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Abstract

This dissertation is divided into two chapters, each investigating a different topic. The first chapter
studies sublinear algorithms for solving symmetric diagonally dominant (SDD) linear systems. In
the classical version of this problem the input is a matrix S ∈ Rn×n which is SDD, and a vector
b ∈ Rn in the range of S, and the goal is to output x ∈ Rn satisfying Sx = b. The breakthrough
algorithm of Spielman and Teng [STOC 2004] approximately solves this problem in near-linear time
(in the input size which is the number of non-zeros in S), and subsequent papers have simplified
and improved the runtime even further.

Our goal is to approximately solve such a linear system for a particular coordinate. Formally,
given an index u ∈ [n] together with S and b as above, the goal is to output an approximation x̂u
for x∗u, where x∗ ∈ Rn is a fixed solution to Sx = b. We present an algorithm that approximates
a single coordinate xu in time that is polylogarithmic in n whenever S has a certain spectral
gap (including Laplacians of regular expander graphs). The approximation guarantee is additive
|x̂u−x∗u| ≤ ε·‖x∗‖∞ for a parameter ε > 0. An example application of our algorithm is approximating
the effective resistance between a pair of vertices in a constant degree expander within relative error
ε, in time poly(1

ε ). To complement our algorithm, we show that the spectral gap assumption is
necessary: we exhibit general SDD matrices S (in fact, Laplacians of regular graphs), for which
approximating a single coordinate xu requires Ω(n) (randomized) time.

The second chapter studies cut-sparsifiers for graphs/hypergraphs, and spectral-sparsifiers for
graphs, which were introduced by Benczúr and Karger [STOC 1996] and by Spielman and Teng
[STOC 2004] respectively. In fact, graph sparsification is closely related to solving linear systems in
SDD matrices, as the aforementioned solver of Spielman and Teng is based on a (fast) construction
of spectral-sparsifiers. A k-cut-sparsifier of a graph G is an (ideally sparse) graph G′ such that the
weight of every cut S in G′, denoted wG′(S, S̄), approximates the corresponding wG(S, S̄) within
factor k ≥ 1. This definition naturally extends to hypergraphs. A k-spectral-sparsifier of an n-vertex
graph G is an (ideally sparse) graph G′ such that for every x ∈ Rn, the quadratic form xTLG′x

(where LG′ is the Laplacian matrix of G′) approximates xTLGx within factor k ≥ 1.
We present several new bounds on the size and the approximation factor of sparsifiers in certain

families/cases. Specifically, we improve the known upper bounds on the size of (1+ε)-cut-sparsifiers
of hypergraphs with bounded edge-intersections, i.e., where the intersection of every two distinct
hyperedges is small. We show limitations on the approximation factor that can be achieved by spar-
sifiers with (only) small hyperedges. And we exhibit upper and lower bounds on the approximation
factor that can be achieved by tree-sparsifiers, i.e., when the sparsifying graph must be a tree.
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Chapter 1

Solving SDD Linear Systems in
Sublinear Time∗

1.1 Introduction

Solving linear systems is a fundamental problem in many areas. A basic version of the problem has
as input a matrix A ∈ Rn×n and a vector b ∈ Rn, and the goal is to find x ∈ Rn such that Ax = b.
The fastest known algorithm for general A is by a reduction to matrix multiplication, and takes
O(nω) time, where ω < 2.372 [Gal14] is the matrix multiplication exponent. When A is sparse, one
can do better (by applying the conjugate gradient method to the equivalent positive semi-definite
(PSD) system ATAx = AT b, see for example [Spi10]), namely, O(mn) time where m = nnz(A)

is the number of non-zeros in A. Note that this O(mn) bound for exact solvers assumes exact
arithmetic, and in practice, one seeks fast approximate solvers.

One interesting subclass of PSD matrices is the class of symmetric diagonally dominant (SDD)
matrices — recall that a symmetric matrix S ∈ Rn×n is said to be SDD if Sii ≥

∑
j 6=i |Sij | for all

i ∈ [n]. Many applications require solving linear systems in SDD matrices, and particularly their
subclass of graph-Laplacian matrices, see e.g. [Spi10, Vis13, CKM+14]. Solving SDD linear systems
received a lot of attention in the past decade after the breakthrough result by Spielman and Teng
in 2004 [ST04], showing that a linear system in SDD matrix S can be solved approximately in
near-linear time O(mlogO(1)n log 1

ε ), where m = nnz(S) and ε > 0 is an accuracy parameter. A
series of improvements led to the state-of-the-art SDD solver of Cohen et al. [CKM+14] that runs
in near-linear time O(m

√
log n(log log n)O(1) log 1

ε ).
We continue the line of research on SDD solvers by studying whether better run-times are

possible if we only need a particular coordinate of the solution x ∈ Rn. In particular, given an SDD
matrix S ∈ Rn×n, a vector b ∈ Rn, and an index u ∈ [n], output the coordinate xu where x ∈ Rn
is a solution to the linear system Sx = b. The goal is then to compute xu in time sublinear in n.
Indeed, our main result is that, under some conditions on S, we can approximate a single coordinate
xu in polylogarithmic time.

When solving for a particular coordinate, we need to address the issue of consistency between
coordinates, which arises when the system is underdetermined. For example, when the all-ones
∗The results in this chapter are joint work with Alexandr Andoni, and written in [AKP17].
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vector ~1 is in the null space of S, then for every α ∈ R there is a solution x ∈ Rn with xu = α, which
renders the aforementioned goal useless. To rectify it, we require that the algorithm approximates a
single “global” solution, i.e., if it is invoked with different indices u ∈ [n], the outputted coordinates
will all be consistent with one solution x∗. Formally, given an SDD matrix S ∈ Rn×n and a vector
b ∈ Rn in the range (column space) of S, as well as accuracy parameter ε > 0, there exists a solution
x∗ ∈ Rn satisfying Sx∗ = b, such that for all u ∈ [n], the algorithm outputs x̂u satisfy

Pr
[
|x̂u − x∗u| ≤ ε||x∗||∞

]
≥ 3

4
.

As usual, the success probability can be amplified to 1 − δ by taking the median of O(log 1
δ )

independent executions. We note that the above guarantee, when applied to all coordinates, gives a
vector x̂ with ‖x̂− x∗‖∞ ≤ ε||x∗||∞, which differs from the guarantee from [ST04], that ||x̂−x∗||S ≤
ε||x∗||S , where ||y||S

def
=
√
yTSy.

The above problem is motivated also by the existence of quantum sublinear-time algorithms for
solving linear systems, which were introduced in [HHL09] and subsequently improved in [Amb12,
CKS15]. In particular, [HHL09] consider the system Ax = b, given: (1) oracle access to entries of A
(including fast access to the j-th non-zero entry of i-th row), and (2) a fast black-box procedure to
prepare a quantum state |b〉 =

∑
i

bi|i〉
‖
∑
i bi|i〉‖

. Then, if the matrix A has condition number κ, at most
d non-zeros per row/column, and ‖A‖ = 1, their quantum algorithm runs in time poly(κ, d, 1/ε),
and outputs a quantum state |x̂〉 within `2-distance ε from |x〉 =

∑
i xi|i〉

‖
∑
i xi|i〉‖

. The runtime was
later improved by [CKS15] to depend logarithmically on 1/ε. (Originally, [HHL09] considered a
different goal — of outputting a “classical” value, a linear combination of |x〉 — for which the later
improvement in dependence on 1/ε is impossible unless BQP = PP .) These quantum sublinear-
time algorithm naturally raise the question of what are the best classical analogues of these quantum
algorithms.

1.1.1 Results

Laplacian systems. Before providing our main result that solves SDD systems (in Theorem
1.1.4), we present a simpler result that conveys our key ideas and solves linear systems in Laplacians
of expander graphs (in Theorem 1.1.1). We start with setting up the notation. The Laplacian of an
(edge-weighted) undirected graph G = (V,E), is defined as the |V |×|V | matrix LG

def
= D−A, where

A is the (weighted) adjacency matrix of G, and D is the diagonal matrix of (weighted) degrees in
G. As Laplacians have a non-trivial kernel, namely, the span of the all-ones vector (for connected
graphs), a more natural goal is to compute xu − xv, which has a unique value over all the solutions
{x : LGx = b}.

Theorem 1.1.1. There exists a randomized algorithm with the following guarantee. Suppose the
input is 〈G, b, u, v, ε, µ2〉, where

• G = (V,E) is a connected d-regular n-vertex graph given as an adjacency list,

• b ∈ Rn is in the range of LG (equivalently, orthogonal to the all-ones vector),

• u, v ∈ [n], ε > 0, and
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• µ2 > 0 is a lower bound on the smallest non-zero eigenvalue of LG,

and suppose x solves LGx = b. Then the algorithm outputs δ̂u,v ∈ R that satisfies

Pr

[∣∣∣δ̂u,v − (xu − xv)
∣∣∣ ≤ ε ·max

ij∈E
|xi − xj |

]
≥ 1− 1

s

for s = O( d
µ2

log(ε−1 d
µ2
n)). The algorithm runs in time O(dε−2s3 log s).

Let us point out a few extensions of this theorem that follow easily from our proof in Section 1.2.
First, it works even when G has integer edge weights by using weighted degrees. Second, if the
algorithm is given also an upper bound Bup on ||b||0 ≤ n, then the expression for s can be refined by
replacing n with Bup. Third, the algorithm can approximate xu (rather than xu− xv) by reporting
an estimate x̂u such that

Pr
[
|x̂u − x∗u| ≤ ε||x∗||∞

]
≥ 1− 1

s
,

where x∗ = L+
Gb is a fixed solution to LGx = b. Here and throughout, A+ denotes the Moore-Penrose

pseudo-inverse of A.1 Fourth, the runtime bound can be replaced by O(fε−2s3 log s) whenever the
representation of G allows to sample, in O(f) time, a uniformly random neighbor of a vertex.

Whenever µ2
d is bounded away from 0, Theorem 1.1.1 achieves polylogarithmic (in n) runtime.

However, in graphs with a small spectral gap our runtime bound becomes polynomial, even for
fixed d and ε. For example, the n-cycle requires plugging µ2 ≤ O(1/n2), and then our runtime
bound evaluates to O(s3 log s) for s = O(n2 log(n2 · n)) = O(n2 log n). Our next result shows that
polynomial runtime is inevitable; more precisely, the worst-case runtime must be linear in n, even
if the graph is sparse and fixed in advance. Its proof appears in Section 1.3.

Theorem 1.1.2. For infinitely many integers n ≥ 1, there is a (strongly explicit) connected non-
bipartite 3-regular graph G = (V,E) with n vertices, such that the following holds for every rando-
mized algorithm. If on every input u, v ∈ V and b ∈ {ez − ew|z 6= w ∈ V }, the algorithm’s output
δ̂u,v ∈ R satisfies, for some x that solves LGx = b,

Pr
[
|δ̂u,v − (xu − xv)| ≤ 0.49 ·max

ij∈E
|xi − xj |

]
>

3

4
,

then the algorithm’s worst-case time is Ω(n). This holds even if u, v ∈ V are fixed in advance and
G can be preprocessed arbitrarily.

SDD systems. Our next result generalizes Theorem 1.1.1 from a Laplacian LG to an SDD matrix
S. When b is in the range of S, or equivalently, orthogonal to the kernel of S, a natural solution to
the system Sx = b is x = S+b. But since our method requires the S to have normalized diagonal
entries, we will aim at another solution x∗, construed as follows. Using (only) S to define

D
def
= diag(S11, ..., Snn) and S̃

def
= D−1/2SD−1/2 (1.1)

1For a matrix A ∈ Rn×n, let its Singular Value Decomposition (SVD) be A = UΣV T where Σ is a diagonal matrix
of the positive singular values, then the Moore-Penrose pseudo-inverse of A is A+ = V Σ−1UT .
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our linear system can be written as S̃(D1/2x) = D−1/2b, and leads to a solution x∗ written using
the pseudo-inverse of S̃ (rather than of S).

Fact 1.1.3. Let Sx = b be a feasible SDD linear system, and let D and S̃ are as in (1.1). Then

x∗
def
= D−1/2S̃+D−1/2b

always solves the system.

Proof. D−1/2 is invertible, thus b ∈ range(S) = range(SD−1/2) andD−1/2b ∈ range(D−1/2SD−1/2) =

range(S̃). It follows that S̃S̃+D−1/2b = D−1/2b and thus

Sx∗ = (D1/2D−1/2)S(D−1/2S̃+D−1/2b) = D1/2S̃S̃+D−1/2b = D1/2D−1/2b = b.

Theorem 1.1.4. There exists a randomized algorithm with the following guarantee. Suppose the
input is

〈
S, b, u, ε, λ̃up

〉
, where

• S ∈ Rn×n is an SDD matrix,

• b ∈ Rn is in the range of S (equivalently, orthogonal to the kernel of S),

• u ∈ [n], ε > 0, and

• λ̃up < 1 is an upper bound on max{ λ̃i+1
2 : i ∈ [n], λ̃i < 1} where 1 ≥ λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n ≥ −1

are the eigenvalues of D−1/2(D − S)D−1/2 = I − S̃,

and let x∗ be the solution for Sx = b given in Fact 1.1.3. Then the algorithm outputs x̂u ∈ R that
satisfies

Pr
[
|x̂u − x∗u| ≤ ε||x∗||∞

]
≥ 1− 1

s

for s = O(log1/λ̃up
(ε−1(1− λ̃up)−1n

maxi∈[n]Dii
mini∈[n]Dii

)). The algorithm runs in time O(fε−2s3 log s), where
f is the time to make a step in a random walk in the weighted graph formed by the non-zeros of S.

We prove these results in Section 1.4. Similarly to Theorem 1.1.1, if the algorithm is given an
upper bound Bup on ||b||0 ≤ n, then the expression for s can be refined by replacing n with Bup. We
point out that Theorem 1.1.4 makes no assumptions about the multiplicity of the eigenvalue 1 of
D−1/2(D − S)D−1/2, e.g., when S is a graph Laplacian LG, the graph need not be connected. The
only assumption needed to achieve a polylogarithmic running time (assuming f is not the dominant
term) is that all eigenvalues strictly smaller than 1 are actually bounded away from 1 (and that
maxi∈[n]Dii
mini∈[n]Dii

≤ poly(n), which is trivial if S has polynomial entries).

Local Algorithm. Our algorithms in Theorems 1.1.1 and 1.1.4 are local in the sense that they
query a small portion of their input, usually around the input vertex, when viewed as graph algo-
rithms. Local algorithms for graph problems were studied in several contexts, like graph partitio-
ning [ST04, AP09], Web analysis [CGS04, ABC+08], and distributed computing [Suo13]. Rubinfeld,
Tamir, Vardi, and Xie [RTVX11] introduced a formal concept of Local Computation Algorithms that
requires consistency between the local outputs of multiple executions (namely, these local outputs
must all agree with a single global solution). As explained earlier, out algorithms satisfy this con-
sistency requirement.
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Applications. An example application of our results is computing quickly the PageRank (defined
in [BP98]) of a single node in a d-regular undirected graph. Recall that the PageRank vector of an n-
vertex graph with associated transition matrix P is the solution to the linear system x = 1−α

n
~1+αPx,

where 0 < α < 1 is a given parameter and ~1 ∈ Rn denotes the all-ones vector. Equivalently, x solves
the system Sx = 1−α

n
~1 where S = I − αP is an SDD matrix with 1’s on the diagonal. As all

eigenvalues of P are of magnitude at most 1 (recall P is a transition matrix), all eigenvalues of
I − S̃ = I − S = αP are of magnitude at most α, and the runtime guaranteed by Theorem 1.1.4 is
logarithmic (with base 2

α+1).
Another example application is computing the effective resistance between a pair of vertices

u, v in a graph G (given u,v and G as input). It is well known that the effective resistance,
denoted Reff(u, v), is given by xu − xv where x solves LGx = eu − ev. For example, the spectral-
sparsification algorithm of Spielman and Srivastava [SS11] relies on a near-linear time algorithm
(that they devise) for approximating the effective resistances of all edges in G. We can approximate
the effective resistance between a pair of vertices in a constant-degree expander G by applying The-
orem 1.1.1. Observe that we can use Bup = 2, hence the runtime is O( 1

ε2
polylog 1

ε ), independently
of n. The additive accuracy is ε · maxij∈E(G) |xi − xj |; in fact, each xi − xj is the potential diffe-
rence between i and j when a potential difference of Reff(u, v) is imposed between u and v, thus
maxij∈E(G) |xi − xj | ≤ xu − xv = Reff(u, v), and the output R̂eff(u, v) actually achieves a multipli-
cative guarantee Pr[R̂eff(u, v) ∈ (1± ε) Reff(u, v)] ≥ 1− 1

s .

1.1.2 Techniques and Related Work

Our basic technique (manifested in Theorem 1.1.1) relies on the formula

∀X ∈ Rn×n, ‖X‖ < 1, (I −X)−1 =
∞∑
t=0

Xt,

where throughout, ||X|| denotes the spectral norm of a matrix X. It works as follows. Given a
Laplacian L = LG of a d-regular graph G, observe that 1

dL = I− 1
dA where A is the adjacency matrix

of G. Assume for a moment that ||1dA|| < 1, then by the above formula (1
dL)−1 = (I − 1

dA)−1 =∑∞
t=0(1

dA)t, and the solution of the linear system would be x = L−1b = 1
d

∑∞
t=0(1

dA)tb. The point
is that the summands decay exponentially because ||(1

dA)tb||2 ≤ ||(1
dA)t|| · ||b||2 ≤ ||(1

dA)||t · ||b||2.
Therefore, we can estimate xu using the first t0 terms, i.e., x̂u = eTu

1
d

∑t0
t=0(1

dA)tb where t0 is
logarithmic (with base ‖1

dA‖
−1 > 1). In order to compute each term eTu

1
d(1
dA)tb, observe that

eTu (1
dA)tew is exactly the probability that a random walk of length t starting at u will end at vertex

w. Thus, if we perform a random walk of length t starting at u, and we denote by z the (random)
vertex at which the walk ends, then

E[bz] =
∑
w∈V

eTu (
1

d
A)tewbw = eTu (

1

d
A)tb.

If we perform several random walks (specifically, poly(t0,
1
ε ) many suffices), average the resulting

bz’s, and then multiply by 1
d , then with high probability, we will obtain a good approximation to

eTu
1
d(1
dA)tb.
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Unfortunately, it is not the case that ||1dA|| < 1, as 1
dA
~1 = ~1. Nevertheless, we can still get a

meaningful result if all eigenvalues of A except for the largest one are smaller than d (equivalently,
the graph G is connected). First, we get rid of any negative eigenvalues by the standard trick of
considering (dI+A)/2 instead of A, which is equivalent to adding d self-loops at every vertex. Now
assuming that A is PSD and b is orthogonal to ~1 (otherwise the linear system has no solution), the
linear system Lx = b has infinitely many solutions, and we can aim to estimate the specific solution
x∗

def
= L+b by 1

d

∑t0
t=0(1

dA)tb. Indeed, the idealized analysis above still applies by restricting all our
calculations to the subspace that is orthogonal to the all-ones vector.

The idea of approximating the inverse (I −X)−1 =
∑∞

t=0X
t (for ||X|| < 1) by random walks

dates back to von Neumann and Ulam [FL50, Was52]. While we approximate each power Xt by
separate random walks of length t and truncate the tail (powers above some t0), their method
employs random walks whose length is random, and their expectation gives exactly the infinite
sum. This is done by assigning some probability to terminate the walk at each step, and weighting
the value of the walk accordingly (to correct the expectation).

The idea of approximating a generalized inverse L∗ of L = dI−A by 1
d

∑t0
t=0(1

dA)t on directions
that are orthogonal to the all-ones vector was recently used by Doron, Le Gall, and Ta-Shma
[DGT17] to show that L∗ can be approximated in probabilistic log-space. However, since they
wanted to output L∗ explicitly, they could not ignore the all-ones direction and they needed to
relate L∗ to 1

d

∑∞
t=0(1

dA)t by “peeling off” the all-ones direction, inverting using the infinite sum
formula, and then adding back the all-ones direction.

The idea of estimating powers of a normalized adjacency matrix 1
dA (or more generally, a

stochastic matrix) by performing random walks is well known, and was used also in [DSTS17,
DGT17] mentioned above. Chung and Simpson [CS15] used it in a context that is related to ours,
of solving a Laplacian system LGx = b but with a boundary condition, namely, a constraint that
xi = bi for all i in the support of b. Their algorithm solves for a subset of the coordinatesW ⊆ V , i.e.,
their algorithm approximates x|W (the restriction of x to coordinates in W ) where x solves Lx = b

under the boundary condition. They relate the solution x to the Dirichlet heat-kernel PageRank
vector, which in turn is related to an infinite power series of a transition matrix (specifically, to
fT e−t(I−PW ) = e−tfT

∑∞
k=0

tk

k!P
k
W where PW is the transition matrix of the graph induced by W ,

t ∈ R, and f ∈ R|W |), and their algorithm uses random walks to approximate the not-too-large
powers of the transition matrix, proving that the remainder of the infinite sum is small enough.

Recently, Shyamkumar, Banerjee and Lofgren [SBL16] considered a related matrix-power pro-
blem, where the input is a matrix A ∈ Rn×n, a power ` ∈ N, a vector z ∈ Rn, and an index t ∈ [n],
and the goal is to compute coordinate t of A`z. They devised for this problem a sublinear (in nnz(A))
algorithm, under some bounded-norm conditions and assuming t ∈ [n] is uniformly random. Their
algorithm relies, in part, on von Neumann and Ulam’s technique of computing matrix powers using
random walks, but of prescribed length. It can be shown that approximately solving positive definite
systems for a particular coordinate is reducible to the matrix-power problem.2 However, in contrast

2Let Ax = b be a linear system where A is positive definite. Let λ be the largest eigenvalue of A. Let A′ def= 1
2λ
A and

b′
def
= 1

2λ
b. Consider the equivalent system (I−(I−A′))x = b′. As the eigenvalues of A′ are in (0, 1/2], the eigenvalues

of I −A′ are in [1/2, 1). Thus, the solution to the linear system is given by x = (I − (I −A′))−1b′ =
∑∞
t=0(I −A′)tb.

Therefore, we can approximate xu by truncating the infinite sum at some t0 and approximating each power t < t0
by the algorithm for the matrix-power problem.
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to our results, their expected runtime is polynomial in the input size (specifically nnz(A)2/3), and
holds only for a random t ∈ [n].

To generalize from Laplacians of regular graphs to SDD matrices (as in our Theorem 1.1.4), we
face three issues. The first one is the irregularity of general SDD matrices, which we resolve by
normalizing the SDD matrix S, and solving the equivalent (normalized) system S̃(D1/2x) = D−1/2b

where D = diag(S11, ..., Snn), and S̃ = D−1/2SD−1/2. Second, general SDD matrices can have
positive off-diagonal elements, and thus we employ a random walk that “remembers” the signs
it has seen. Third, diagonal elements may strictly dominate their row, and we address this by
terminating the random walk early with some probability.

1.2 A d-regular Laplacian Solver

In this section we prove Theorem 1.1.1. Let G = (V = [n], E) be a connected d-regular graph
with adjacency matrix A ∈ Rn×n. Let the eigenvalues of A be d = λ1 > λ2 ≥ · · · ≥ λn, and
let their associated orthonormal eigenvectors be u1, . . . , un. Then u1 = 1√

n
· ~1 ∈ Rn, and we can

write A = UΛUT where U = [u1 u2 . . . un] is unitary and Λ = diag(λ1, ..., λn). For u, v ∈ [n], let
χu,v

def
= eu − ev where ei is the i-th standard basis vector. Then the Laplacian of G is given by

L
def
=
∑
uv∈E

χu,vχ
T
u,v = dI −A = U(dI − Λ)UT .

Observe that L does not depend on the orientation of each edge uv, and that µ2
def
= d − λ2 is the

smallest non-zero eigenvalue of L. The Moore-Penrose pseudo-inverse of L is

L+ def
= U · diag(0, (d− λ2)−1, . . . , (d− λn)−1) · UT .

We assume henceforth that all eigenvalues of A are non-negative. At the end of the proof, we will
remove this assumption (by adding self-loops).

The idea behind the next fact is that L = d(I− 1
dA), and 1

dA has norm strictly smaller than one
when operating on the subspace that is orthogonal to the all-ones vector, and hence, the formula
(I −X)−1 =

∑∞
t=0X

t for ||X|| < 1 is applicable for the span of {u2, ..., un}.

Fact 1.2.1. For every x ∈ Rn that is orthogonal to the all-ones vector, L+x = 1
d

∑∞
t=0(1

dA)tx.

Proof. It suffices to prove the claim for each of u2, . . . , un as the fact will then follow by linearity.
Fix i ∈ {2, . . . , n}. Then since |λid | < 1,

∞∑
t=0

(1

d
A
)t
ui =

∞∑
t=0

(λi
d

)t
ui =

1

1− λi
d

ui =
d

d− λi
ui = dL+ui.

We now describe an algorithm that on input b ∈ Rn that is orthogonal to the all-ones vector,
and two vertices u 6= v ∈ [n], returns an approximation δ̂u,v to xu − xv, where x solves Lx = b. As
G is connected, the null space of L is equal to span{~1 } and hence xu − xv is uniquely defined, and
can be written as xu − xv = χTu,vL

+b.

9



Algorithm 1.1 δ̂u,v = SolveLinearLaplacian(G, b, ||b||0, u, v, ε, d, µ2)

1. Set

s =
log(2

√
2ε−1 d

µ2

√
||b||0)

log( d
d−µ2 )

,

and ` = O(( ε
4s)
−2 log s).

2. For t = 0, 1, . . . , s− 1 do

(a) Perform ` independent random walks of length t starting at u, and let u(t)
1 , . . . , u

(t)
` be

the vertices at which the random walks ended. Independently, perform ` independent
random walks of length t starting at v, and let v(t)

1 , . . . , v
(t)
` be the vertices at which the

random walks ended.
(b) Set δ̂(t)

u,v = 1
`

∑
i∈[`](bu(t)i

− b
v
(t)
i

).

3. Return δ̂u,v = 1
d

∑s−1
t=0 δ̂

(t)
u,v.

Claim 1.2.2. For b that is orthogonal to the all-ones vector, |χTu,vL+b − χTu,v
1
d

∑s−1
t=0 (1

dA)tb| ≤
ε

2d ||b||∞.

Proof. Using Fact 1.2.1,

χTu,vL
+b− χTu,v

1

d

s−1∑
t=0

(
1

d
A)tb = χTu,v

1

d

∞∑
t=s

(
1

d
A)tb,

and thus

|χTu,vL+b− χTu,v
1

d

s−1∑
t=0

(
1

d
A)tb| ≤ ||χTu,v||2 · ||

1

d

∞∑
t=s

(
1

d
A)tb||2.

We know that ||χTu,v||2 =
√

2, so it remains to bound ||1d
∑∞

t=s(
1
dA)tb||2. Decomposing b =

∑n
i=2 ciui

we get that
∑n

i=2 c
2
i = ||b||22 and

∞∑
t=s

(
1

d
A)tb =

n∑
i=2

ciui

∞∑
t=s

(
λi
d

)t =
n∑
i=2

(λid )s

1− λi
d

ciui = d
n∑
i=2

(λid )s

d− λi
ciui.

Hence,

||1
d

∞∑
t=s

(
1

d
A)tb||22 =

n∑
i=2

(
(λid )s

d− λi

)2

c2
i ||ui||22 ≤

(
(λ2d )s

d− λ2

)2 n∑
i=2

c2
i =

(
(1− µ2

d )s

µ2

)2

||b||22,

where the first equality is because the ui’s are orthogonal. Altogether,

|χTu,vL+b− χTu,v
1

d

s−1∑
t=0

(
1

d
A)tb| ≤

√
2

(1− µ2
d )s

µ2
||b||2 ≤

√
2

(1− µ2
d )s

µ2

√
||b||0 · ||b||∞ =

ε

2d
||b||∞,
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as claimed.

Claim 1.2.3. Pr
[
|δ̂u,v − χTu,v 1

d

∑s−1
t=0 (1

dA)tb| > ε
2d ||b||∞

]
≤ 1

s .

Proof. Observe that eTu (1
dA)t is a probability vector over V , and eTu (1

dA)tew is exactly the probability
that a random walk of length t starting at u will end at w. Thus, for every t ∈ {0, 1, . . . , s− 1} and
i ∈ [`], we have

E[b
u
(t)
i

] =
∑
w∈[n]

eTu (
1

d
A)tewbw = eTu (

1

d
A)tb,

and similarly E[b
v
(t)
i

] = eTv (1
dA)tb. By a union bound over Hoeffding bounds, with probability

at least 1 − 1
s , for every t ∈ {0, 1, . . . , s − 1}, we have |1`

∑
i∈[`] bu(t)i

− eTu (1
dA)tb| ≤ ε

4s ||b||∞ and

|1`
∑

i∈[`] bv(t)i
− eTv (1

dA)tb| ≤ ε
4s ||b||∞. Recalling that δ̂u,v = 1

d

∑s−1
t=0

1
`

∑
i∈[`](bu(t)i

− b
v
(t)
i

), with

probability at least 1− 1
s we have |δ̂u,v − χTu,v 1

d

∑s−1
t=0 (1

dA)tb| ≤ ε
2d ||b||∞, as claimed.

Combining Claim 1.2.2 and Claim 1.2.3 we get that (with probability 1− 1
s ) |δ̂u,v − χ

T
u,vL

+b| ≤
ε
d ||b||∞. Now, as x solves Lx = b, for every i ∈ [n] we have

∑
j∈N(i)(xi−xj) = bi whereN(i) is the set

of neighbors { j : ij ∈ E }, which implies that for some neighbor j of i, it holds that |xi− xj | ≥ |bi|d .
Therefore, maxij∈E |xi − xj | ≥ 1

d ||b||∞. We conclude that |δ̂u,v − χu,vL+b| ≤ ε ·maxij∈E |xi − xj |.
We now turn to the runtime of Algorithm 1.1, which is dominated by the time it takes to perform
the random walks. There are 2s · ` random walks in total. The random walks do not need to be
independent for different values of t (as we applied a union bound over the different t), we can
extend, at each iteration t, the 2` respective random walks constructed at iteration t − 1 by an
extra step in time O(d) (recall we assume G is given as an adjacency list), obtaining a total runtime
O(s · ` · d) = O(dε−2s3 log s). To simplify the expression for s, we need the following bound.

Fact 1.2.4. For all δ ∈ (0, 1), 1
ln(1−δ)−1 ≤ 1

δ .

Proof. We need to show that δ ≤ ln(1− δ)−1, or equivalently, e−δ ≥ 1− δ, which is well known.

Applying Fact 1.2.4 to δ = µ2
d , we have s ≤

d
µ2

log(2
√

2ε−1 d
µ2

√
||b||0), and conclude the following.

Theorem 1.2.5. Given an adjacency list of a d-regular n-vertex graph G, a vector b ∈ Rn that is
orthogonal to the all-ones vector, ||b||0, u, v ∈ [n], ε > 0, and µ2 = d − λ2, with probability at least
1 − 1

s , Algorithm 1.1 outputs a value δ̂u,v ∈ R such that |δ̂u,v − χTu,vL+b| ≤ ε · maxij∈E |xi − xj |.
Algorithm 1.1 runs in time O(dε−2s3 log s) for s = O( d

µ2
log(ε−1 d

µ2
||b||0)).

It remains to show how to remove the assumption that A has no negative eigenvalues. Given an
adjacency matrix A which might have negative eigenvalues, consider the PSD matrix A′ = A+ dI,
which is the adjacency matrix of the 2d-regular graph G′ obtained from G by adding d self-loops
to each vertex. Observe that A′ = U(Λ + dI)UT and we can write L = dI − A = (2dI − A′), and
thus, similarly to Fact 1.2.1, L+x = 1

2d

∑∞
t=0( 1

2dA
′)t, for x ∈ Rn that is orthogonal to the all-ones

vector. Therefore, if we use A′ (which is PSD) to guide Algorithm 1.1’s random walks (i.e., at
each step of a walk, with probability 1/2 the walk stays put and with probability 1/2 it moves to a
uniform neighbor in G) and apply Claims 1.2.2 and 1.2.3 (which apply even when A has self-loops),
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an estimate δ̂u,v satisfying with high probability |12 δ̂u,v −χ
T
u,vL

+b| ≤ εmaxij∈E |xi−xj | is obtained.
When running Algorithm 1.1 on G′, the term s evaluates to O( 2d

2d−(λ2+d) log(ε−1 2d
2d−(λ2+d) ||b||0)) =

O( d
µ2

log(ε−1 d
µ2
||b||0)), thus, leaving the guarantee of Theorem 1.2.5 intact (up to constant factors).

Theorem 1.1.1 follows by noting that the analysis in Claim 1.2.2 and Claim 1.2.3 holds also
when replacing ||b||0 by an upper bound Bup ≥ ||b||0 and µ2 by a lower bound on µ2.

1.3 A Lower Bound for Graphs with Poor Expansion

In this section we prove Theorem 1.1.2. In light of Theorem 1.2.5, a natural question is whether
the runtime dependence on 1

µ2
is necessary. For graphs with poor expansion, like the n-cycle,

the runtime bound in Theorem 1.2.5 becomes polynomial, even for fixed d and ε. We show that
for general d-regular graphs, polynomial time is inevitable; more precisely, we present a d-regular
graph G (with poor expansion, of course) for which approximating xu− xv requires Ω(n) time. Let
W1

def
= {ez − ew ∈ Rn : z 6= w ∈ [n2 ]}, and let W2

def
= {ez − ew ∈ Rn : z ∈ [n2 ], w ∈ [n] \ [n2 ]}. Let

W̄
def
= W1 ∪W2.

Theorem 1.3.1 (Theorem 1.1.2 restated). For infinitely many integers n ≥ 1, there is a (strongly
explicit) connected non-bipartite 3-regular graph G = (V,E) with n vertices, such that the following
holds for every randomized algorithm. If on every input u, v ∈ V and b ∈ W̄ , the algorithm’s output
δ̂u,v ∈ R satisfies, for some x that solves LGx = b,

Pr
[
|δ̂u,v − (xu − xv)| ≤ 0.49 ·max

ij∈E
|xi − xj |

]
>

3

4
,

then the algorithm’s worst-case time is Ω(n). This holds even if u, v ∈ V are fixed in advance and
G can be preprocessed arbitrarily.

Proof. Consider a 3-regular G which is a disjoint union of two connected graphs G1 (on [n2 ]) and
G2 (on n \ [n2 ]) with a single edge uv connecting G1 and G2.3 It is well known that for (unweighted
G and) b = ez − ew, all solutions to LGx = b are vectors x such that xi − xj is the electrical flow
from i to j when a unit of current is shipped from z to w (in G). Therefore, for every solution x to
LGx = b where b = ez − ew, it holds that maxij∈E |xi − xj | ≤ 1. Consider two possibilities for the
vector b. In the first case, b ∈ W1. Then for every solution x to LGx = b it holds that xu − xv = 0

(as u, z, w ∈ V (G1), v ∈ V (G2), and by summing the flow conservation equation over V (G1)). In
the second case, b ∈W2. Then for every solution x to LGx = b it holds that xu− xv = 1 (again, by
summing the flow conservation equation over V (G1)). Therefore, ε = 0.49 will suffice to distinguish
between the two cases. We now use Yao’s minimax principle to show that any randomized algorithm
that reads less than n

10 coordinates of b, with probability at least 1
4 , fails to distinguish between the

two cases (outputting 1 on W1 and 0 on W2) , which completes the proof.
Consider the (hard) distribution that assigns probability 1

2
1
|W1| to each b ∈ W1 and 1

2
1
|W2| to

each b ∈ W2. Now, let A be any deterministic algorithm that reads less than n
10 coordinates of

3Such a 3-regular G exists (and is strongly explicit). E.g., (assuming n is even but not divisible by four) take a
cycle on [n

2
], add a matching on [n

2
− 1], and let G1 be the resulting graph. Notice that all vertices in G1 have degree

three except for u = n
2
which has degree two. Do the same for G2 (replacing u by v = n

2
+ 1) and connect u and v.
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b. Let I ⊆ [n] be the coordinates of b that A reads when operating on the all zeros vector ~0.
Observe that for every b ∈ W̄ such that b|I = ~0, we have A(b) = A(~0). Therefore, as |I| < n

10 ,
if A(~0) = 0, then A errs (from the W1 part) with probability (over the distribution) at least
1
2(1 − |I|

n/2)(1 − |I|
n/2−1) ≥ 1

2(4
5)2 ≥ 1

4 , and if A(~0) = 1, then A errs (from the W2 part) with

probability (over the distribution) at least 1
2(1− |I|

n/2)2 ≥ 1
2(4

5)2 ≥ 1
4 .

1.4 An SDD Solver

In this section we prove Theorem 1.1.4, by generalizing the ideas behind Algorithm 1.1 to solving
linear systems in SDD matrices. To generalize from Laplacians of regular graphs to SDD matrices,
we face several issues, which have been described in section 1.1.2.

We proceed with a formal description of our result for SDD matrices. Let S ∈ Rn×n be an
SDD matrix (i.e., S is symmetric and Sii ≥

∑
j 6=i |Sij | for all i ∈ [n]). We assume that Sii > 0

for every i (as otherwise the entire i-th row and column are zero and can be safely ignored). Let
D

def
= diag(S11, . . . , Snn), and A

def
= D − S. Let Ã def

= D−1/2AD−1/2 (for intuition, this is the
normalized adjacency matrix when S is a Laplacian) and let S̃ def

= D−1/2SD−1/2 = I − Ã (the
normalized Laplacian, respectively). For an eigenvalue µ of Ã, let Eµ(Ã)

def
= {x : Ãx = µx}.

Observe that Ã � I ⇐⇒ A � D ⇐⇒ S � 0; Recalling that S is SDD, we conclude that Ã � I.
Moreover,

Ãx = x ⇐⇒ D−1/2(D − S)D−1/2x = x ⇐⇒ D−1/2SD−1/2x = 0 ⇐⇒ SD−1/2x = 0,

so E1(Ã) = D1/2·ker(S). Observe that Ã � −I ⇐⇒ A � −D ⇐⇒ D+A � 0; SinceD+A is SDD,
we conclude that Ã � −I. Let 1 ≥ λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n ≥ −1 be Ã’s eigenvalues with associated
orthonormal eigenvectors ũ1, . . . , ũn (note that Ã is symmetric). We can write Ã = Ũ Λ̃ŨT where
Ũ = [ũ1 ũ2 . . . ũn] is unitary and Λ̃ = diag(λ̃1, . . . , λ̃n). Note that S̃ = Ũ(I − Λ̃)ŨT , and that
S̃+ = Ũ( 1

1−λ̃1
, . . . , 1

1−λ̃n
)ŨT where by convention 1

0 stands for 0. Let di
def
= Dii, dmax

def
= maxi∈[n] di,

and dmin
def
= mini∈[n] di. Let B̃ def

= Ã+I
2 . Note that B̃ = Ũ Λ̃+I

2 ŨT , and that the eigenvalues of B̃

are in [0, 1]. Let λ̃ def
= max{ λ̃i+1

2 : i ∈ [n], λ̃i < 1} (the largest non-one eigenvalue of B̃). We now
describe an algorithm that on input b ∈ Rn that is in the range of S (equivalently, is orthogonal to
the kernel of S), and u ∈ [n], returns an approximation x̂u to x∗u, where x∗ = D−1/2S̃+D−1/2b is
the solution for Sx = b given in Fact 1.1.3.

We now prove that Algorithm 1.2 indeed provides a good approximation. Note that b is ortho-
gonal to ker(S) iff D−1/2b is orthogonal to D1/2 · ker(S) = E1(Ã) = E1(B̃).

Claim 1.4.1. For b that is orthogonal to the kernel of S,

∣∣∣x∗u − 1

2
eTuD

−1/2
s−1∑
t=0

B̃tD−1/2b
∣∣∣ ≤ ε

4
||D−1b||∞. (1.2)

Proof. Observe that

2S̃+ =
(I − Ã

2

)+
=
(
I − Ã+ I

2

)+
= (I − B̃)+.
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Algorithm 1.2 x̂u = SolveLinearSDD(S, b, ||b||0, u, ε, λ̃)

1. Set s = log1/λ̃(2ε−1(1− λ̃)−1
√
||b||0 ·

√
dmax/dmin), and ` = O(( ε

2s)
−2 log s).

2. For t = 0, 1, . . . , s− 1 do

(a) Perform ` independent (lazy) random walks of length t starting at u, where in one step
from vertex v, the walk stays put with probability 1

2 , moves to v′ with probability |Avv′ |2dv
,

and terminates with the remaining probability.
For each walk i ∈ [`], let u(t)

i be the vertex where the walk ended, and let σ(t)
i be

the product of the signs along the walk where stay-put steps have sign 1 and ot-
hers have sgn(Avv′). Formally, if the walk consists of u = u0, u1, .., ut then σ

(t)
i =∏

j∈[t] sgn((D−1A+ I)uj−1,uj ) and if it terminated earlier then σ(t)
i = 0.

(b) Set x̂(t)
u = 1

`

∑
i∈[`] σ

(t)
i

b
u
(t)
i

d
u
(t)
i

.

3. Return x̂u = 1
2

∑s−1
t=0 x̂

(t)
u .

Thus, as D−1/2b is in the span of eigenvectors of B̃ with associated eigenvalues in [0, 1), using the
same idea as in Fact 1.2.1 we get that

S̃+D−1/2b =
1

2

∞∑
t=0

B̃tD−1/2b,

and hence (recall x∗u = eTuD
−1/2S̃+D−1/2b)

x∗u −
1

2
eTuD

−1/2
s−1∑
t=0

B̃tD−1/2b =
1

2
eTuD

−1/2
∞∑
t=s

B̃tD−1/2b.

Similarly to the proof of Claim 1.2.2, we now get that

|1
2
eTuD

−1/2
∞∑
t=s

B̃tD−1/2b| ≤ 1

2
√
du
||
∞∑
t=s

B̃tD−1/2b||2

≤ 1

2
√
dmin

∞∑
t=s

λ̃t||D−1/2b||2

≤ 1

2
√
dmin

· λ̃s

1− λ̃
||D−1/2b||2

≤ 1

2

√
dmax
dmin

· λ̃s

1− λ̃
||D−1b||2

≤ 1

2

√
dmax
dmin

· λ̃s

1− λ̃

√
||b||0 · ||D−1b||∞ =

ε

4
||D−1b||∞.
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Claim 1.4.2. With probability at least 1− 1
s ,∣∣∣x̂u − 1

2
eTuD

−1/2
s−1∑
t=0

B̃tD−1/2b
∣∣∣ ≤ ε

4
||D−1b||∞.

Proof. Recalling that Ã = D−1/2AD−1/2, we can write

D−1/2B̃tD−1/2 = D−1/2
(Ã+ I

2

)t
D−1/2 = D−1/2

(
D1/2D

−1A+ I

2
D−1/2

)t
D−1/2 =

(D−1A+ I

2

)t
D−1.

Hence (by induction), for every t ∈ {0, 1, . . . , s− 1} and i ∈ [`], we have

eTuD
−1/2B̃tD−1/2b = eTu

(D−1A+ I

2

)t
D−1b = E[σ

(t)
i

b
u
(t)
i

d
u
(t)
i

].

By a union bound over Hoeffding bounds (as |σ(t)
i

b
u
(t)
i

d
u
(t)
i

| ≤ ||D−1b||∞), with probability at least 1− 1
s ,

for every t ∈ {0, 1, . . . , s− 1},

∣∣∣1
`

∑
i∈[`]

σ
(t)
i

b
u
(t)
i

d
u
(t)
i

− eTuD−1/2B̃tD−1/2b
∣∣∣ ≤ ε

2s
||D−1b||∞,

which implies that

∣∣∣1
2

s−1∑
t=0

x̂(t)
u −

1

2
eTuD

−1/2
s−1∑
t=0

B̃tD−1/2b
∣∣∣ ≤ ε

4
||D−1b||∞.

Combining Claim 1.4.1 and Claim 1.4.2 we get that (with probability 1 − 1
s ) |x̂u − x∗u| ≤

ε
2 ||D

−1b||∞. Now, letting x denote any solution to the system Sx = b, for every i ∈ [n] we
have

|bi|
di

=
|
∑

j∈[n] Sijxj |
di

≤
∑

j∈[n] |Sij | · ||x||∞
di

≤ 2di||x||∞
di

= 2||x||∞

where the last inequality is because S is SDD. Therefore, ||D−1b||∞ ≤ 2||x||∞, and we conclude
that (with probability 1 − 1

s ) |x̂u − x
∗
u| ≤ ε||x||∞ for every solution x to the system Sx = b (and

in particular for x∗). We now turn to the runtime of Algorithm 1.2, which is dominated by the
time it takes to perform the random walks. There are s · ` random walks in total. Let f be the
time it takes to make a single step in the random walks of Algorithm 1.2 (it depends on the access
method/representation of S and/or its sparsity). The random walks do not need to be independent
for different values of t (as we applied a union bound over the different t), we can extend, at each
iteration t, the ` respective random walks constructed at iteration t− 1 by an extra step in time f ,
obtaining a total runtime O(s · ` · f) = O(fε−2s3 log s). We conclude the following.

15



Theorem 1.4.3. Given access to an SDD matrix S ∈ Rn×n, b ∈ Rn that is orthogonal to the kernel
of S, ||b||0, u ∈ [n], ε > 0, and λ̃ = max{ λ̃i+1

2 : i ∈ [n], λ̃i < 1}, with probability at least 1 − 1
s ,

Algorithm 1.2 outputs a value x̂u ∈ R such that |x̂u − x∗u| ≤ ε||x||∞ for every solution x to the
system Sx = b (and in particular for x∗). Algorithm 1.2 runs in time O(fε−2s3 log s) where f is
the worst-case time to make a step in a random walk in the weighted graph formed by the non-zeros
of S, and s = O(log1/λ̃(ε−1(1− λ̃)−1||b||0 · dmaxdmin

)).

Theorem 1.1.4 follows by noting that the analysis in Claim 1.4.1 and Claim 1.4.2 holds also
when replacing ||b||0 by an upper bound Bup ≥ ||b||0 and λ̃ by an upper bound λ̃up ≥ λ̃.

1.5 Open Questions

We conclude this chapter with a few questions that arise from our work.

• Can the algorithmic result of Section 1.4 be generalized to general PSD matrices? To general
(symmetric) matrices? Or, perhaps, can one establish a polynomial/linear-time lower bound
for solving linear systems in PSD/symmetric well-conditioned matrices for a particular coor-
dinate? It is worth noting that a recent paper by Kyng and Zhang [KZ17] makes a formal
connection between the runtime of approximate solvers (for all coordinates) for certain struc-
tured PSD linear systems (that are not SDD) and of approximate solvers for general linear
systems.

• Our runtime bounds depend on the eigenvalues of the normalized Laplacian L̃ and the nor-
malized SDD matrix S̃. Can one get comparable runtime bounds that depend directly on the
eigenvalues of the input matrices L and S?

• In Section 1.3 we established an Ω(n)-time lower bound for approximately solving linear sys-
tems in ill-conditioned Laplacians for a particular coordinate. Can the lower bound be streng-
thened to Ω(m)-time? Such a lower bound would show in particular that for ill-conditioned
Laplacians, up to logarithmic factors, approximately solving for a particular coordinate takes
as much time as approximately solving for all coordinates.
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Chapter 2

Sparsification of Graphs and
Hypergraphs

2.1 Introduction

Graphs are fundamental objects in computer science. They generally model relationships (edges)
between pairs of elements from a ground set (vertices), e.g., the Facebook friendship graph is a pair
(V,E), where V is the set of Facebook users, and uv ∈ E iff u is a Facebook friend of v. Hypergraphs
are a generalization of graphs that model higher order relationships, i.e., a relationship (hyperedge)
can be any subset of vertices. Going back to the Facebook example, a hyperedge may model a
Facebook group. All graphs considered in this chapter are undirected. When referring to weighted
graphs or hypergraphs in this chapter, we mean that the graph (hypergraph) is augmented by
edge-weights (hyperedge-weights) that are non-negative, and by unweighted graphs or hypergraphs
we mean those with unit edge-weights (hyperedge-weights). Throughout, for a weighted graph
(hypergraph) G = (V,E,w), we denote n = |V |, and m = |E|.

Let us recall some common graph and hypergraph terminology that is used in this chapter. For
a weighted graph or hypergraph G = (V,E,w) and two disjoint subsets A,B ⊆ V , let

wG(A,B)
def
=

∑
e∈E:e∩A 6=∅,e∩B 6=∅

w(e)

be the total weight of edges (hyperedges) in G having endpoints in both A and B. A cut C in a
weighted graph or hypergraph G = (V,E,w) is a proper subset C ⊂ V . Its weight/capacity/value
is defined as wG(C, C̄), where C̄ def

= V \ C. Given a weighted graph G, its Laplacian is defined as
the n× n matrix LG

def
= D −A, where D is the diagonal matrix of weighted degrees in G, and A is

the weighted adjacency matrix of G. A hypergraph is said to be of rank r if all of its hyperedges
contain at most r vertices.

Graph cuts found many applications over the years, amongst them in Computer Vision, Com-
puter Graphics, and Machine Learning [Sin04]. Hypergraph cuts found applications in load balan-
cing in parallel computing [CBD+09], and in video object segmentation [HLM09]. A recent paper
[YOTI15] showed how to reduce the task of finding the “best” (in some well-defined sense) cyber
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attack on an electricity power network to finding the minimum cut in a hypergraph.

Cut sparsification. In 1996, Benczúr and Karger [BK96] introduced the notion of graph cut-
sparsification: Given a weighted graph G = (V,E,w), a (sparse) weighted graph Gε = (V,Eε, wε)

is said to be a (1 + ε)-cut-sparsifier of G if

∀C ⊂ V, wG(C, C̄) ≤ wGε(C, C̄) ≤ (1 + ε)wG(C, C̄). (2.1)

Note that (2.1) can be equivalently written as

∀x ∈ { 0, 1 }n , xTLGx ≤ xTLGεx ≤ (1 + ε)xTLGx.

While the original definition aimed at (1 + ε)-approximation for ε ∈ (0, 1), the definition can be
extended to any approximation factor k ≥ 1. The definition also extends to hypergraph cut-
sparsification. Aside from the combinatorial interest, cut-sparsification turned out to be very useful.
As an example application, a (1 + ε)-approximation of the minimum (st) cut in G can be found by
running the best minimum (st) cut algorithm on the sparsifier graph, which improves the running
time [BK96].

We note that a different sparsification notion which preserves only the weights of the cuts of
weight up to some threshold, was researched as well (see e.g. [CX16]).

Spectral sparsification. In 2004, Spielman and Teng [ST04] introduced the notion of graph
spectral-sparsification: Given a weighted graph G = (V,E,w), a (sparse) weighted graph Gε =

(V,Eε, wε) is said to be a (1 + ε)-spectral-sparsifier of G if

∀x ∈ Rn, xTLGx ≤ xTLGεx ≤ (1 + ε)xTLGx.

Note that every spectral-sparsifier is a cut-sparsifier but the converse is not true. Spectral-sparsifiers
enabled Spielman and Teng [ST04] to devise nearly linear-time Laplacian systems solvers.

Known sparsification results. Benczúr and Karger [BK96] showed how to construct (with high
probability) graph (1+ε)-cut-sparsifiers with O(ε−2n log n) edges. Spielman and Teng [ST04] showed
how to construct (with high probability) graph (1 + ε)-spectral-sparsifiers with O(ε−2n logO(1) n)

edges. A series of improvements by Spielman and Srivastava [SS08], and Batson, Spielman and
Srivastava [BSS12] showed how to construct graph (1 + ε)-spectral-sparsifiers with O(ε−2n) edges.
In all these constructions, the sparsifier graph Gε is a reweighted subgraph of G. On the lower bound
side, Andoni, Chen, Krauthgamer, Qin, Woodruff and Zhang [ACK+16] showed a lower bound of
Ω(ε−2n) edges for graph (1 + ε)-cut-sparsification.

Turning to hypergraph cut-sparsification, Newman and Rabinovich [NR13] developed a general
function sparsification method which as a corollary yields hypergraph (1 + ε)-cut-sparsifiers with
O(ε−2n2) edges. Kogan and Krauthgamer [KK15] showed how to construct (with high probability)
(1 + ε)-cut-sparsifiers of rank-r hypergraphs, with O(ε−2n(r + log n)) edges. Their construction is
a generalization of that of Benczúr and Karger. We note that the number of hyperedges of the
sparsifier in the construction of Kogan and Krauthgamer is not better than that of Newman and
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Rabinovich for r = Ω(n). Recently, Guha, McGregor and Tench [GMT15] gave another Benczúr-
Karger flavored algorithm for rank-r hypergraph (1 + ε)-cut-sparsification, and showed how to
implement it in the dynamic hypergraph model. Their construction produces a sparsifier with
Õ(ε−2nr) edges. For hypergraphs, we currently do not know of any lower bound which is stronger
than the graph lower bound of Ω(ε−2n) edges.

In hypergraphs, hyperedges can be potentially very large (contain many vertices). It is natural
(definitely when thinking about the representation) to take the sizes of the hyperedges into account
when evaluating the sparsity of a hypergraph. To this end, Chekuri and Xu [CX16] (motivated
by the aforementioned different notion of cut sparsification they studied) introduced the following
notion of total edge size: The total edge size of a hypergraph H = (V,E,w) is defined as

∑
e∈E |e|.

As the hyperedges of the sparsifier constructed by Kogan and Krauthgamer [KK15] are potentially
of size r, the total edge size of their sparsifier is O(ε−2nr2) (for r = Ω(log n)).

Another existing line of research studies graph spectral-sparsification by trees, i.e., the spar-
sifying graph is required to be a tree. Such sparsifiers are useful in the context of solving linear
systems in Laplacian matrices (see e.g. [Spi10, section 5]). Tree sparsifiers are only expected to give
large approximation factors. Vaidya (see [BGH+06]) suggested using maximum spanning trees as
sparsifiers. It turns out that maximum spanning trees are nm-spectral-sparsifiers [BGH+06]. The
best currently known (via low-stretch spanning trees, see [Spi10, section 6] combined with the best
low-stretch spanning tree construction of Abraham and Neiman [AN12]) tree spectral-sparsifiers of
an arbitrary graph G are of approximation factor O(m log n log log n).

Our contribution. We first examine in Section 2.2 a restricted family of hypergraphs where the
intersection of every two distinct hyperedges is of size at most k. For example, the case k = 1

already generalizes ordinary graphs. Such restrictions were previously studied in other contexts, see
e.g. [RS98, BEGK04, KBEG07], but not in our context of sparsification. We show that for (1 + ε)-
cut-sparsification in such k-bounded-intersections hypergraphs, the upper bound of O(ε−2n2) edges
can be improved to O(ε−2n2− 2

k+2 ) edges, and O(ε−2n3) total edge size improves to O(ε−2n3− 4
k+2 ).

We then examine in Section 2.3 the approach of sparsifying large hyperedges by smaller ones.
We show that replacing a unit-weight hyperedge of size n by any set of weighted hyperedges of
size at most r < n, results in a distortion of Ω(n/r) in the cut values. Previously, this bound was
known only for the special case of r = 2 (i.e., replacing a hyperedge by ordinary edges of size 2),
see e.g. [VH90].

Next, we consider in Sections 2.4 and 2.5 sparsification by trees, i.e., when the sparsifier is
required to be a tree. In Section 2.4 we consider sparsifiers that can be arbitrary trees, and show
that for every weighted hypergraph H there is a weighted tree T that is an (n− 1)-cut-sparsifier of
H. In Section 2.5 we restrict ourselves to trees that are subgraphs (i.e., spanning trees), and show
that every unweighted graph G has a spanning tree that is an n3/2-cut-sparsifier of G, and every
m-edge weighted graph G has a spanning tree that is an O(m)-cut-sparsifier of G. We further show
matching lower bounds for cut-sparsification using spanning trees; specifically, there are unweighted
graphs G for which every spanning tree can only be a k-cut-sparsifier for k = Ω(n3/2), and there are
m-edge weighted graphs G for which every spanning tree can only be a k-cut-sparsifier for k = Ω(m).

Finally, in Section 2.6 we consider a related question of low congestion spanning trees (see
definition in Section 2.5). We show that while there are unweighted graphs G for which every
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spanning tree of G has Ω(n3/2)-congestion, typical graphs in the Erdős-Réni model have spanning
trees with Õ(n)-congestion.

2.2 Bounded Intersection Hypergraphs

In this section we consider a restricted family of hypergraphs where the intersection of every two dis-
tinct hyperedges is of size at most k. Such restrictions were previously studied in other contexts, see
e.g. [RS98, BEGK04, KBEG07], but not in our context of sparsification. We show (in Theorem 2.2.4)
that such hypergraphs have (1+ε)-cut-sparsifiers with O(ε−2n2− 2

k+2 ) hyperedges and O(ε−2n3− 4
k+2 )

total edge size— recall the total edge size of a set of hyperedges E, denoted total-size(E), is defined
as
∑

e∈E |e|. This improves upon the known (see Section 2.1) upper bound for general hypergraphs
of O(ε−2n2) hyperedges and O(ε−2n3) total edge size. For a set of hyperedges E and a continuous
range R ⊂ R, we use ER to denote the subset { e ∈ E : | e| ∈ R }.

Definition 2.2.1. Let H = (V,E,w) be a hypergraph. We say that H has k-bounded-intersections
if e1 6= e2 ∈ E =⇒ |e1 ∩ e2| ≤ k.

Note that every graph has 1-bounded-intersections.

Lemma 2.2.2. Let H = (V,E,w) be a k-bounded-intersections hypergraph. Then for every integer
r ≥ k, we have |E[2r,4r)| ≤ (nr )k+1, and total-size(E[2r,4r)) ≤ 4n

k+1

rk
.

Proof. As H has k-bounded-intersections, each S ⊆ V of size k + 1 can be contained in at most
one hyperedge in E. On the other hand, each hyperedge in E[2r,4r) contains at least

(
2r
k+1

)
subsets

of size k + 1. Thus,

|E[2r,4r)| ≤
(
n
k+1

)(
2r
k+1

) =
k∏
i=0

n− i
2r − i

≤
k∏
i=0

n

r
=
(n
r

)k+1
.

The second part of the lemma follows as each hyperedge in E[2r,4r) is of cardinality at most 4r.

Corollary 2.2.3. Let H = (V,E,w) be a k-bounded-intersections hypergraph. Then for every
integer r ≥ k, we have |E[2r,n]| ≤ 2 · (nr )k+1, and total-size(E[2r,n]) ≤ 8 · nk+1

rk
.

Proof. Using Lemma 2.2.2 we have

|E[2r,n]| =
blog(n/2r)c∑

t=0

|E[2·2tr,4·2tr)| ≤
blog(n/2r)c∑

t=0

( n

2tr

)k+1
≤ 2 ·

(n
r

)k+1
.

Similarly,

total-size(E[2r,n]) =

blog(n/2r)c∑
t=0

total-size(E[2·2tr,4·2tr)) ≤
blog(n/2r)c∑

t=0

4 · n
k+1

(2tr)k
≤ 8 · n

k+1

rk
.

Note that Corollary 2.2.3 implies that every 1-bounded-intersections hypergraph has total edge
size at most O(n2), like ordinary graphs.
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Theorem 2.2.4. Let H = (V,E,w) be a k-bounded-intersections hypergraph. Then there is a
(1 + ε)-cut-sparsifier Hε = (V,Eε, wε) of H such that |Eε| = O(ε−2n2− 2

k+2 ) and total-size(Eε) =

O(ε−2n3− 4
k+2 ). Furthermore, Hε can be constructed in polynomial time.

Proof. We assume that k < log n as otherwise n
2
k+2 = O(1) and n

4
k+2 = O(1), and the theorem

follows trivially from known results. Let r = n1− 2
k+2 ≥ n1/3 ≥ k. Let H1 = (V,E[1,2r), w) be

the hypergraph obtained from H by removing all hyperedges of size at least 2r, and let H2 =

(V,E[2r,n], w) be the hypergraph obtained from H by removing all hyperedges of size less than
2r. Let Hε = H1ε ∪ H2 where H1ε = (V,E1ε , w1ε) is a (1 + ε)-cut-sparsifier of H1 constructed by
the algorithm of Kogan and Krauthgamer [KK15], which is guaranteed to have (see Section 2.1)
|E1ε | = O(ε−2nr) = O(ε−2n2− 2

k+2 ). ClearlyHε is a (1+ε)-cut-sparsifier ofH. Since all hyperedges in
H1 are of size at most 2r, we have total-size(E1ε) = O(ε−2nr2) = O(ε−2n3− 4

k+2 ). By Corollary 2.2.3,
|E[2r,n]| ≤ 2 · (nr )k+1 = 2n2− 2

k+2 and total-size(E[2r,n]) ≤ 8 · nk+1

rk
= 8 · n3− 4

k+2 . The theorem
follows.

2.3 Sparsification by Smaller Hyperedges

Seeking to improve upon the known upper bounds for (1 + ε)-cut-sparsification of hypergraphs
(O(ε−2n2) edges, and O(ε−2n3) total edge size, see Section 2.1), we consider larger approximation
factors. A simple observation is that if we are willing to settle for approximation factor 2t where
t ≥ 1 is an integer, we can construct, for every hypergraph H, a 2t-cut-sparsifier of H with O(n

2

t )

edges and O(n
3

t2
) total edge size, as follows. Given a hypergraph H = (V,E,w), first replace each

hyperedge e ∈ E by t hyperedges, each of size d |e|t e+ 1 and weight identical to the hyperedge they
are replacing, which form a connected hypergraph on e (say a sunflower with kernel of size 1),
and denote the resulting hypergraph by H ′. Observe that all hyperedges in H ′ are of size at most
O(n/t), and H ′ is a t-cut-sparsifier of H. Now, run Kogan and Krauthgamer’s algorithm on H ′

with say ε = 0.99, to obtain a 2t-cut-sparsifier of H with O(n · nt ) edges and O(n · (nt )2) total edge
size (assuming n

t ≥ Ω(log n), otherwise, the bounds are O(n log n) and O(n log n · nt ), respectively).
Unfortunately, this tradeoff between the sizes of the hyperedges in the sparsifier and the ap-

proximation factor we get is inevitable (in the worst-case). Specifically, as we show next, replacing
a unit-weight hyperedge of size n by any set of weighted hyperedges of size at most r < n, results
in a distortion of Ω(n/r) in the cut values.

Theorem 2.3.1. Let H = (V, {V }) be a hypergraph with a single unit-weight hyperedge of size n,
and suppose that H ′ is an α-cut-sparsifier of H and H ′ contains only hyperedges of size ≤ r. Then
α ≥ Ω(n/r).

The rest of this section is devoted to proving Theorem 2.3.1. Throughout, V denotes a finite
ground set of size n, and w.l.o.g. assume V = [n]. We use K(r)

n to denote the complete hypergraph
([n],

(
[n]
r

)
). For a hypergraph H, we use β · H to denote the hypergraph obtained from H by

multiplying all edge weights in H by β ≥ 0. The plan is as follows. First we will show (in
Lemma 2.3.3) that for every β > 0, sparsifying H = K

(n)
n by β ·K(r)

n results in a distortion of at
least Ω(n/r) in the cut values. Then we will show that among all hypergraphs with hyperedges
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of size at most r, the hypergraph
(
n−1
r−1

)−1 · K(r)
n achieves the best approximation factor as a cut-

sparsifier of H. We note that the fact that K(r)
n is the best approximator among all hypergraphs

with hyperedges of size at most r, has been known for the special case of r = 2 (see e.g. [VH90]).

Definition 2.3.2. Let H = (V,E,w) be a connected hypergraph. Define the best cut-approximation
factor that can be achieved by using K(r)

n as a sparsifier of H as

αr(H)
def
= inf {α ≥ 1 : ∃β > 0 such that β ·K(r)

n is an α-cut-sparsifier of H } .

Lemma 2.3.3. For every integer r ≥ 2,

n

r
≥ αr(K(n)

n ) =

(
n
r

)
−
(bn

2
c
r

)
−
(dn

2
e
r

)(
n−1
r−1

) ≥ Ω
(n
r

)
,

where by convention
(
a
b

)
= 0 for b > a.

Proof. As all cuts in K(n)
n are of equal weight, αr(K

(n)
n ) is simply the max-cut in K(r)

n divided by
the min-cut in K(r)

n . Observe that in K(r)
n , all cuts with 1 ≤ k ≤ bn2 c vertices on one side have the

same weight

w
K

(r)
n

([k]) =

(
n

r

)
−
(
k

r

)
−
(
n− k
r

)
=

(
n

r

)
−
(
k − 1

r − 1

)
−
(
k − 1

r

)
−
(
n− k
r

)
,

where the second equality is by Pascal’s rule. Similarly,

w
K

(r)
n

([k − 1]) =

(
n

r

)
−
(
k − 1

r

)
−
(
n− k + 1

r

)
=

(
n

r

)
−
(
k − 1

r

)
−
(
n− k
r − 1

)
−
(
n− k
r

)
.

Thus, w
K

(r)
n

([k − 1]) ≤ w
K

(r)
n

([k]) as
(
n−k
r−1

)
≥
(
k−1
r−1

)
for k ≤ bn2 c, and we conclude that

w
K

(r)
n

([1]) ≤ w
K

(r)
n

([2]) ≤ ... ≤ w
K

(r)
n

([bn
2
c]).

Therefore,

αr(K
(n)
n ) =

w
K

(r)
n

([bn2 c])
w
K

(r)
n

([1])
=

(
n
r

)
−
(bn

2
c
r

)
−
(dn

2
e
r

)(
n−1
r−1

) , (2.2)

and observe that αr(K
(n)
n ) = Ω

(
(nr)

(n−1
r−1)

)
= Ω(nr ) and αr(K

(n)
n ) ≤ (nr)

(n−1
r−1)

= n
r .

We are now ready to prove Theorem 2.3.1.

Proof (of Theorem 2.3.1). As all cuts in H have the same weight, α is at least the max-cut in
H ′ divided by the min-cut in H ′, and every permutation on the vertices of H ′ is also an α-cut-
sparsifier. Hence, as the average of α-cut-sparsifiers is also an α-cut-sparsifier, by averaging over
all permutations, we can assume that there are weights β2, ..., βr ≥ 0 such that H ′ = ∪rt=2βt ·K

(t)
n .
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Now,

α ≥
wH′([bn2 c])
wH′([1])

=

∑r
t=2 βt · wK(t)

n
([bn2 c])∑r

t=2 βt · wK(t)
n

([1])
=

∑r
t=2 βt · αt(K

(n)
n ) ·

(
n−1
t−1

)∑r
t=2 βt ·

(
n−1
t−1

)
≥
∑r

t=2 βt · αr(K
(n)
n ) ·

(
n−1
t−1

)∑r
t=2 βt ·

(
n−1
t−1

) = αr(K
(n)
n ),

where the second equality is by (2.2), and the second inequality is as α2(K
(n)
n ) ≥ α3(K

(n)
n ) ≥

... ≥ αr(K
(n)
n ). Note that one can obtain an approximation factor of α = αr(K

(n)
n ) by taking

H ′ =
(
n−1
r−1

)−1 ·K(r)
n and hence β2 = · · · = βr−1 = 0 and βr =

(
n−1
r−1

)−1.

2.4 Sparsification by Trees

In this section we consider sparsification by trees, i.e., sparsifying a hypergraph H by a tree T (that
is not restricted to be a subgraph of H). We show (in Theorem 2.4.3) that for every weighted
hypergraph H there is a weighted tree T that is an (n− 1)-cut-sparsifier of H. The sparsifier tree
T we use is actually a cut-equivalent tree (aka Gomory-Hu tree [GH61], see Definition 2.4.1) of H.
Moreover, we show that the n − 1 term is the best possible, i.e., that there are graphs for which
every cut-equivalent tree T can only be a k-cut-sparsifier for k ≥ n − 1. When H is an ordinary
graph, we show (in Theorem 2.4.5) that the aforementioned T is also an (n−1)3-spectral-sparsifier.
Furthermore, we show that the n3 term is the best possible up to constant factors, i.e., that there
are graphs for which every cut-equivalent tree T can only be a k-spectral-sparsifier for k = Ω(n3).

Notation. Let us set up some notation that will be used throughout this section. V denotes a
finite ground set of size n, and w.l.o.g. assume V = [n]. We use S̄ to denote V \ S. We use δG(S)

to denote the set of edges (hyperedges) crossing a cut S in a graph or hypergraph G. Abusing
notation, we often omit the set brackets for a single vertex. For a tree T = (V,ET ) and an edge
e = uv ∈ ET oriented arbitrarily, we let

VT↓e
def
= {w ∈ V : w and u are in the same connected component of T \ e } .

The orientation is not important since we will use VT↓e as an argument to symmetric set functions,
e.g., the weight of the cut (VT↓e, V̄T↓e). For two graph G1 and G2, we write G1 � G2 for LG1 � LG2 ,
where � is the Löewner order between PSD matrices. For a graph G, we use β · G to denote the
graph obtained from G by multiplying all edge weights in G by β > 0.

Definition 2.4.1 (Gomory and Hu [GH61]). Let V be a finite ground set and let f : 2V → R be a
symmetric set function (i.e., f(S) = f(S̄) for every S ⊆ V ). For s 6= t ∈ V , let

αf (s, t)
def
= min { f(W ) : W ⊆ V, |W ∩ { s, t } | = 1 }

(for example, the minimum st-cut in an undirected graph on vertex set V ). We say that a weighted
tree T = (V,ET , wT ) is a cut-equivalent tree for (V, f) if
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1. For all s 6= t ∈ V , the value of the minimum st-cut in T is equal to αf (s, t); and

2. For every edge e = uv ∈ ET , the connected components of T \ e realize αf (u, v) in the sense
that f(VT↓e) = αf (u, v).

Cut sparsification. Note that the cut-equivalent notion only requires preserving the
(
n
2

)
min

st-cuts but not all 2n−1 − 1 cuts.

Theorem 2.4.2 (Goemans and Ramakrishnan [GR95]). Let V be a finite ground set and let f :

2V → R be a symmetric submodular1 function. Then there exists a cut-equivalent tree for (V, f).

An immediate corollary from Theorem 2.4.2 is that the cut function in a hypergraph (i.e., given
a weighted hypergraph H = (V,EH , wH), define f by f(S) = wH(S, S̄)) has a cut-equivalent tree,
as such cut functions are always symmetric and submodular.

We now show that cut-equivalent trees approximate all cuts up to a factor of n− 1.

Theorem 2.4.3. Let H = (V,EH , wH) be a weighted hypergraph and let T = (V,ET , wT ) be a
cut-equivalent tree of H (guaranteed to exist by Theorem 2.4.2). Then

∀S ⊆ V, wH(S, S̄) ≤ wT (S, S̄) ≤ (n− 1) · wH(S, S̄).

Moreover, both inequalities are existentially tight.

Proof. We begin with the second inequality. Let e = uv ∈ δT (S). By the first property of cut-
equivalent trees it holds that wT (e) = αf (u, v) ≤ wH(S, S̄) as the cut (S, S̄) in H separates u and
v. The inequality follows by summing over all edges e ∈ δT (S), as T contains n− 1 edges.

We now turn to the first inequality. By the second property of cut-equivalent trees it holds that
wT (S, S̄) =

∑
e∈δT (S)wH(VT↓e, V̄T↓e). Therefore, if we show that δH(S) ⊆ ∪e∈δT (S)δH(VT↓e), we

would be done. To this end, let st ∈ δH(S). Then on the path from s to t in T there must be
at least one edge e = uv ∈ ET such that uv ∈ δT (S). As VT↓e separates s and t, it holds that
st ∈ δH(VT↓e), which completes the proof.

We proceed to show the tightness claim. For the first inequality, consider S = VT↓e for e ∈ ET
in any hypergraph H. For the second inequality, consider H that is an unweighted complete graph.
Its cut-equivalent tree is a star with edges of weight n− 1. Letting v be the center of the star, we
have wT (v, v̄) = (n− 1)2 = (n− 1) · wH(v, v̄).

Metric space sparsification. Observe that the weight of a cut S in a graph G = (V,E,w) can be
expressed as

∑
ij∈E w(e) · |xi−xj | where x ∈ { 0, 1 }n is the indicator of S. Thus, Theorem 2.4.3 can

be viewed as approximating all cut metrics (V, dS) given by dS(i, j) = |xi − xj | where x ∈ { 0, 1 }n

is the indicator of S. We now generalize the ideas behind Theorem 2.4.3 to show that when H = G

is an ordinary graph, cut-equivalent trees in fact (n− 1)-approximate all metrics on V and not only
the cut metrics.

1Recall that f : 2V → R is said to be submodular if for every A,B ⊆ V it holds that f(A) + f(B) ≥ f(A ∪ B) +
f(A ∩B).
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As a warm-up, when H = G is an ordinary graph, it follows from Theorem 2.4.3 that

∀x ∈ Rn,
∑
ij∈EG

wG(i, j)·|xi−xj | ≤
∑
ij∈ET

wT (i, j)·|xi−xj | ≤ (n−1)
∑
ij∈EG

wG(i, j)·|xi−xj |. (2.3)

To see this, let x ∈ Rn and w.l.o.g. (by relabeling the vertices if needed) assume x1 ≤ x2 ≤ ... ≤ xn.
Now, writing the inequalities in Theorem 2.4.3 for each of S1 = [1], S2 = [2], ..., Sn−1 = [n − 1],
multiplying the two inequalities of Si by xi+1−xi and summing the n− 1 inequalities, we get (2.3).
We now show that cut-equivalent trees (n − 1)-approximate all metrics on V (and not only the
absolute difference metric defined by n reals x1, x2, ..., xn ∈ R).

Theorem 2.4.4. Let G = (V,EG, wG) be a weighted graph and let T = (V,ET , wT ) be a cut-
equivalent tree of G. Then for every n-point metric space M = ({xi : i ∈ [n]}, dM ),∑

ij∈EG

wG(i, j) · dM (xi, xj) ≤
∑
ij∈ET

wT (i, j) · dM (xi, xj) ≤ (n− 1)
∑
ij∈EG

wG(i, j) · dM (xi, xj).

Proof. We begin with the first inequality. For e = uv ∈ EG, let Pe be the unique path in T from u

to v. Observe that for e ∈ ET and e′ ∈ EG we have e′ ∈ δG(VT↓e) iff e ∈ Pe′ . Thus, by the second
property of cut-equivalent trees,∑
ij∈ET

wT (i, j) · dM (xi, xj) =
∑

e=ij∈ET

wG(VT↓e, V̄T↓e) · dM (xi, xj) =
∑

e=ij∈ET

∑
e′∈EG

1{ e∈Pe′ } · dM (xi, xj)

=
∑

uv∈EG

wG(u, v)
∑
ij∈Puv

dM (xi, xj) ≥
∑

uv∈EG

wG(u, v) · dM (xu, xv)

where the inequality is by the triangle inequality in M .
We now turn to the second inequality. Let uv ∈ ET . By the first property of cut-equivalent trees

it holds that wT (u, v) = αf (u, v) which in turn is equal to the maximum flow between u and v in G.
Therefore, there is a set of paths {Pi }i∈[`] from u to v in G and a set of positive numbers { γi }i∈[`]

(the interpretation is that we ship γi units of flow through Pi) such that
∑

i∈[`] γi = wT (u, v) and
for every e ∈ EG it holds that

∑
i∈[`]:e∈Pi γi ≤ wG(e). As so,

wT (u, v) · dM (xu, xv) =
∑
i∈[`]

γi · dM (xu, xv) ≤
∑
i∈[`]

γi
∑
ab∈Pi

dM (xa, xb)

=
∑
ab∈EG

dM (xa, xb)
∑

i∈[`]:ab∈Pi

γi ≤
∑
ab∈EG

dM (xa, xb) · wG(a, b)

where the first inequality is by the triangle inequality in M . The proof follows by summing over all
edges e ∈ ET , as T contains n− 1 edges.

Spectral sparsification. In light of Theorem 2.4.4, one may ask whether cut-equivalent trees of
graphs are also (n− 1)-spectral-sparsifiers. As we show next, this is not the case, although they are
(n− 1)3-spectral-sparsifiers as a consequence of Theorem 2.4.4.

25



Theorem 2.4.5. Let G = (V,EG, wG) be a weighted graph and let T = (V,ET , wT ) be a cut-
equivalent tree of G. Then

G � (n− 1) · T � (n− 1)3 ·G.

Moreover, both inequalities are existentially tight up to constant factors.

Proof. We begin with the first inequality. Fix some x ∈ Rn and consider the n-point metric space
K = ({xi : i ∈ [n] } , dK) where dK is the shortest path metric on the n-clique with vertex set
{xi : i ∈ [n] } and edge weights wK(xi, xj) = (xi− xj)2. Let Pij be any shortest path from xi to xj
in the n-clique with respect to wK , and let |Pij | be the number of edges in Pij . Fix some i, j ∈ [n].
Then

(xi − xj)2 =

 ∑
{xu,xv }∈Pij

(xu − xv)

2

≤ |Pij | ·
∑

{xu,xv }∈Pij

(xu − xv)2

= |Pij | · dK(xi, xj) ≤ (n− 1) · dK(xi, xj)

where the first inequality is by the Cauchy-Schwartz inequality applied with the all-ones vector, and
the last is as all paths in the n-clique are of length at most n− 1. Hence,∑

ij∈EG

wG(i, j) · (xi − xj)2 ≤ (n− 1)
∑
ij∈EG

wG(i, j) · dK(xi, xj)

≤ (n− 1)
∑
ij∈ET

wT (i, j) · dK(xi, xj)

≤ (n− 1)
∑
ij∈ET

wT (i, j) · (xi − xj)2

where the second inequality is by Theorem 2.4.4, and the last is as dK(xi, xj) ≤ wK(xi, xj) (by
construction). A similar proof that uses the second inequality of Theorem 2.4.4 proves the second
inequality.

We proceed to show the tightness claim. We do so by providing a graph G1 that has a unique cut-
equivalent tree T1 and a vector x ∈ Rn such that xTLG1x ≥ Ω(n)·xTLT1x, and a graph G2 such that
for every cut-equivalent tree T2 of G2 there is vector y ∈ Rn s.t. yTLT2y ≥ Ω(n2) · yTLG2y. First,
let G1 be a cycle on the vertex set [n] with distinct edge weights in (1, 2). W.l.o.g. assume that the
edge (n, 1) has minimum weight among all edges. Let T1 be any cut-equivalent tree of G1. We claim
that T1 must be the path 1→ 2→ ...→ n with edge weights wT1(i, i+1) = wG1(i, i+1)+wG1(n, 1).
Indeed, all min st-cuts in G1 have exactly two crossing edges, one of which is the edge (n, 1) (by the
uniqueness of the weights), and thus the only minimum st-cut sets are the n−1 sets [1], [2], ..., [n−1].
By the second property of cut-equivalent trees, for each such set S, there must be an edge in T1

whose removal gives S as a connected component. This directly implies that T1 must be the path
1→ 2→ ...→ n. Now, for x ∈ Rn where xi = i, we have that xTLT1x = (n− 1) ·Θ(1) · 12 = Θ(n)

whereas
xTLG1x ≥ wG1(n, 1) · (n− 1)2 = Ω(n2) = Ω(n) · xTLT1x.

Second, consider G2 that is an unweighted cycle on the vertex set [n] (where four divides n) aug-
mented with the unweighted edges { { i, n2 + i } : i ∈ [n2 ] }. It is easy to verify that every singleton
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cut in G2 has weight 3 whereas any cut in G2 that is not a singleton has weight > 3 and thus the
only minimum st-cuts in G2 are singletons. Hence, any cut-equivalent tree T2 of G2 must be a star.
Now, for y ∈ Rn where

y = (1, 2, ...,
n

4
,
n

4
− 1,

n

4
− 2, ..., 1, 0, 1, 2, ...,

n

4
,
n

4
− 1,

n

4
− 2, ..., 1, 0)T ,

we have that yTLG2y = n · 12 + n
2 · 0

2 = n whereas yTLT2y ≥ Ω(n3) = Ω(n2) · yTLG2y as the
center of the star T2 is connected to Ω(n) vertices whose y values differ by Ω(n) from the center’s
y value.

2.5 Sparsification by Spanning Trees

We will continue using the notation established in Section 2.4. Throughout, a spanning tree T of
a weighted graph G = (V,EG, wG) inherits its tree edge-weights from G, formally, T = (V,ET , wT )

where wT (e) = wG(e) for each e ∈ ET .
In this section we consider sparsification by spanning trees, i.e., sparsifying a graph G by a tree T

that is restricted to be a spanning tree of G. Spielman [Spi10, problem 4] asks whether every graph
G has a spanning tree T that is an O(n)-spectral-sparsifier, i.e., 1

O(n) ·G � T � G where the second
inequality always holds as T is a subgraph of G. We use the connection between cut-sparsification
and congestion to obtain lower bounds on the cut-sparsification approximation factor that answer
Spielman’s question negatively. Specifically, we show (in Theorem 2.5.1 and preceding discussion)
that there are unweighted graphs G for which every spanning tree can only be a k-cut-sparsifier for
k = Ω(n3/2), and there are m-edge weighted graphs G for which every spanning tree can only be a
k-cut-sparsifier for k = Ω(m). We further show (in Corollary 2.5.3 and Corollary 2.5.4, respectively)
that every unweighted graph G has a spanning tree that is an n3/2-cut-sparsifier of G, and every
m-edge weighted graph G has a spanning tree that is an O(m)-cut-sparsifier of G, matching our
lower bounds.

We will need a few definitions. For a weighted graph G = (V,EG, wG) and a spanning tree
T = (V,ET , wT ) of G, define the load of e ∈ ET with respect to G,T as

load(G,T, e)
def
=

wG(VT↓e, V̄T↓e)

wG(e)
.

For intuition, the load of an edge e ∈ ET is the amount of flow on e when every pair uv ∈ EG
ships wG(u, v) units of flow on the unique path from u to v in T , normalized by wG(e) = wT (e) =

wT (VT↓e, V̄T↓e). Define the congestion of T with respect toG as cong(G,T )
def
= maxe∈ET load(G,T, e).

Observe that if k = cong(G,T ) and e ∈ ET is an edge attaining this maximum, then wG(VT↓e,V̄T↓e)

wT (VT↓e,V̄T↓e)
=

k, which implies that T can only be an `-cut-sparsifier of G for ` ≥ k. Therefore, to establish a
lower bound k on the approximation factor one can get using spanning trees, it suffices to exhibit
a graph G for which every spanning tree T of G has congestion at least k.

Ostrovskii [Ost04] showed that there is an infinite family of unweighted n-vertex graphs G such
that every spanning tree T of G satisfies cong(G,T ) = Ω(n3/2), which implies that Ω(n3/2) is a
lower bound on the cut-sparsification approximation factor one can get using spanning trees, even
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for unweighted graphs. While for unweighted graphs the lower bound is Ω(n3/2) (and in fact, there
is a matching upper bound as we show in Corollary 2.5.3), for weighted graphs the picture is even
worse, as established by Theorem 2.5.1.

Theorem 2.5.1. For every even integer n ≥ 4 and every integer m ≥ (1 + Ω(1))n, there is a
weighted n-vertex graph G with m edges such that every spanning tree T of G satisfies cong(G,T ) ≥
m− n+ 2 = Ω(m).

Proof. Consider G that is a union of a tree on [n/2] and a tree on [n]\ [n/2], augmented by m−n+2

edges crossing from [n/2] to [n] \ [n/2], where the tree edges have weight n2 and the crossing edges
have weight 1. Let T = ([n], ET ) be any spanning tree of G. As T is connected, there must be
an edge e ∈ ET that crosses from [n/2] to [n] \ [n/2]. If removing e from T disconnects [n/2] or
[n] \ [n/2], then load(G,T, e) ≥ n2 ≥ m − n + 2. Otherwise, removing e from T disconnects [n] to
[n/2] and [n]\ [n/2] which implies that e is the only edge in ET that crosses from [n/2] to [n]\ [n/2]

and hence load(G,T, e) = m− n+ 2.

Turning back to Spielman’s question, Theorem 2.5.1 shows that for weighted graphs, Ω(m) is
a lower bound on the cut-sparsification approximation factor one can get using spanning trees. As
the upper bound is (see section 2.1) O(m log n log log n) (which gives also spectral sparsification),
Theorem 2.5.1 closes the gap up to logarithmic factors.

A natural next question is whether the Ω(n3/2) lower bound for unweighted graphs and the
Ω(m) lower bound for weighted graphs can be matched by upper bounds. The answer is yes as
established by Corollary 2.5.3 and Corollary 2.5.4.

Lemma 2.5.2. Let G = (V,EG, wG) be a weighted graph and let T = (V,ET , wT ) be a spanning
tree of G. Construct T ′ = (V,ET , wT ′) from T by multiplying the weight of each edge e ∈ ET by
load(G,T, e). Then

∀S ⊆ V, wT ′(S, S̄) ≥ wG(S, S̄).

Moreover, for every n-point metric space M = ({xi : i ∈ [n] } , dM ),∑
ij∈ET

load(G,T, ij) · wT (i, j) · dM (xi, xj) ≥
∑
ij∈EG

wG(i, j) · dM (xi, xj).

Proof. We focus on proving the latter statement as it implies the former (by setting x to be the
indicator of the cut S, and dM to be the absolute difference metric). The proof is closely related to
the proof of Theorem 2.4.4. For e = uv ∈ EG, let Pe be the unique path in T from u to v. Then∑

ij∈EG

wG(i, j) · dM (xi, xj) ≤
∑
ij∈EG

∑
uv∈Pij

wG(i, j) · dM (xu, xv)

=
∑

uv∈ET

load(G,T, uv) · wT (u, v) · dM (xu, xv)

where the inequality is by the triangle inequality, and the equality is as

load(G,T, uv) · wT (u, v) =
∑

e∈EG:uv∈Pe

wG(e).
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Corollary 2.5.3. Every unweighted graph G = (V,EG) has a spanning tree T = (V,ET ) such that
for every n-point metric space M = ({xi : i ∈ [n] } , dM ),∑

ij∈EG

dM (xi, xj) ≤ n3/2 ·
∑
ij∈ET

dM (xi, xj) ≤ n3/2 ·
∑
ij∈EG

dM (xi, xj).

Proof. It has been shown in [LRR09] that every unweighted graph G has a spanning tree T with
cong(G,T ) ≤ n3/2. The first inequality then follows from Lemma 2.5.2. The second inequality is
trivial as T is a subgraph of G.

Corollary 2.5.4. Every weighted graph G = (V,EG, wG) has a spanning tree T = (V,ET , wT ) such
that for every n-point metric space M = ({xi : i ∈ [n] } , dM ),∑
ij∈EG

wG(i, j)·dM (xi, xj) ≤ (m−n+2)·
∑
ij∈ET

wT (i, j)·dM (xi, xj) ≤ (m−n+2)·
∑
ij∈EG

wG(i, j)·dM (xi, xj),

where m = |EG|. Furthermore, T can be constructed in O(m+ n log n) time.

Proof. The second inequality is trivial as T is a subgraph of G. For the first inequality, by
Lemma 2.5.2, it suffices to show how to construct T with congestion at most m − n + 2. Take
T to be a maximum-weight spanning tree of G. The congestion bound follows as every edge e ∈ ET
induces a cut in G with at mostm−n+2 crossing edges, each having weight at most wG(e) (because
adding it to T will close a cycle that contains e).

2.6 Low Congestion Spanning Trees for Random Graphs

We will continue using the notation established in Sections 2.4 and 2.5. For example, recall that
given an unweighted graph G = (V,EG) and a spanning tree T = (V,ET ) of G, the congestion of
T with respect to G is cong(G,T ) = maxe∈ET load(G,T, e), where load(G,T, e) is the number of
edges crossing the cut (VT↓e, V̄T↓e) in G. As mentioned in Section 2.5, Ostrovskii showed [Ost04] that
there are unweighted graphs G for which every spanning tree T of G satisfies cong(G,T ) = Ω(n3/2).
While such graphs exist, in this section we show that a random graph G drawn from G(n, p) for a
large range of values of p, with high probability has a spanning tree T with congestion Õ(n), and
moreover, T can be found in probabilistic linear time (in the number of edges of G). We assume
that C1

log3 n
n ≤ p = p(n) ≤ C2

1
logn for some constants C1, C2 > 0 to be determined later, and at

the end of the section we briefly explain what can be done for p’s outside this range. This result
nearly confirms a conjecture of Ostrovskii [Ost11, Problem 2] who asked whether random graphs
have better spanning tree congestion bounds than general graphs, and wrote that it seems plausible
that "most" random graphs in G(n, p) have spanning trees with O(n)-congestion.

Notation. For a graph G = (V,EG) and two disjoint subsets A,B ⊆ V , let

EG(A,B)
def
= { e ∈ EG : e ∩A 6= ∅, e ∩B 6= ∅ }
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be the set of edges in G having one endpoint in A and one in B. Let ε = ε(n)
def
= 1

logn . Let

d = d(n, p)
def
= p(n − 1) denote the expected degree in G ∼ G(n, p). Let h = h(n, p) ∈ N be the

largest integer such that

s = s(n, p)
def
=

h∑
i=0

(
(1 + ε)d

)i
≤ n.

We assume henceforth that s ≥ C3
n logn
d for some constant C3 > 0 to be determined later, and at

the end of the section we explain how to remove this assumption. Note that s ≥ Ω(nd ) necessarily
holds as otherwise

∑h+1
i=0 ((1 + ε)d)i ≤ n, in contradiction to the way h was chosen.

We shall show that with probability 1−O(n−1) over the selection of G ∼ G(n, p), the following
algorithm finds, with probability 1 − O(n−1) over its internal coins, a spanning tree T of G that
satisfies cong(G,T ) = O(n).

Algorithm 2.1 Input: G = (V,EG)

1. Fix a vertex r ∈ V (e.g., the first one lexicographically). Build a BFS tree from r up to
(including) level h (where the level of the root is 0), and let F = (VF , EF ) denote the resulting
tree.

2. Connect each remaining vertex u ∈ V \VF to a uniformly random vertex among its neighbors
in the tree, i.e., { v ∈ VF : (u, v) ∈ EG } (if the set is empty report failure), and return the
resulting tree, denoted T = (V,ET ).

We now state the main result of this section.

Theorem 2.6.1. With probability at least 1−O(n−1) over the selection of G = (V,EG) ∼ G(n, p),
with probability at least 1 − O(n−1) over Algorithm 2.1’s coins, the algorithm outputs a spanning
tree T of G that satisfies cong(G,T ) = O(n). Moreover, Algorithm 2.1 always runs in linear time
(in |V |+ |EG|).

The rest of this section is devoted to proving Theorem 2.6.1. The plan is as follows. In
Lemma 2.6.2 and Fact 2.6.3 we provide upper and lower bounds on the size of each level of F , in
Lemma 2.6.4 we show why step 2 of the algorithm will “distribute” the remaining vertices roughly
equally among the subtrees under different children of r, in Lemma 2.6.5 we present a simple fact
that in G(n, p) all cuts have roughly the expected weight, and finally we combine the pieces to prove
Theorem 2.6.1.

Let L(j)(F ) denote the vertices at level j of the tree F . For v ∈ VF , let Fv denote the subtree of
F rooted at v. Note that for random G, L(j)(F ) and VF are random variables (that are independent
of the internal coins of the algorithm). Observe that on input G = (V,EG) ∼ G(n, p), conditioned
on the levels 0, 1, ..., ` of F , the edges between V \

⋃`
j=0 L

(j)(F ) and L(`)(F ) are i.i.d. Bernoulli
random variables with success probability p. The analysis of the algorithm will use this fact several
times. For a level 0 ≤ ` ≤ h, let F` denote the event that the following conditions hold:

1. Every vertex in L(`)(F ) has at most (1 + ε)d children in F (for ` < h); and
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2. If ` < h then |L(`)(F )| ≥ (1 − 1
d)2` · (1− ε)`d`, and if ` = h then |L(`)(F )| ≥ 1

2 · (1−
1
d)2`−1 ·

(1− ε)`d`.

For 0 ≤ ` ≤ h, let F≤` denote the event that Fj holds for every 0 ≤ j ≤ `, i.e., F≤` = ∩`j=0Fj . Note
that the events F depend solely on G and are independent of the randomness of the algorithm.

Lemma 2.6.2 (BFS growth rate). Let G = (V,EG) ∼ G(n, p) be the input to Algorithm 2.1. Then
for every 0 ≤ ` ≤ h we have Pr[F≤`] ≥ 1− `+1

n2 . In particular, Pr[F≤h] ≥ 1− 1
n .

Proof. We prove the Lemma by induction on `. For ` = 0, (2) clearly holds, and (1) holds with
probability at least 1 − 1

n2 by a Chernoff bound (as d ≥ C1ε
−2 log n for a sufficiently large con-

stant C1). Assuming correctness for ` − 1, we prove the Lemma for `. It suffices to show that
Pr[F`|F≤`−1] ≥ 1− 1

n2 , as then, by the induction hypothesis,

Pr[F≤`] = Pr[F≤`−1] · Pr[F`|F≤`−1] ≥ (1− `

n2
) · (1− 1

n2
) ≥ 1− `

n2
− 1

n2
.

To this end, assume henceforth that F≤`−1 occurred. For (1), a union bound over Chernoff bounds
shows that with probability at least 1− 1

2n2 , every vertex in L(`)(F ) has at most (1 + ε)d children
in F . Toward (2), let k = |V \

⋃`−1
j=0 L

(j)(F )|, and let t = |L(`−1)(F )|. Observe that

`−1∑
j=0

|L(j)(F )| ≤
`−1∑
j=0

(1 + ε)jdj ≤
h−1∑
j=0

(1 + ε)jdj ≤ s

(1 + ε)d
≤ n

d
,

and thus k ≥ n− n
d . Observe that

(1− 1

d
)2`−2 · (1− ε)`−1d`−1 ≤ t ≤ (1 + ε)`−1d`−1 <

n

dh−(`−1)
.

Now, fixing any v ∈ V \
⋃`−1
j=0 L

(j)(F ),

Pr[v /∈ L(`)(F )] = (1− p)t ≤ e−pt ≤ 1− pt+
(pt)2

2
.

Thus,

E[|L(`)(F )|] ≥ k(pt− (pt)2

2
) = kpt(1− pt

2
) ≥ (n− n

d
)
d

n
(1− 1

d
)2`−2(1− ε)`−1d`−1(1− 1

2
· d
n
· n

dh−(`−1)
)

= (1− 1

d
)2`−1(1− ε)`−1d`(1− 1

2dh−`
).

Noting that for ` < h we have (1 − 1
2dh−`

) ≥ (1 − 1
d) and for ` = h we have (1 − 1

2dh−`
) = 1

2 , we
get that for ` < h it holds that E[|L(`)(F )|] ≥ (1 − 1

d)2` · (1 − ε)`−1d` and for ` = h it holds that
E[|L(`)(F )|] ≥ 1

2 · (1−
1
d)2h−1 · (1− ε)h−1dh. As d ≥ log n = ε−1 and h ≤ log n, (1− 1

d)2` and (1− ε)`
are bounded away from 0. Thus, by a union bound over Chernoff bounds we get that the probability
of |L(`)(F )| being less than (1− ε) of its expectation (which evaluates exactly to the expression in
(2)) is at most 1

2n2 . Taking a union bound over (1) and (2), the induction step follows.
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Fact 2.6.3 (Cardinality of L(h)(F )). Let G = (V,EG) be the input to Algorithm 2.1 and suppose
that the event F≤h holds. Then |VF | = Ω(s). Moreover, |L(h)(F )| = Ω(s).

Proof. As the event F≤h holds,

|VF | ≥
1

2
·
h∑
j=0

(
1− 1

d

)2j
(1− ε)jdj ≥ 1

2
·
h∑
j=0

(
1− 1

d

)2h(1− ε
1 + ε

)h
·
(

(1 + ε)d
)j

=
1

2
·
(

1− 1

d

)2h(1− ε
1 + ε

)h
· s

≥ 1

2
·
(

1− 1

d

)2 logn(1− ε
1 + ε

)logn
· s = Ω(1) · s = Ω(s),

as d ≥ log n = ε−1. The moreover clause follows as

h−1∑
j=0

|L(j)(F )| ≤
h−1∑
j=0

(
(1 + ε)d

)j
≤ s

(1 + ε)d
≤ s

d
,

and hence |L(h)(F )| ≥ Ω(s)− s
d = Ω(s).

Lemma 2.6.4. Let G = (V,EG) ∼ G(n, p) be the input to Algorithm 2.1. Then with probability at
least 1−O(n−1) over the selection of G, the following holds:

(a) For every u ∈ V \ VF , |EG(u, VF )| = Ω(d · sn); and

(b) For every child v of r,
∑

u∈V \VF |EG(u, V (Fv))| = O(s).

Proof. By a union bound over the event F≤h, we may assume that all the vertices of F have at
most d(1 + ε) children in F and that |L(h)(F )| = Ω(s). For (a), fix u ∈ V \ VF . Then

E[|EG(u, VF )|] = p · |L(h)(F )| = p · Ω(s) = Ω(d · s
n

).

By a union bound over Chernoff bounds (here we use our assumption that s ≥ C3
n logn
d for a

sufficiently large constant C3) we get that with probability at least 1 − n−1, for every u ∈ V \ VF
it holds that |EG(u, VF )| = Ω(d · sn). Toward (b), fix a child v of r. Observe that |V (Fv)| ≤∑h−1

j=0

(
(1 + ε)d

)j
≤ s

d . Thus,

E[
∑

u∈V \VF

|EG(u, V (Fv))|] = E[|EG(V \ VF , V (Fv))|] = p · |V \ VF | · |V (Fv) ∩ L(h)(F )| ≤ p(n− 1)
s

d
= s.

(b) then follows by a union over Chernoff bounds (as s ≥ Ω(nd ) ≥ Ω( logn
C2

) for a sufficiently small
constant C2). Taking a union bound over (a) and (b) completes the proof.

Lemma 2.6.5 (Cut weights). Let G = (V,EG) ∼ G(n, p). Then with probability at least 1−O(n−1),
for every cut S ⊆ V we have |EG(S, S̄)| ∈ (1± ε) · p · |S| · |S̄|.

Proof. Fix some S ⊆ V of size k ≤ n/2. By the Chernoff bound,

Pr[|EG(S, S̄)| /∈ (1± ε) · p · |S| · |S̄|] ≤ 2 exp(−ε2pk(n− k)/3) ≤ 2 exp(−ε2pkn/6)

≤ 2 exp(−k log n · C1/6) ≤ n−2k,
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where we used the assumption that p ≥ C1
logn
n ε−2 for a sufficiently large C1. Thus, by the union

bound, the probability that there is some violating cut is bounded by∑
k∈[bn/2c]

(
n

k

)
n−2k ≤

∑
k∈[bn/2c]

n−k = O(n−1).

We are now ready to prove Theorem 2.6.1.

Proof (of Theorem 2.6.1). By a union bound, with probability at least 1−O(n−1), we may assume
that G admits to the conclusions of Lemma 2.6.2, Lemma 2.6.4 and Lemma 2.6.5. As G admits
to the conclusion of Lemma 2.6.4, the algorithm will not fail, as Ω(d · sn) ≥ Ω(log n) ≥ 1. Toward
proving that cong(G,T ) = O(n), it suffices to show that for every child v of r |V (Tv)| = O(nd ),
because in such a case, any cut VT↓e induced by removing an edge e from T will have one side of
size at most x def

= O(nd ) = O(1
p), and hence, as G admits to the conclusion of Lemma 2.6.5, we

have |EG(VT↓e, V̄T↓e)| ≤ p(1 + ε)x(n− x) ≤ O((1 + ε)n) = O(n). As G admits to the conclusion of
Lemma 2.6.2, for every child v of r,

|V (Fv)| ≤
s

d
≤ n

d

(as seen in the proof of Lemma 2.6.4). It remains to show that step 2 of the algorithm does not add
too many vertices to any Fv. For u ∈ V \ FV and a child v of r, let pu,v be the probability (over
the randomness of the algorithm) of connecting u to Fv at step 2. As G admits to the conclusion
of Lemma 2.6.4, for every child v of r, the expected number of vertices added to Fv at step 2 is∑

u∈V \VF

pu,v =
∑

u∈V \FV

|EG(u, V (Fv))|
|EG(u, VF )|

≤
∑

u∈V \VF

|EG(u, V (Fv))|
Ω(d · sn)

≤ O(s)

Ω(d · sn)
= O(

n

d
).

By a union bound over Chernoff bounds (as n
d =̃1

p ≥
logn
C2

for a sufficiently small constant C2),
for every child v of r we have |V (Tv) \ V (Fv)| ≤ O(

∑
u∈V \VF pu,v) = O(nd ), and thus |V (Tv)| =

|V (Fv)|+ |V (Tv) \ V (Fv)| = O(nd ). The theorem follows.

Recall that we assumed s ≥ C3· n logn
d . We now sketch how to remove this assumption. Removing

the assumption will weaken the result of Theorem 2.6.1 to only guarantee O(n log n)-congestion.
The assumption was used in two places: (a) for claiming that step 2 of the algorithm will connect
all of the remaining vertices, and (b) for bounding

∑
u∈V \VF pu,v in the proof of Theorem 2.6.1.

Regarding (b), if s < C3
n logn
d , we can replace the calculation in the proof of Theorem 2.6.1 by the

naive bound∑
u∈V \VF

pu,v =
∑

u∈V \VF

|EG(u, V (Fv))|
|EG(u, VF )|

≤
∑

u∈V \VF

|EG(u, V (Fv))| ≤ O(s) ≤ O(
n log n

d
),

where the second to last inequality is by part (b) of Lemma 2.6.4 (which holds even if s < C3
n logn
d ,

unlike part (a) of the same lemma). Note that this naive bound only incurs an additional log n

factor, and we will get that after step 2, each V (Tv) is of cardinality at most O(n logn
d ). Regarding
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(a), notice that even when s < C3 · n logn
d , the tree T will have Ω(n) vertices as s ≥ Ω(nd ) and hence

each vertex in V \ VF has at least constant probability to be added to the tree at step 2. We thus
modify the algorithm by removing the failure clause from step 2 and adding a step 3 that connects
each still-not-connected (after step 2) vertex to a uniformly random neighbor in V (T ) (essentially
cloning step 2). Using similar analysis to the proof of Lemma 2.6.4 and Theorem 2.6.1, we will get,
with probability 1 − O(n−1), that every vertex in V is in the resulting tree and that we added at
most O(n logn

d ) vertices to each Tv.
We remark that for the range p < C1

log3 n
n , any spanning tree T of G (if G is connected) will

trivially satisfy (with probability 1 − O(n−1)) cong(G,T ) ≤ |EG| = O(n2p) = Õ(n). Also, for the
range p > C2

1
logn , replacing the bound of O(s) by O(s log n) in part (b) of Lemma 2.6.4 will make

the analysis go through and only incur an additional O(log n) factor to the congestion bound. We
further remark that step 2 of Algorithm 2.1 can be derandomized using flow techniques.
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