
An overview of the ELFIN code for finite

element research in electrical engineering

G. Aiello, W S. Alfonzetti, ̂  G. Borzi,® and N. Salerno ̂
^ Dipartimento Elettrico, Elettronico e Sistemistico,
Universita di Catania, Viale A. Doria 6, 1-95125 Catania, Italy
^ Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate,
Universita di Messina, Salita Sperone 31, 1-98166 Messina, Italy

Abstract

This paper gives a general overview of the basic features and latest enhancements
of the finite element code ELFIN, developed by the authors for research in the
electrical engineering field. The basic features are N-dimensional (ID, 2D and
3D) geometrical discretization, wide application area, easy treatment of coupled
problems, and generalised iterative procedures. The latest enhancements of the
code refer to the computation of non-linear transient eddy currents in open
boundary domains, to the solution of electromagnetic scattering problems from
inhomogeneous bodies (in 2D and 3D), to the automatic generation of meshes of
tetrahedra based on an artificial neural network and to the stochastic optimization
of electromagnetic devices.

1 Introduction

Starting in 1984, the authors have developed a finite element code in order to
perform research in the field of computational electromagnetics for electrical
engineering [1]. The code is called ELFIN (from the Italian words ELementi
FINiti) [2,3]. The reasons for such an effort are mainly due to the difficulties
which arise when using commercial codes in a research environment. In fact,
such codes seldom exhibit the following characteristics: i) openness of the source
code (in order to operate modifications and add new capabilities easily); ii)
modularity (new problems should be implementable mainly by performing simple
operations of recombining existing functions); N-dimensionality (ID, 2D and 3D
problems should be dealt with by means of the same algorithms); iii) mesh
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144 Software for Electrical Engineering Analysis and Design

freedom (higher-order and curved-side elements should be individually defined);
iv) FEM/BEM integration. Many commercial finite element codes, based on
well-known and efficient procedures, are developed to solve a specific class of
problems and therefore they generally have limitations such as a fixed
dimensionality, a fixed kind and order of elements, and a fixed number and kind
of unknowns. These limitations are aimed at optimising performance, but they
practically prevent the use of such codes in a research environment.
This paper briefly describes the basic characteristics of ELFIN and outlines the
research conducted by means of it.

2 The ELFIN code

The ELFIN code is written in Fortran-77 and is now running on several
computers under the OpenVMS, Unix, Linux and DOS/Windows operating
systems. The code is structured according to the classical scheme of FE codes, in
which three distinct main programs are devoted respectively to pre-processing,
processing and post-processing. These programs recall a set of more than 600
routines, which can be grouped into three main categories: a) specific
subroutines, which refer to the code data structure, including: I/O subroutines;
geometrical discretization and material catalogue subroutines; geometrical
window and list subroutines; shape function subroutines; universal matrix
subroutines; b) non-specific subroutines, which do not refer to the code data
structure, including: matricial and polynomial ordering; combinatorial calculus;
polynomial algebra and calculus; polynomial matrix algebra; N-dimensional
integration of polynomial rational functions; geometrical computations; the
solution of linear algebraic equation systems; c) graphic subroutines, which
interface the external graphic library used (Regis, GKS, Xlib, Display Postscript).

2.1 Pre-processing

In ELFIN four geometrical entities of the space discretization are defined: nodes,
elements, boundary sides and, optionally, edges. Nodes are the primary entities of
the discretization. A node is identified by its absolute Cartesian coordinates X%
(k=l,...,N), in an N-dimensional space. The other entities of the discretization
(elements, boundary sides and edges) are derived from nodes in terms of ordered
sets of them. An element is an ordered set of nodes, the ordering having a
geometrical meaning. The following data are individually specified for each finite
element: the element family (e. g. isoparametric Lagrangian simplex and N-
rectangular); the element dimensionality N' (with N'<N); the element order m; the
element curved-side indicator (for orders m > 1). The local sides of an element
are implicitly defined as ordered subsets of its nodes. Boundary sides are globally
defined local sides, which generally lie on the domain boundary, even if internal
boundary sides are allowed. Optionally edge elements can be used, based on the
definition of edge as an ordered pair of nodes. Region "colours" can be
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Software for Electrical Engineering Analysis and Design 145

independently attributed to nodes, elements, boundary sides and edges in order to
treat particular subsets differently during the pre-processing and/or processing
phases. These definitions of the geometrical entities imply hierarchy: nodes are
more important than elements and edges, elements more important than boundary
sides. This structure is clearly independent of the space dimensionality N (which
only affects the cardinality of the co-ordinates of nodes) but has a cost in terms of
larger memory occupation and computing time with respect to codes employing
only elements of a fixed kind and order.
The ELFIN code, although developed in an electrical engineering department, has
been designed as general-purpose environment to be used in any other
engineering area (mechanical, civil, etc.). For this reason great freedom has been
reserved in the definition of the field variables and sources. A set of MS scalar
variables Sj (i=l,...,Mg) and a set of My vector variables Vj (j=l,...,My) are
associated to each node and to each edge, respectively, of the discretization.
These variables can be all real or all complex, according to the real/complex
indicator IRC, which is set to 1 for real problems and to 2 for complex ones. For
the field variables, boundary conditions (Dirichlet, Neumann or mixed) are
imposed on the nodes or edges of the boundary sides. Four kinds of sources are
defined: node sources, element sources, boundary-side sources and edge sources.
The real/complex indicator also applies to sources. Note that parameterization
with respect to the number of field variables and sources is the basis to allow
unified treatment of coupled problems. Moreover, no semantics need to be
preliminarily attributed to each variable in the pre-processing: a great variety of
problems (scalar, vector, coupled, real or complex) with different field variables
and sources can be implemented with no modifications of data structures.
Due to the fact that the code has been implemented by a small research group, the
pre-processor has medium capabilities for solid modeling, but quite sophisticated
features for defining boundary conditions and sources and for managing high-
order and/or curved-side elements; however, functions are expressly foreseen to
interface more powerful external solid modeling programs that may be available.
The pre-processor exhibits a mixed interactive-batch user interface: before a pre-
processing session the user can edit a text file, containing the sequence of pre-
processing commands (a command is constituted by a 7-character identifier
followed by some mumerical parameters), which can be recalled (once or more)
at any time in the interactive session. The pre-processing commands refer to the
following items: a) the relative frame (Cartesian, polar or cylindrical), optionally
defined for more simple reference to the absolute spatial co-ordinates; b) the
geometrical window, defined in the relative frame to restrict the application of
some pre-processing commands to this domain; c) the geometrical list, defined as
a set of nodes, elements, boundary sides or edges to restrict the application of
some commands to this set; d) the geometrical functions, which are real functions
of the spatial co-ordinates in the relative frame, defined to impose boundary
conditions and sources in an automatic way; e) the mesh generation, which is
relative to the current geometrical window and allows the generation of nodes,
elements and boundary sides in an N-dimensional way. These features allow a
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146 Software for Electrical Engineering Analysis and Design

very efficient imposition of sources and boundary conditions. This operation is
divided in two phases: 1) selection of the boundary sides on which the boundary
conditions are to be imposed; geometrical (volume, surface, line), indexed and
mixed selections are performed by using the geometrical window and list
concepts; 2) assignment of the pertaining nodal numerical values, either by using
the internal geometrical functions or by reading them from external files.

2.2 Processing

The ELFIN processing program works in a batch way, starting from the data
prepared in the pre-processing session and stored in a suitable file. In the
following some aspects of the program will be highlighted.
- Generalised iteration structures: a general iteration structure was implemented in
order to treat the various iterative procedures independently; four kinds of
iteration are implemented: non-linearity, adaptive mesh refinement, boundary
conditions (see DBCI and RBCI in Sect. 3), and time discretization [4];
- Numerical techniques: classical variational and weighted residual (Galerkin)
approaches are used. For each equation type a routine exists which builds the
global algebraic system, by resorting to a set of lower-level routines dealing with
the most common differential, integral and algebraic operators. This structure
allows a simple treatment of equations by splitting them into elementary
differential, integral and algebraic terms. Great ease in composing new problems
is given: the addition of new problem-solving capabilities only involves the
construction of a new limited-size routine, addressing the existing basic ones.
- Universal matrices: in addition to numerical (Gauss) integration, great care has
been devoted to the universal matrix technique for simplex Lagrangian elements
with straight sides. Since universal matrices, initially introduced by Silvester, are
continuously growing in number and kind, a set of basic routines was developed
to allow on-line computation of universal values in integer form. At present about
twenty kinds of universal matrices are available [5,6].
- Coupled problems: the treatment of coupled problems is based on
parameterization with respect to MS and My and is dealt with in a generalised
way: the ordered set of field variables (whose semantics is unknown to the
preprocessor) is correctly interpreted only by the routine which builds the global
algebraic system for the specific coupled problem. In this way great flexibility
exists to implement new coupled problems into the code, because only one
limited-size routine has to be developed and added to the processor.

2.3 Post-processing

The post-processing program exhibits the same interactive-batch user interface as
the pre-processing one, with the provision of interfacing to more powerful
commercial post-processing programs. The user can define up to three (real or
complex, scalar or vector) variables VR, related to the computed field variables by
means of algebraic or differential operations. After one of them has been selected
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Software for Electrical Engineering Analysis and Design 147

(that is, the token has been assigned to it) all the subsequent restitutions will refer
to the variable currently selected. With respect to discretization four types of VR
are possible: node, element, boundary-side and edge variables. Restitutions are
available such as: displaying/printing of nodal values, 2D contour line plotting,
axonometric 3D contour line plotting [7], 2D and 3D vector plotting. Global
quantities (energy, flux, current, etc.) can also be evaluated by means of integrals
on elements, boundary (or local) sides or edges.

3 Research conducted by means of ELFIN

In this section an overview is given of the research conducted by means of the
ELFIN code. For the sake of conciseness, only a brief outline is given; more
details can be found in the papers referenced.

3.1 Static and quasi-static problems in open boundaries

These problems have been dealt with by means of a hybrid method, now called
Dirichlet Boundary Condition Iteration (DBCI) and formerly referred to as charge
iteration or current iteration. Referring to a simple electrostatic problem, in which
a system of voltaged conductors is embedded in an unbounded homogeneous
dielectric medium, DBCI is applied by introducing a fictitious boundary BF which
includes all the conductors and truncates the unbounded domain to a bounded one
D [8-18]. The method is based on the following equations:

V-(eVv) = 0 in D (1)

d̂a' reBp (2)
Sn'

where BC is the conductor surface and G is the free-space Green's function. By
discretising D by means of nodal finite elements, the following linear system of
equations is obtained:

(3)

This system can be efficiently solved iteratively: initially guessing the Dirichlet
condition Vp on BF, equation (3) is solved for V, which is used in (4) to improve
Vp. The procedure is iterated until convergence takes place. A better convergence
can be obtained by means of a relaxation coefficient in (4) or by means of
GMRES. Similar procedures have been successfully applied to the solution of the
integro-differential equation [19] of the two-dimensional time-harmonic skin
effect [20-24] and of transient non-linear eddy current problems [25-26].
Further research in this context was reported on in [27] in which it was shown
that the Pefectly Matched Layer (PML), recently proposed for static fields, is
equivalent to the utilization of a trivial truncation followed by simple co-ordinate
transformations. For this reason no advantage with respect to truncation derives
from the use of such a method.
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148 Software for Electrical Engineering Analysis and Design

3.2 Electromagnetic scattering problems

Let us consider a system of conductors and/or dielectrics infinitely extended in
the z-direction, embedded in a homogeneous dielectric medium, lit up by an
incident monochromatic wave <|>o, E- or H-polarised along the z-axis. An
unbounded scattering problem is set up in terms of the total field ((>. To deal with
this problem, the hybrid method illustrated in the previous Section has been
modified into the RBCI (Robin Boundary Condition Iteration) method [28-33], in
which the Dirichlet condition on the fictitious boundary Bp has been replaced by
a Robin (mixed) one of the type:

on Bp (5)
on

where ko is the free-space wavenumber and \\i is an unknown function on Fp.
Then the working equations are:

in D (6)

(7)

where a and TJ are relative constitutive parameters, BS is the scatterer surface and
G is the two-dimensional free-space Green's function

-r'|) (8),

Equations (6) and (7), taking into account the boundary condition (5), are
discretised as:

AO = OF (9)
T-TO + MO (10)

and solved iteratively as before. Initially guessing *F (a good guess is %),
equation (9) is solved for O, which is used in (10) to improve *F. This procedure
is iterated until convergence is obtained. Note that if one tries to use Dirichlet
conditions on the fictitious boundary Bp, as in standard FE-BI methods, possible
singularities may arise in (6), due to the resonance of the domain D and also in
(7), due to the existence of non-vanishing incident fields §Q which may vanish on
the boundary Bp. On the contrary, by using the Robin boundary condition (5)
resonances are completely avoided whatever the frequency of the incident wave.
This very good property is due to the fact that the boundary condition (5) works
as an absorbing-like one. Another important property is that the air gap in
between the scatterer surface BS and the fictitious boundary Bp can be very thin
(two or three layers of elements are enough) still obtaining accurate results with
an acceptable computing time (normally from 4 to 8 iterations are sufficient to
obtain convergence). By means of a simple indicator, the accuracy of the
solution can be tested in post-processing when the bistatic radar cross section is
computed.
The RBCI method has been successfully adapted to the computation of scattering
from cavity-backed apertures on a perfectly-conducting plane or wedge, and also
to the solution of three-dimensional scattering problems, employing tetrahedral
edge elements.
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Software for Electrical Engineering Analysis and Design 149

3.3 Mesh generation by neural networks

Starting from a rough initial mesh of triangles or tetrahedra with a small number
of nodes the neural network algorithm increases the number of nodes until a user-
selected value is reached [34-37]. Both internal and boundary nodes are
separately increased according to two distinct probability density functions,
specified by the user using the initial mesh as support. New nodes are inserted in
the middle of triangle or tetrahedra edges. After an example point is generated,
the nearest nodes are moved to it, taking into account the mesh quality; moreover
the classical Delaunay triangulation algorithm is inserted in the growing process
to further increase the quality of the final mesh. The main advantages of this
neural approach are the lack of a need for classical deterministic programming,
the simplicity of use (the user only needs to specify an initial rough mesh and the
probability density functions) and the very good qualities of the simplex elements
obtained.

3.4 Optimization by means of stochastic methods

Recently the ELFIN code has been adapted to deal with stochastic optimization of
electromagnetic devices. This goal has been reached by allowing the use of
symbolic variables in the pre- and post-processing command parameters instead
of fixed numeric values. In this way both the pre- and post-processing batch
sessions (and then the whole code) can be made parametric with respect to a set
of variables, typically representing geometrical or constitutive data of the device
to be optimised. Two stochastic optimisation methods have been implemented:
genetic algorithms and simulated annealing. They have been applied to the
optimization of some electromagnetic devices, ranging from magnetostatic to
wave-propagation ones [38-40].

4 Conclusions

In this paper the finite element code ELFIN, developed for research purposes in
the field of computational electromagnetics in electrical engineering, has been
presented. A general overview of the code has been given, briefly describing
some non-standard implementation aspects as well as the main research
conducted by means of it.
The main merit of ELFIN is the facility it offers in building, testing and verifying
new numerical procedures devised for the analysis and design of electromagnetic
devices.
At present the code is composed of about 600 subroutines (for 60,000
statements). It will be expanded according to research subjects rather than
widening the range of standard problem-solving capabilities.
Further information on ELFIN can be found on the Internet at the following Web
address: http://wwwelfin.dees.unict.it/elfin/.
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