← Yl(sl)
while Qrb(TSr [i2]) is below Sr do
R′t ← R′t ∪ {TSr [i2]}
i2 ← i2 + 1

if sl ∈ Sl and sr ∈ Sr then return YES else return NO

For FindPlacementCase22 we also have to prove that it finds a solution if there is one
with a direct connection and never returns an invalid solution.

Lemma 20. FindPlacementCase22 returns YES if and only if there is a placement for
sl and sr such that CHC has a non-empty intersection with each region of R.

Proof. If FindPlacementCase22 returns YES then a placement was found such that no
lower endpoints of regions in R\C are above the upper boundary of CHC and no upper
endpoints are below the lower boundary. This implies that for this placement CHC has a
non-empty intersection with every region of R.

Suppose there is a placement of sl and sr such that the line slsr is not tangent to CHt

but above it, such that CHC has a non-empty intersection with every region of R. Then we
can move sl or sr down to make the lower boundary lower. Doing this will not place any
points of Rt that are above the lower boundary of the CHC below it. This way sl and sr can
be moved down until slsr is tangent to CHt. Therefore we only have to consider placements
such that slsr is tangent to CHt.

Similarly as with FindPlacement21 we keep invariant that any placement of sr below
its current position cannot be a placement where the upper boundary is a direct connection
and CHC has a non-empty intersection with all regions of R. Every placement of sl above
its current position does not lead to a solution either. It is easy to see that this holds for
the initial placement of sl and sr. Then for every point pt ∈ R′t we can only move sl down
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to get it inside the convex hull. Then sr must be moved accordingly to keep slsr tangent to
CHt. Because placing sl between its old and new position would put pt below the convex
hull the invariant again holds. Hence, if FindPlacementCase21 returns NO, then sl was
placed below Sl or sr was placed above Sr, in either case the invariant gives us that there is
no correct placement for which the upper boundary of CHC is a direct connection.

The running time of FindPlacementCase22 is as follows.

Lemma 21. FindPlacementCase22 runs in O(n log n) time.

Proof. FindPlacementCase22 computes the convex hull of CHC′ and Rb which takes
O(n log n) time. The lists can again be computed in O(n log n) time and by the same reason-
ing as for FindPlacementCase21 we only go through the loops O(n) times. However in this
case not all operations can be done in constant time. Computing Yl(sl) can take more then
constant time. The upper boundary of CHt has at most n points so Yl(sl) can be computed
in O(log n) time. Hence, FindPlacementCase22 runs in O(n log n) time.

Next we show that FindPlacement returns YES if and only if there is a placement for
sl and sr such that the convex hull of sl, sr and CHC′ intersects every region in R.

Lemma 22. FindPlacement returns YES if and only if there is a placement for sl and sr

such that the convex hull of sl and sr and the given convex hull CHC′ intersects every region
in R.

Proof. The convex hull CHC′ can either be inside the quadrangle sltsrtsrbslb or outside. If it
is inside the polygon then it follows from Lemma 15 that FindPlacement returns YES if
and only if a correct placement exists.

If CHC′ is completely inside sltsrtsrbslb we again distinguish two cases. If there is a place-
ment with a convex hull that has an indirect connection as the upper and lower bound then
by Lemma 17 the algorithm FindPlacementCase21 will return YES. Hence, also Find-
Placement returns YES. If there is a solution of the second kind, so either the upper or lower
boundary of CHC is a direct connection, then by Lemma 20 the algorithm FindPlacement-
Case22 will return YES. Lastly if there is no placement such that CHC has a non-empty
intersection with all regions of R, then by Lemmas 18 and 20 the algorithm FindPlacement
will return NO.

Next we look at the running time of the algorithms described here. FindPlacement
is split into three cases, so we will use the running times of these separate algorithms to
determine the running time for FindPlacement.

Lemma 23. FindPlacement runs in O(n log n).

Proof. This follows directly from Lemmas 16, 19 and 21.

So far we have assumed that Sl and Sr are the unique leftmost and rightmost line segments.
However it is possible that for example there are multiple leftmost line segments. Because
the regions are disjoint they have some vertical order. We are only interested in maximal
convex hulls, but it is easy to see that in case of multiple leftmost line segments there is only
one placement that can lead to a maximal convex hull. The topmost line segment will have
a point placed at its upper endpoint and the bottommost line segment will have a point at
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its lower endpoint. If you place them anywhere else the convex hull can be made bigger by
moving them towards these endpoints. The problem is then made easier since we only have
to look at different placements for Sr.

From Lemmas 11, 22 and 23 we can conclude the following theorem.

Theorem 9. Given a set R of n disjoint parallel line segments of unit length and a subset
C ⊆ R containing k line segments, then FindMaxHull computes the correct result for
Maximal Convex Hull in O(k2n log n) time.

Due to Lemma 10 we then get the following corollary.

Corollary 4. Given a set R of n disjoint parallel line segments of unit length and a subset
C ⊆ R containing k line segments, Superset Convex Hull can be solved in O(k2n log n)
time for these sets.
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Chapter 5

Subset Convex hull

A different variant of the convex hull problem on imprecise points is that of determining if
there is a placement where the points from C are a subset of the vertices of the convex hull.

Subset Convex Hull
Input: A set of regions R and a subset C ⊆ R.
Output: YES if there is a placement of points such that the points from regions in

C are a subset of the vertices of the convex hull, NO otherwise.

This problem can be reduced to a slightly different problem, which will be called the
Minimal Convex hull problem. Analogous to a maximal convex hull a minimal convex
hull is a minimal element of the partial order of all possible convex hulls under inclusion. For
a minimal convex hull it holds that no other convex hull is contained in it.

In the Minimal convex hull problem the goal will be to find a minimal convex hull
where all regions of C have some part outside it or contribute a vertex.

Minimal Convex Hull
Input: A set of regions R and a subset C ⊆ R.
Output: YES if there is a placement of points such that its convex hull CH is

minimal and for every region P ∈ C, either P\CH 6= ∅ or the point from
P is a vertex of the convex hull, NO otherwise.

Figure 5.1a illustrates the difference between a minimal and a non-minimal convex hull.
The vertical line segments are the regions of R and the grey line segments are the ones in C.
The solid polygon shows a convex hull for some placement of R. However, this convex hull is
not minimal since the dotted polygon is also a possible convex hull and is contained within
the solid polygon. The solid polygon is not a solution to Minimal Convex Hull whereas
the dotted polygon is.

Figure 5.1b illustrates a different minimal convex hull which also is not a solution to
Minimal Convex Hull because not all regions of C have some part outside the convex hull.

Lemma 24. When the input regions are convex and disjoint there is a solution for Subset
Convex Hull if and only if there is a solution to Minimal Convex Hull.

Proof. Let the placement V be a solution for Subset Convex Hull and VC ⊆ V be the
points from regions in C. On the convex hull of V , CH(V ), all points from VC are vertices.
This convex hull does not have to be minimal, but by definition there is always a minimal
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(a) non-minimal convex
hull

(b) a line segment from C is
inside the convex hull

Figure 5.1: Convex hulls that are not solutions to Minimal Convex Hull

convex hull CHmin that is included in CH(V ). Each vertex p of CH(V ) is then either still a
vertex of CHmin or it is not in CHmin.

Given a solution to Minimal Convex Hull it is also possible to construct a solution to
Subset Convex Hull. Because every region P ∈ C that does not yet contribute a vertex
to the convex hull has some part outside the convex hull and these regions are convex it is
possible to place the point of P an arbitrarily small distance outside the convex hull. Because
the regions are disjoint this point can always be placed close enough to the convex hull such
that it does not cause another vertex to be inside the convex hull. This way all points of
regions in C become vertices of the convex hull and so the result is a solution to Subset
Convex Hull. It is also possible that for an edge of the boundary of the minimal convex
hull there are multiple regions of C that intersect it. Then points in these regions should be
placed on a convex chain that is close enough to the edge such that replacing the edge by the
chain still yields a convex polygon.

Minimal convex hulls have the property that for each vertex, this vertex is the only point
of intersection of the convex hull and the region for which the vertex is a placement. We
prove this in the following lemma.

Lemma 25. A convex hull CH is minimal if and only if there is a region P for each vertex
p such that CH ∩ P = {p}.

Proof. Let CH be a minimal convex hull and S be the placement of points that has CH as
its convex hull. Then let p be a vertex of CH and P the region that has p as its placement.
Now assume that P ∩ CH ⊃ p so the intersection of P and CH contains more points than
just p. Then we can choose for P a point q ∈ P ∩CH different from p. Then for a placement
where q is added and p is removed the new convex hull CH ′ is smaller then CH, because p is
not in CH ′. Therefore p is the only point in the intersection of P and CH if CH is a minimal
convex hull.

Let CH be a convex hull where for each vertex p from a region P it holds that CH ∩P =
{p}. Then assume that CH is not minimal and there is a convex hull CHmin which is a subset
of CH. Because CHmin must contain a point of each region and only contains points that
are in CH every vertex p of CH must also be part of CHmin. It then follows that CHmin

contains at least all points of CH since it contains all vertices of CH, thus CHmin cannot be
a subset of CH, so CH must be minimal.
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(a) bottom and top chains (b) convex hull by choosing sl

and sr

(c) sl and sr should be con-
nected directly

Figure 5.2: bottom and top chains and convex hulls construct by connecting points on the
left and rightmost line segment to each other through the chains

In the next sections it will be shown how to compute a solution for Minimal Convex
Hull for a set of disjoint parallel line segments or a set of disjoint axis aligned rectangles.
In these sections we will only explain how to find a minimal convex hull that is a solution
to Minimal Convex Hull without detailing the placement that leads to this convex hull.
However, such a placement is easily constructed since every region will intersect the minimal
convex hull.

5.1 Disjoint parallel line segments

In this section we will discuss an algorithm to solve the minimal convex hull problem for
parallel line segments.

Mukhopadhyay et al. introduce the notions of a bottom and top chain on a set of vertical
line segments [MKGB08]. The bottom chain is the lower boundary of the convex hull of all
upper endpoints of the line segments, whereas the top chain is the upper boundary of the
convex hull of lower endpoints. In Figure 5.2a the top and bottom chains are indicated with
dotted lines for a set of vertical line segments.

Let Sl and Sr be the leftmost and rightmost line segment. For now we assume there is
only one leftmost line segment and one rightmost, so they are uniquely defined. We define
tl′t(s) for a point s that is either on the vertical line through Sl or on the vertical line through
Sr as the line that is tangent to the top chain and goes through s. We then define tlt(s) to
be the segment of the line tl′t(s) from s to the chain. The line tlb(s) is defined symmetrically
for the bottom chain.

If we take two points sl ∈ Sl and sr ∈ Sr then we can construct a convex hull CH(sl, sr) as
follows. In general sl and sr are connected to the chains with tangent lines tlt(sl), tlb(sl), tlt(sr)
and tlb(sr) as shown in Figure 5.2b. However it may be the case that the tlt(sl) and tlt(sr)
to the top chain cross or connect to the same point and make a left angle when going from sl

to sr. In this case, instead of connecting sl and sr to the top chain, they should be connected
to each other using a single line segment, as shown in Figure 5.2c. The same applies if tlb(sl)
and tlb(sr) cross or make a right angle when going from sl to sr.

An important property of the convex hulls that are constructed like this is that they are
all minimal convex hulls.
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Lemma 26. Each convex polygon CH(sl, sr) constructed from a choice of points sl ∈ Sl and
sr ∈ Sr is a minimal convex hull.

Proof. The vertices of the upper boundary of CH(sl, sr) are vertices of the top chain and sl

and sr. The vertices of the chain are by definition the lower endpoints of line segments, so
they are the only points of those line segments that are on the convex hull. Since Sl and Sr

are the unique leftmost and rightmost line segment the convex hull only intersects Sl in sl

and Sr in sr. By similar reasoning also the vertices on the lower boundary of CH(sl, sr) are
the only points of their line segments on the convex hull.

Then it follows from Lemma 25 that CH(sl, sr) is a minimal convex hull.

We can also show that every minimal convex hull is equal to CH(sl, sr) for some sl ∈ Sl

and sr ∈ Sr.

Lemma 27. For every minimal convex hull CHmin there are points sl ∈ Sl and sr ∈ Sr such
that CHmin = CH(sl, sr).

Proof. Let’s assume there is a minimal convex hull CHmin for which no points sl and sr exist
such that CH(sl, sr) = CHmin. From Lemma 25 and the fact that Sl and Sr are unique left
and rightmost line segments it follows that CHmin contains exactly one point sl on Sl and
one point sr on Sr.

If CH(sl, sr) 6= CHmin then because both are minimal CHmin must contain a point that
is not in CH(sl, sr). Because CH(sl, sr) is convex there is a vertex p of CHmin that is not
in CH(sl, sr). Let’s assume that p is above CH(sl, sr), the case when p is below CH(sl, sr)
is analogous. Because p is above CH(sl, sr) it is also above the top chain, which implies it is
not the lower endpoint of its region P . It then follows from Lemma 25 that CHmin is not a
minimal convex hull, so CH(sl, sr) must be equal to CHmin.

From Lemma 27 it follows that to find a solution to Minimal Convex Hull we only have
to look at different placements of sl and sr and the top and bottom chains. In particular we
want to find a placement of sl and sr such that each region in C is partly outside CH(sl, sr)
or contribute a vertex to the convex hull.

Because CH(sl, sr) only depends on sl and sr and these can be anywhere on a single line
segment we can represent all convex hulls in a rectangle in R2 with y-coordinates for sl on
one axis and y-coordinates for sr on the other. This rectangle will be called the solution space
and is denoted by S. For each region P ∈ C we can determine the region SP of the solution
space where P is partly outside CH(sl, sr) or is a vertex of it. The intersection of all these
regions then represents the solutions where every region of C has a part outside CH(sl, sr).

First we will describe what constraints a region P ∈ C imposes on sl and sr and how we
can translate that to a region in the solution space.

The constraints that a region P ∈ C imposes on sl and sr are based on the fact that either
the upper endpoint pu should be above the convex hull or the lower endpoint pl should be
below the convex hull. Let stl(pu) be the point on the vertical line through Sl such that pu is
on tlt(stl(pl)). The point str(pu) is a point on the vertical line through Sr such that pu is on
tlt(str(pu)). These lines are illustrated in Figure 5.3 Now the following conditions hold for pu

if and only if it is above the upper boundary of the convex hull.

(u1) sl is below stl(pu)
(u2) sr is below str(pu)
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Sl

P

putlt(stl(pu))

Sr

tlt(str(pu)) str(pu)

stl(pu)

Figure 5.3: The lines tlt(stl(pu)) and trt(str(pu)) are tangent to the chain and go through pu

(u3) pu is above the line slsr

(u4) pu is above the top chain or a vertex on it

There are two exceptional cases where not all of these requirements are properly defined,
more precisely in some cases stl(pu) and str(pu) are not properly defined. This is the case
when the region P is either Sl or Sr. If that is the case, then we can simply ignore them
when making these requirements. By construction if there is a unique Sl and Sr the points
sl or sr are always a vertex on CH(sl, sr). The other case is when the upper endpoint pu is
under the top chain. In that case there is no point stl(pu). Again this is no problem since in
this case u4 does not hold, so pu is not above the convex hull.

Now we can prove that pu is above the CH(sl, sr) for given points sl and sr if and only if
the conditions u1 to u4 hold.

Lemma 28. pu is above CH(sl, sr) if and only if the conditions u1 to u4 hold.

Proof. First to prove that if one of the conditions does not hold, then pu is below the top
connection.

• If u1 does not hold, then tlt(sl) is above pu or goes through it. Hence, pu cannot be
above the convex hull.
• If u2 does not hold, then tlt(sr) is above pu or goes through it. Hence, pu cannot be

above the convex hull.
• If u3 does not hold, then pu is below or on the line slsr, since both sl and sr are part

of the convex hull, the entire line slsr is inside the convex hull. Since pu is below or on
the line it can never be above the convex hull.
• If u4 does not hold, then pu cannot be above the upper boundary of the convex hull or

a vertex on it since the upper boundary cannot be below the top chain.

Next, we prove that whenever pu is below or on the upper boundary of the convex hull, but
not a vertex, one of the conditions does not hold. If the upper boundary is just the line slsr

and pu is below or on this line obviously u3 does not hold.
If the upper boundary consists of a part of the top chain and lines through sl and sr that

are tangent to the top chain, then pu can be in any of the following three areas. Each leads
to at least one the conditions u1 to u4 not holding.

• If pu is below or on the top chain, but not a vertex of it then clearly u4 does not hold
• If pu is between the top chain and tlt(sl) or on tlt(sl). Then sl is above or on stl(pu)

because pu is below or on tlt(stl(pu)).
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• Symmetrically pu can be between the top chain and tlt(sr) or on tlt(sr). By the same
reasoning as in the previous case u2 does not hold in this case.

We can conclude that pu is above the top chain if and only if u1 to u4 hold.

For the lower endpoint pl ∈ P similar conditions, l1 to l4, can be given. These hold
whenever pl is below CH(sl, sr) or pl is a vertex on the lower boundary of CH(sl, sr). The
point sbl(pl) is defined as the point on the vertical line through Sl such that pl is on the line
tlb(sbl(pl)). The point sbr(pl) is on the vertical line through Sr and defined similarly.

(l1) sl is above sbl(pl)
(l2) sr is above sbr(pl)
(l3) pl is below the line slsr

(l4) pl is below the bottom chain or a vertex on it

Lemma 29. pl is below the bottom connection from sl and sr if and only if the conditions l1
to l4 hold.

Proof. This is symmetric to the proof of Lemma 28.

For each region P ∈ C either the upper endpoint or the lower endpoint must be outside the
convex hull or be a vertex on it. Let u1(P ) to u4(P ) and l1(P ) to l4(P ) denote the constraints
u1 to u4 and l1 to l4 respectively for a region P . Then either u1(P ) to u4(P ) or l1(P ) to l4(P )
should be true. These restrictions on sl and sr can be formulated as in Formula 5.1.

∧
P∈C

(
4∧

i=1

ui(P ) ∨
4∧

i=1

li(P )) (5.1)

Lemma 30. sl and sr define a minimal convex hull CH(sl, sr) where each region of C has
some part outside the convex hull or contributes a vertex to it if and only if Formula 5.1 is
true.

Proof. By Lemmas 28 and 29 if any region P ∈ C is completely inside CH(sl, sr) and does not
contribute a vertex to it, then both

∧4
i=1 ui(P ) and

∧4
i=1 li(P ) are false. So indeed Formula 5.1

is also false.
If Formula 5.1 is false then for some P both

∧4
i=1 ui(P ) and

∧4
i=1 li(P ) do not hold then

by Lemmas 28 and 29 the line segment P is completely inside the CH(sl, sr) and does not
contribute a vertex to it.

Each of these conditions u1(P ) to u3(P ) and l1(P ) to l3(P ) can be represented in an
inequality in the y coordinates of sl and sr as follows.

For u1(P ) and u2(P ) the inequalities are easy since we only have to compare the y-
coordinates. For u1(P ) the inequality is ysl

< ystl(pu) and for u2(P ) the inequality is ysr <
ystr(pu).

For u3 the inequality is somewhat more difficult since it depends on both sl and sr. The
point pu is above the line slsr if and only if the angle between the vectors −−→slpu and −−→slsr is
between 0 and π as illustrated in Figure 5.4. If we view these as three dimensional vectors
where the z component is 0 we can take the crossproduct −−→slpu ×−−→slsr of the two vectors. The
resulting vector has the form (0, 0, z). If z is positive then the angle between −−→slpu and −−→slsr is
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pu

Sl

Sr

α

(a) pu below slsr, π < α < 2π

pu

Sl

Sr

α

(b) pu above slsr, 0 < α < π

Figure 5.4: The angle α from the vector −−→slpu to −−→slsr is related to pu being above or below slsr

between 0 and π. If z is negative then the angle is between π and 2π. Lastly if z is 0 then
then angle is either 0 or π. This means we want the z component of the cross product to
be more then 0. The constraint is then as follows, where constants are indicated by X or Y ,
whereas variables are indicated by x or y.

(Xsr −Xsl
)(Ypu − ysl

)− (Xpu −Xsl
)(ysr − ysl

) > 0 (5.2)

Equation 5.2 is a linear inequality in ysl
and ysr . The inequality for l3 is similar.

For u4 and l4 we do not give an equation since they do not depend on sl or sr. Computing
whether or not they are true can be done by going through all line segments ordered by
x-coordinate while following the top and bottom chains.

Each of these inequalities defines a region in the solution space. Let u′1(P ) to u′4(P ) and
l′1(P ) to l′4(P ) be the regions of the solution space where u1(P ) to u4(P ) and l1(P ) to l4(P )
hold respectively. The regions in the solution space where all regions of C are partly outside
the convex hull or contribute a vertex to it are then defined by Formula 5.3. The regions are
combined as described by Algorithm 6. First for each region P ∈ C the region of the solution
space is computed where at least one endpoint is outside the convex hull. For a region P
this is

⋂4
i=1 u

′
i(P ) ∪⋂4

i=1 l
′
i(P ). Then these regions in the solution space are combined using

a divide and conquer approach where the intersection of a set A of regions is computed by
splitting A into A1 and A2 and computing the intersection of regions in A1 and A2 first and
then combining those using a map overlay algorithm. For storing the regions in the solutions
space doubly connected edge lists are used [BCKO08, Chapter 2]. Note that because we are
only interested in the solution space, lines that go outside the solution space are cut off so we
only have to deal with line segments and not lines.

⋂
P∈C

(
4⋂

i=1

u′i(P ) ∪
4⋂

i=1

l′i(P )) (5.3)

Lemma 31. Algorithm 6 runs in O(n log n+ k2) time.

Proof. For each region in C for the upper endpoint pu the tangent points for tlt(stl(pu)) and
tlt(str(pu)) should be found and it should be checked if pu is above or below the top chain.
Testing if pu is above or below the top chain can be done using a binary search on the x-
coordinates of the points on the chain to find the segment directly above or below pu. Since
there are O(n) points on the chain this takes O(log n) time. To find the tangent points also a
binary search can be done on the vertices of the chain. When inspecting a point the direction
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Algorithm 6: FindMinHull(R, C)
A ← ∅
forall P ∈ C do
uspace← R2

lspace← R2

for i ∈ [1 . . . 3] do
u′i ← Region where ui(P ) holds
uspace← uspace ∩ u′i
l′i ← Region where li(P ) holds
lspace← lspace ∩ l′i

if pu is below top chain then
uspace← ∅

if pl is above bottom chain then
lspace← ∅
A ← A∪ {uspace ∪ lspace}

solspace← ComputeIntersection(A)
if solspace = ∅ then

return There is no solution
else

return a point in solspace

of the search is determined by which of the neighboring points is above or below the line
through pu and the point that the search is currently inspecting. For example if the previous
point is above the line then the search continues in that direction and if both neighboring
points are below the line, then the current point is the tangent point. Again because there
are O(n) vertices on the chain this takes O(log n) time.

Once these points are known, stl(pu) and str(pu) are easily computed and the requirements
can be translated into regions in the solution space. For each region P computing the area
in which at least one endpoint of P is outside the convex hull or a vertex of it can be done
in O(1) time the, since only a constant number of lines define the region. So computing A
takes O(n log n) time.

ComputeIntersection then computes the intersection of all regions in A. This is done
by computing the arrangement of the line segments of the constraints. This takes O(k2) time
using a topological sweep as described by Edelsbrunner and Guibas [EG89]. Then, for each
cell in the arrangement we compute in how many regions ofA it is by traversing the faces of the
arrangement. When going from one face to the next we cross only one line of the arrangement
so we only have to check for one region if the next face is contained in this region or not.
Since this traversal is the same as traversing the dual graph of the arrangement this can also
be done in O(k2) time. The total running time of Algorithm 6 is then O(n log n+ k2).

So far we have assumed that Sl and Sr are the unique leftmost and rightmost line segments.
However it is possible that there are multiple line segments that are vertically aligned that
all have the same x-coordinate. In that case the problem just becomes easier since we still
require for a minimal convex hull that vertices are the only points of their region that intersect
the convex hull. If there are several leftmost line segments then the only placements of points
leading to a minimal convex hull have the point on the top line segment at its lower endpoint
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Rt

Rr

Rb

Figure 5.5: Chains between the extreme regions

and on the bottom line segment at its top endpoint. All minimal convex hulls then correspond
to a placement of sr only.

5.2 Disjoint axis aligned rectangles

The method for solving the minimal convex hull problem for disjoint parallel line segments
can be adapted to work for disjoint axis aligned rectangles.

For rectangles there is an extreme region in all four direcions. Rl is the region with the
leftmost right edge, Rt is the region with the topmost bottom edge, Rr is the region with
rightmost left edge and Rb is the region with bottommost top edge.

First consider the general case where each of these rectangles is unique and they are nicely
positioned. This means that Rt is completely above Rl, Rr and Rb, Rl is completely to the
left of Rt, Rb and Rr and Rr and Rb have similar positions. It then follows from Lemma 25
that points on these rectangles can only be placed on one edge. For example for Rl this is
the right edge, placing it anywhere else would lead to the intersection of the convex hull with
Rl containing more then a single point. These edges are the extreme edges and are denoted
by Sl, St, Sr and Sb.

Between these extreme edges, chains can be defined based on the corners of regions as
illustrated in Figure 5.5. The top left chain between Sl and St is defined as the top left part
of the convex hull of lower right endpoints. For no convex hull, the top left boundary is below
the top left chain, because then a point of this chain and the region it belongs too would lie
completely outside the convex hull. The top right, bottom left and bottom right chains are
defined similarly.

Using these chains we can define a convex hull based on placements of points on the four
extreme edges as we did for line segments. CH(sl, st, sr, sb) is the convex hull created by
connecting each two consecutive extreme points to each other using the chains. For example
sl and st are connected by a single line segment if the whole top left chain is below this line
segment. Otherwise the top left boundary of the convex hull consists of a line segment from
sl to the top left chain that is tangent to the chain, then a part of the top left chain and then
a line segment from st to the chain that is also tangent to the chain. If a connection between
two extreme points is just a single line segment we call it a direct connection if it consists
of a part of the chain and line segments connecting the extreme points to it, that is called a
chain connection.
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Using the chains and the extreme edges we prove the following lemmas.

Lemma 32. For a set of regions where the extreme regions are unique and nicely positioned,
CH(sl, st, sr, sb) is a minimal convex hull for every choice of points sl, st, sr, sb on the extreme
edges.

Proof. Lets assume there is a convex hull CHmin that is a subset of CH(sl, st, sr, sb). Then
CHmin contains at least sl, st, sr and sb because these are the only points of the extreme
rectangles in CH(sl, st, sr, sb). The other vertices of CH(sl, st, sr, sb) are vertices of the
chain, but by definition of the chains and the construction of CH(sl, st, sr, sb) these vertices
are then the only points of the corresponding regions that are contained in CH(sl, st, sr, sb).
Hence all vertices of CH(sl, st, sr, sb) are also contained in CHmin and CHmin cannot be
a subset of CH(sl, st, sr, sb). We then conclude that every convex hull constructed from a
choice of points on the extreme edges must be minimal.

Lemma 33. For a set of regions where the extreme regions are unique and nicely posi-
tioned every minimal convex hull CHmin is equal to CH(sl, st, sr, sb) for some choice of
points sl, st, sr and sb on the extreme edges.

Proof. Because we are assuming that the extreme rectangles are nicely positioned the points
from them have to be vertices of the convex hull, namely the leftmost, topmost, bottommost
and rightmost point of the convex hull. Then by Lemma 25 there is only one point of the
extreme rectangles on the convex hull. These are the only candidates for sl, st, sr and sb. Let
CH be the convex hull CH(sl, st, sr, sb). Then for CHmin to be different from CH it has to
have a vertex outside of CH, because CH is minimal (see Lemma 32).

Without loss of generality assume that this vertex p is on the top left boundary of CHmin.
Since p is outside CH, it must also be above the top left chain. Then by definition of the top
left chain p is not the lower right endpoint of its region P . Then because p is on the top left
boundary the lower right endpoint of P must be inside the convex hull. From Lemma 25 it
then follows that CHmin is not a minimal convex hull.

To find a good placement for the extreme points we would like to use an adapted version
of the approach used for line segments. We make constraints for the corner points of C which
can be combined to hold if and only if there is a convex hull with all regions of C having some
part outside this convex hull.

Recall that for line segments, a line segment has some part outside the convex hull if either
the top endpoint is above the convex hull or the bottom endpoint is below the convex hull.
With rectangles at least one of the corners should be outside the convex hull. We say that a
top left corner of a rectangle is outside the top left boundary of the convex hull if it is either
above or to the left of the top left boundary as indicated by the grey region in Figure 5.6a.
Vertices of the top left boundary are also considered to be outside the top left boundary.
Using this notion of outside a boundary, a rectangle has a corner outside the convex hull if
and only the top left corner is outside the top left boundary, the top right corner is outside
the top right boundary, the bottom left corner is outside the bottom left boundary or the
bottom right corner is outside the bottom right corner. It is easy to see that this is equivalent
to saying that at least one corner is outside the convex hull. If the top left corner is outside
the convex hull but not outside the top left boundary, then the bottom left or top right corner
must also be outside the convex hull as illustrated by the two rectangles in Figure 5.6a.
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(a) Illustration of the area outside the top left bound-
ary of a convex hull

Ztl1

Ztl3

Ztl2

(b) Top left corners are split into
three sets based on their position

Figure 5.6

Based on the top left chain we can divide top left corners into three sets. These sets are
labeled Ztl1, Ztl2 and Ztl3 in Figure 5.6b. Let S′l be the vertical line through Sl and S′t the
horizontal line through St. Then the sets Ztl1, Ztl2 and Ztl3 are defined as follows; points in
Ztl1 are above or on S′t or to the left of or on S′l; points in Ztl2 are below S′t, to the right of
S′l and above the chain, but also the vertices of the chain are in Ztl2; points in Ztl3 are below
S′t, to the right of S′l and below or on the chain, however the vertices of the chain are not in
Ztl3.

Clearly points in Ztl1 are always outside the top left boundary and points in Ztl3 are never
outside the top left boundary. Whether or not a point in Ztl2 is inside or outside the top left
boundary of the convex hull depends on the choice of sl and st. Testing in which set a point is
can easily be done using a binary search on the x-coordinates of the points in the chain. For
each point ptl in Ztl2 we define constraints on sl and st that hold if and only if ptl is outside
the top left boundary of CH(sl, st, sr, sb). These constraints make use of two lines, lltl and
lttl, which are defined as follows. For a region P , the line lltl(P ) is tangent to the top left
chain and intersects the top left corner ptl of P . The line lltl crosses the vertical line through
Sl, ptl and the chain in that order. lttl(P ) is defined similarly except it crosses the horizontal
line through St, ptl and the chain in that order. The constraints are then tl1, tl2 and tl3.

(tl1) sl is below where lltl crosses the vertical line through Sl

(tl2) st is to the right of where lttl crosses the horizontal line through St.
(tl3) ptl is above the line slst

As with vertical line segments the lines lltl and lttl are not well defined when ptl is a vertex
of the top left chain. If ptl is a vertex of the top left chain then lltl should not just intersect
ptl on the chain, but also the next point on the chain closer to st. Similarly lttl should not
just hit ptl on the chain but also the next point towards sl on the chain.

The requirements tl1, tl2 and tl3 can then be turned into inequalities that hold only if the
requirements hold using the cross product of two vectors (see Section 5.1). These inequalities
have only ysl

and xst as variables. For example tl3 holds if and only if the following inequality
holds. Note that capitol letters, X and Y , indicate that this coordinate is fixed, while lower
case letters, x and y, indicate the coordinate is variable.
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(xst −Xsl
)(Yptl

− ysl
)− (Xptl

− ysl
)(Yst − ysl

) > 0

The variables here are xst and ysl
so this inequality is not linear, but we will show later

that this is not a problem. Similar requirements and equations can also be made for the top
right (tr1 to tr3), bottom left (bl1 to bl3) and bottom right (br1 to br3) corners of a rectangle.

These constraints can be combined as follows to hold if and only if at least one corner is
outside CH(sl, st, sr, sb).

ptl ∈ Ztl1 ∨ (ptl 6∈ Ztl3 ∧
3∧

i=1

tli) ∨ ptr ∈ Ztr1 ∨ (ptr 6∈ Ztr3 ∧
3∧

i=1

tri)∨

pbl ∈ Zbl1 ∨ (pbl 6∈ Zbl3 ∧
3∧

i=1

bli) ∨ pbr ∈ Zbr1 ∨ (pbr 6∈ Zbr3 ∧
3∧

i=1

bri)

The minimal convex hull now depends on four variables, sl, st, sr and sb. We can repre-
sent all minimal convex hulls as points in a 4-dimensional object which we call the solution
space. Each point in the solution space represents a minimal convex hull. Each equation of
a requirement then holds in a region of the solution space. These regions are defined by the
equations we define for each requirement.

For a rectangle P ∈ C we can combine these regions of the solutions space. Let tl′1 to tl′3
be the regions where tl1 to tl3 hold, tr′1 to tr′3 where tr1 to tr3 holds, etcetera. Let Z ′tl1 either
be R4 if ptl is in Ztl1 or ∅ if ptl is not in Ztl1 and let Z ′tl2 and Z ′tl3 be defined similarly. For the
other corners and regions we use a similar definition. The region R(P ) of the solution space
which contains only points that represent convex hulls where P has a corner outside of them
or is a vertex of the boundary is then defined as follows.

R(P ) =Z ′tl1 ∪ (Z ′tl2 ∩
3⋂

i=1

tl′i) ∪ Z ′tr1 ∪ (Z ′tr2 ∩
3⋂

i=1

tr′i)∪

Z ′bl1 ∪ (Z ′bl2 ∩
3⋂

i=1

bl′i) ∨ Z ′br1 ∪ (Z ′br2 ∩
3⋂

i=1

br′i)

Then a solution to Minimal Convex Hull can be found by taking the intersection of
R(P ) over all regions P ∈ C.

To find the intersection of these regions we compute the arrangement of the surfaces that
define the regions. This arrangement has O(k4) cells, because there are O(k) surfaces and the
solution space has four dimensions. It should then be checked for each cell if it is contained
in all regions or not. Computing this arrangement can be done using techniques described
by Chazelle et al. [CEGS91]. The time required for this is dependant on the complexity of
the decomposition of these cells into constant complexity cells. Koltun has shown that the
complexity the vertical decomposition of an arrangement of k surfaces in four dimensions has
a complexity of O(n4+ε) for any ε > 0 [Kol04]. This implies that we can compute the cells in
O(k4+ε) time. As with line segments we can traverse the cells of this arrangement to test in
O(k4+ε) to determine for each cell how many rectangles of C contribute a vertex or are partly
outside the convex hull.
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We can then use this to show that Minimal Convex Hull can be solved in O(n log n+
k4+ε) time for ε > 0.

Lemma 34. Minimal Convex Hull can be solved in O(n log n+k4+ε) time for any ε > 0,
if the extreme rectangles are unique and nicely positioned.

Proof. Similarly as for line segments (see Lemma 31) the equation that defines the surface
for each requirement can be computed in O(1) time after all the tangent points have been
computed and for each corner it is checked if it is outside the corresponding chain which
takes O(n log n) time. Computing R(P ) for a rectangle P ∈ C then takes O(1) time, since
the number of surfaces involved is only constant.

As described above computing the intersection of all R(P ) can be done by computing the
arrangement of surfaces and computing for each cell if it is a subset of R(P ) for all P ∈ C.
This can be done in O(k4+ε) for any ε > 0.

Thus the total time required to compute the solution to Minimal Convex Hull is
O(n log n+ k4+ε).

St
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Sr

Sb

(a) Only the connection between
sl and st

St

Sl

Sr

Sb

(b) Top left part is a single point

St

Sl

Sr

Sb

(c) Top left part consists of mul-
tiple line segments

Figure 5.7: The top left boundary of the convex hull can consist of different line segments

Unfortunately the extreme rectangles are not always nicely positioned, unique or distinct.
If for example Sl is not unique because there is more then one square with the leftmost right
edge then as was the case with line segments this makes the problem easier. To get a minimal
convex hull the lowest leftmost right edge must have a point placed at the top of its edge
whereas the highest leftmost right edge must have a point placed on its lower endpoint. The
convex hull then only depends on the placement of three points.

It can also be that extreme squares are not distinct, for example Sl and St may be from
the same square. In that case the top left chain is simply a point and this point can first be
considered as being placed on Sl and if that does not lead to a solution it can be placed on
St. Again the convex hull then only depends on three points.

Lastly it is possible that the extreme rectangles are not nicely positioned. For example Rl

may only be partially below Rt as illustrated in Figure 5.7b. In these cases not every choice
of points on the extreme edges leads to a minimal convex hull. In Figure 5.7b the convex
hull can be made smaller by moving Sl to the left. However it still holds that every minimal
convex hull is defined by a choice of points on the extreme edges and the chains.
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Ztl4

Ztl1

Ztl3

Ztl2

Ztl5

Figure 5.8: Top left corners are divided into sets based on their position

The constraints that we use when the extreme rectangles are nicely positioned heavily
rely on the fact that the upper boundary of the convex hull is the connection between sl and
st. If the extreme regions are not so nicely positioned the top left part of the convex hull may
consist of multiple line segments or of a single point as shown in Figure 5.7b and 5.7c.

To deal with this we look at two different cases, namely if the top left boundary of the
convex hull contains part of the top left chain and if it consists of only direct connections
between extreme point.

First we assume that the top left boundary is a chain connection. We divide the top
left corners of regions in C into five sets, Ztl1 to Ztl5, based on their location as indicated in
Figure 5.8. Let S′l be the vertical line through Sl and S′t the horizontal line through St. Then
the points in Ztl1 are above or on S′t and to the left of or on S′l; points in Ztl2 are above S′t
and to the right of S′l; points in Ztl3 are below S′t and to the left of or on S′l; points in Ztl4

are below S′t and to the right of S′l and above the chain, but the vertices of the chain are also
in Ztl4; points in Ztl5 are below S′t, to the left of S′l and below or on the chain, except the
vertices of the chain.

Because we assumed that the top left boundary of the convex hull is a chain connection
points in Ztl1 are clearly outside the top left boundary. Points in Ztl5 are never outside the top
left boundary. For points in Ztl4 we have two of the same constraints we had before, namely
tl1 and tl2, where lltl and lttl are defined in the same way. However as shown in Figure 5.7c
it is also possible that a tangent line from the chain to sr is part of the top left boundary of
the convex hull. To ensure that a point ptl is not under this line we also require that sr is
under the line lttl. Similarly we require that sb is to the right of the line lltl. For points in
Ztl2 and Ztl3 we have similar constraints on sb and sr. Let lrtl and lbtl be lines tangent to the
top left chain that cross ptl, and the horizontal line through St and the vertical line through
Sl respectively. The new constraints are then as follows.

(tl4) sb is to the right of where lltl crosses the horizontal line through Sb

(tl5) sr is below where lttl crosses the vertical line through Sr.
(tl6) sb is to the right of where lbtl crosses the horizontal line through Sb.
(tl7) sr is below where lrtl crosses the vertical line through Sr

Let Z ′tl1(P ) be R4 if the top left corner ptl of P is in Ztl1(P ) and empty otherwise,
Z ′tl2, Z

′
tl3, Z

′
tl4 and Z ′tl5 are defined similarly. Let tl′4 to tl′7 denote the regions of the solution

space where tl4 to tl7 hold respectively. The region Rctl(P ) of the solution space where the top
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left corner is outside the top left boundary of the convex hull of CH(sl, st, sr, sb) under the
assumption that this is a chain connection is defined as follows. Note that Rctr(P ), Rcbr(P )
and Rcbl(P ) are defined similarly.

Rctl(P ) = Z ′tl1 ∪ (Z ′tl2 ∩ tl′7) ∪ (Z ′tl3 ∩ tl′6) ∪ (Z ′tl4 ∩ tl′1 ∩ tl′2 ∩ tl′4 ∩ tl′5)

If the top left boundary of the convex hull consists of direct connections between the
extreme points another problem arises. In the case of nicely positioned extreme rectangles it
is sufficient to say that the top left corner has to be above the line slst. In the more general
case however this is not always sufficient since the top left connection may not consist only of
the line segment slst. Instead we will replace tl3 with a set of requirements that hold if and
only if a top left corner is outside the convex hull of sl, st, sr and sb. If these points occur in
clockwise order on the boundary of the convex hull then a top left corner ptl is outside the
convex hull if and only if it is to the left of at least one of the vectors −→slst,

−−→stsr,
−−→srsb or −−→sbsl.

The order of the extreme points on the convex hull of the extreme points is not always the
same, but we can treat each ordering as a separate case. The solution space is then split into
regions where in each region the ordering is the same. This splitting can also be done using
constraints on the extreme points. For four extreme points q1, q2, q3 and q4 they appear in
that order on the boundary of the convex hull if and only if the following requirements hold.

• q2 is to the left or on of −−→q1q3
• q4 is to the left or on of −−→q3q1
• q1 is to the left or on of −−→q4q2
• q3 is to the left or on of −−→q2q4
It is also possible that only three points are vertices on the boundary of the convex hull

and the fourth point is in the interior of the convex hull. q4 is in the interior of the convex
hull of q1, q2 and q3 with the points occurring on the boundary in that order if and only if
the following requirements hold.

• q4 is to the right of −−→q1q2
• q4 is to the right of −−→q2q3
• q4 is to the right of −−→q3q1
Because for each of these regions of the solution space the ordering of points on the convex

hull of extreme points is fixed we can compute where in the solution space a top left corner
ptl is outside the convex hull. Let Rdtl(P ) be the region of the solution space where the
constraints hold that guarantee that the top left corner of P is outside the convex hull of
extreme points and Rdtr, Rdbr and Rdbl defined similarly for the top right, bottom right and
bottom left corner respectively. Then the region R(P ) of the solution space where P has
some corner outside the convex hull is defined as follows.

R(P ) = (Rctl(P )∩Rdtl(P ))∪ (Rctr(P )∩Rdtr(P ))∪ (Rcbr(P )∩Rdbr(P ))∪ (Rcbl(P )∩Rdbl(P ))

Similar requirements are used for the other corners and they can be turned into regions of
the solution space and combined in the same way as for nicely positioned extreme rectangles.
There are only a constant number of possible orderings for the extreme points on the convex
hull. Hence the running time does not change.

We can then conclude with the following theorem.
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Theorem 10. Given a set R of n disjoint axis aligned rectangles and a subset C ⊆ R
containing k rectangles, then Minimal Convex Hull on R and C can be solved in O(n4+ε),
for any ε > 0.

We then conclude the following corollary from Theorem 10 and Lemma 24.

Corollary 5. Given a set R of n disjoint axis aligned rectangles and a subset C ⊆ R con-
taining k rectangles, then Subset Convex Hull on R and C can be solved in O(n4+ε), for
any ε > 0.

5.3 Disjoint unit discs

Although the number of extreme points for a disc is not constant like for squares (corners)
or line segments (end points) Lemma 25 also holds for discs.

Although Lemma 25 limits the placements of points that are vertices on the convex hull
to the boundary of their region this still leaves infinitely many placements for many points
and does not tell us anything about which regions should be considered to contribute vertices
on the convex hull.

Although on a set of discs there can be a lot of different possible convex hulls for different
placements the convex hull CHcp on the center points of these discs is unique. We can show
that only discs whose center point contributes a vertex to CHcp may contribute a vertex to
a minimal convex hull on the discs.

Lemma 35. Only discs whose center point is a vertex on CHcp can contribute a vertex to a
minimal convex hull.

Proof. Let D be a disc that does not contribute a vertex to CHcp. For any two discs P and
Q whose center points occur consecutively on CHcp for any placement of points p ∈ P and
q ∈ Q there is always a part of D that is below the line pq as illustrated in Figure 5.9. Because
in a minimal convex hull lines the boundaries do not cross there must be a region of D inside
any minimal convex hull, so any region D that does not contribute a vertex to CHcp can not
contribute a vertex to a minimal convex hull.

P Q
D

Figure 5.9: Only discs whose center point is a vertex on CHcp can contribute a vertex to a
minimal convex hull

The converse of this can also be proven, namely that only discs that can contribute a
vertex to a minimal convex hull can contribute a vertex to CHcp.

Lemma 36. For every disc D that contributes a vertex to CHcp there is minimal convex hull
to which D contributes a vertex.

Proof. Let D be a disc that contributes a vertex to CHcp. Then without loss of generality
assume that the center point dc of D is the unique topmost point of CHcp. All other points
of CHcp have a smaller y-coordinate then dc.
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D

dc

(a) CHcp

D

d

(b) CH

Figure 5.10: Different convex hulls to illustrate that any region that contributes a vertex to
the convex hull of center points also contribute a vertex to some minimal convex hull.

Next we define CH to be the convex hull which is the same as CHcp but moved down by
1 as illustrated in Figure 5.10. CH still contains at least one point of each region so it is a
valid convex hull. Also it intersects only in a single point d with D. Although CH does not
have to be a minimal convex hull by definition there is also a minimal convex hull CHmin

which in contained in CH. Then because every point in CH has a lower y-coordinate then d
also every point in CHmin has a lower y-coordinate then d. It then follows that d is a vertex
of CHmin.
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Chapter 6

Conclusion

We have shown that it is NP-hard to determine if a pair of imprecise points is a possible
closest pair when the input is a set of disjoint parallel line segments of unit length, a set of
disjoint axis aligned squares of unit size or a set of disjoint unit discs. Most other types of
regions are generalizations of these types. Hence the possible closest pair problem is NP-hard
for the most commonly used types or regions. A question that is still open is whether the
possible closest pair problem is also NP-complete.

For the convex hull on imprecise points we defined three different structures, the exact,
superset and subset convex hull. We have shown that the exact convex hull problem is NP-
hard when regions are line segments. It would be interesting to see if this is also the case for
disjoint parallel line segments of unit length, since both the subset and superset convex hull
problems can be solved in polynomial time for these regions.

We have given two results on the superset convex hull problem. For arbitrarily line
segments it is NP-hard, whereas for disjoint parallel line segments of unit length we can solve
it in polynomial time. This leaves a very interesting gap of which combination of restrictions
on the line segments enables the polynomial solution.

The subset convex hull problems seems somewhat easier than the exact and superset
convex hull. We have given polynomial time algorithms that solve the subset convex hull
problem for sets of disjoint parallel line segments and for sets of disjoint axis aligned rectangles.
There are many open questions for the subset convex hull. Most notably if the subset convex
hull problem is NP-hard for arbitrary line segments as is the case for the exact and superset
convex hull, and whether there is a polynomial algorithm that can solve the subset convex
hull problem when the regions are disjoint unit discs.
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