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Abstract: While decision tree compilation is a promising way to carry out guard
tests efficiently, the methods given in the literature do not take into account either
the execution characteristics of the program or the machine-level tradeoffs between
different ways to implement branches. These methods therefore offer little or no
guidance for the implementor with regard to how decision trees are to be realized on
a particular machine. In this paper, we describe an approach that takes execution
frequencies of different program branches, as well as the costs of alternative branch
realizations, to generate decision trees. Experiments indicate that the performance
of our approach is uniformly better than that of plausible alternative schemes.

1 Introduction

There has been a great deal of research, in recent years, on the design and im-
plementation of concurrent logic and constraint programming languages (see, for
example, [12, 13, 14, 15, 17]). Much of the implementation effort in this context
has focussed on the so-called “flat” versions of these languages: here, a procedure
definition consists of alternatives, each alternative preceded by a guard that consists
of a set of ask actions or primitive tests. An alternative can be selected at runtime
only if the corresponding guard tests can be satisfied. For such languages, a com-
pilation technique called decision tree compilation seems quite promising [6, 7, 8].
The idea here is to improve program efficiency by structuring the collection of all
guard tests for a procedure into a “decision tree”, thereby reducing the number of
redundant tests executed. Algorithms for decision tree compilation have been given

by Kliger and Shapiro [6, 7] and Korsloot and Tick [8].

The algorithms given by the authors cited above are concerned primarily with
generating a decision tree for a set of tests by choosing an order in which the
tests should be executed. They use various heuristics to accomplish this, e.g., by
first considering tests that are “cared about” by the largest number of clauses (the
maz-care heuristic), then choosing from such tests one that has the fewest different
results (the min-variability heuristic). These algorithms generate “conceptually
reasonable” decision trees. However, as far as we can see, these algorithms give
little or no guidance towards the actual machine realization of a decision tree, i.e.,
the actual structure and nature of branch instructions that should be generated at
the machine level for a particular program in a particular implementation, assuming
that certain characteristics of the program and the machine are given. There are a
number of reasons why this problem is not entirely trivial:

1. Procedures are typically defined by more than one clause, and not all clauses
are executed with equal frequency. For example, since programs typically
spend most of their execution time in loops, the recursive clauses for a proce-
dure are likely to be executed much more often than the non-recursive clauses
that terminate recursion. If the different clauses for a procedure have differ-



ent “weights”, or execution frequencies, then the decision tree should be con-
structed in such a way that the “heavier” a clause, i.e., the more frequently
it is executed, the shorter the path from the root of the decision tree to the
node corresponding to a decision on that clause. (Note that this notion of the
“weight” of a clause refers only to its frequency of execution, which determines
its importance in the context of decision tree compilation—it has nothing to
do with its “granularity”, i.e., computational cost.) Moreover, a good decision
tree compilation algorithm should be robust with respect to program transfor-
mations such as loop unrolling or partial evaluation, which can change control
flow characteristics and affect the relative execution frequencies of different
branches.

2. It is not enough to consider the weights of different clauses in isolation when
generating decision trees. For example, one could imagine a compilation
scheme where a partial decision tree is generated considering the tests for
the heaviest clause first, after which any remaining tests for the next heaviest
clause are “grafted” onto this tree, and so on down the other clauses. Such an
approach can give surprisingly poor performance, because a set of clauses may
have weights that are not individually very large, but are collectively much
heavier than the clause with heaviest weight (we discovered this the hard way
while experimenting with decision trees for the lexical analysis phase of a
compiler).

3. Conditional jumps can be implemented in a variety of ways using different
addressing modes, and the alternatives have different capabilities and different
costs. For example, a multi-way jump can be implemented using a tree of 2-
way conditional branches, or by an indirect jump through a “jump table”.
The former is cheaper—typically, one or two machine instructions—but is
limited to two alternatives; the latter is more expensive—typically, six to ten
machine instructions—but can address many different alternatives. Unless
the realization choices are made intelligently, the machine-level overheads may
reduce considerably, or even nullify, the benefits of using decision trees.

This entire discussion 1s predicated on being able to associate execution frequencies
(or, when normalized, estimated execution probabilities) with the clauses defining
a procedure. For a discussion of this issue in the context of compilers for traditional
languages, see [2, 9, 10, 18, 19]; techniques for estimating execution frequencies of
logic programs from their call graph structure are discussed in [3, 16]. A point to
note is that the techniques described in [3, 16] involve a simple and efficient linear-
time traversal of the call graph of the program (i.e., a graph describing the caller-
callee relationships between predicates): there is no iterative fixpoint computation of
the sort encountered in global dataflow analyses. Thus, the overhead of estimating
execution frequencies using such techniques is small. An alternative is to profile
the program on sample inputs to estimate execution frequencies: as the results of
Gorlick and Kesselman [5] indicate, the overhead for this approach is also small.

The primary technical contribution of this paper is to give an algorithm to
construct “weighted” decision trees. The i1dea is to reduce the expected machine-
level cost of executing the decision tree by taking into account estimated execution
probabilities of the different clauses of a procedure, together with the execution
costs of alternative machine realizations for (conditional) branches. We argue that
in general, it is not enough to consider only the probabilities given, but that a



related information-theoretic notion of entropy can be used to advantage. One
interesting—and apparently novel—aspect of our algorithm is that in the process
of generating a “good” decision tree for a procedure, it may generate tests that do
not appear in the original source program, but which can be used to improve the
execution characteristics of the decision tree. Experiments indicate that in most
cases, the decision trees so generated correspond very closely to what one would
desire for the particular weight distributions and machine instruction costs.

2 Preliminaries

2.1 Normalized Programs

To simplify the discussion that follows, we assume that programs are in a normalized
form satisfying the following two properties:

1. the guards for any procedure are exhaustive, i.e., for any possible values of
actual parameters to that procedure, there is at least one guard that will not

fail; and

2. all ask actions are of the form ‘f(v1,...,v,) op ¢’, where op is a comparison
operator, f(---) is an n-ary “evaluable function”, and ¢ is a constant over a
totally ordered domain.

These requirements may appear to be very restrictive, but it turns out that pro-
grams can be transformed to satisfy these conditions fairly easily. First, consider a
procedure p whose guards are {G4,...,G,}: such a procedure can be made exhaus-
tive simply by adding “default” clauses that catches any input that causes each of
the guards Gy, ...,G, to fail: the guards for these default clauses is obtained by
transforming the formula =G A - - - A =G, to disjunctive normal form. The details
are fairly obvious, and not pursued here further. An important point to note is that

there is no need to determine whether the guards G4, ..., Gy in the original defini-
tion are already exhaustive: the “default” clause(s) can be added blindly without
affecting the behavior of the program in any way. If i1, ..., G, are exhaustive, then

the guard of each default clause so generated is unsatisfiable, so the transformation
does not affect program semantics.

Next, consider transforming ask actions to normal form: we assume that the
language under consideration allows (only) the following kinds of ask actions:

Relational Tests on Values : Given a test of the form ‘expr; op expr,” where op
is a comparison operator,! let expr; = expr| + ¢1 and expr, = exprh + ¢,
then the normal form test is ‘(expr] — expry) op (c2 — ¢1).” E.g., the test
‘X >Y 4 5’ becomes transformed to the normal form test ‘X —Y > 5.

Tests on Types : We assume that the language has a finite set of base types
Ti,.-.,Tn, With corresponding type tests is_7y,...,is_7,. In the transfor-
mation to normal form, the extraction and checking of type tags 1s made
explicit via an operation tag(e) that returns the tag bits of the value of the
expression e. Assume that the tag bit patterns for the types m,..., 7, are
K1,...,Kn respectively. Then, a type test ‘is_r;(expr)’ is transformed to a
normal form test ‘tag(ezpr) = &;’.

1'We assume that there is some reasonable set of operators can be allowed in the expressions
expr; and expry, e.g., the usual arithmetic operators, selectors for extracting components of
compound structures and aggregates, etc.



2.2 Definitions and Notation

The techniques in this paper for generating decision trees rely heavily on our ability
to “decompose” the set of primitive tests in a procedure definition into subsets of
tests where tests in any subset are “independent” of the other tests. To formalize
this notion we need the following definitions. An outcome of a primitive test is the
result of the test for a particular assignment of values to the variables in the test.
The set of possible outcomes of a test ¢ is denoted by outcomes(t). The idea can
be extended to a set of tests S: assume an arbitrary (but fixed) ordering for the
elements of S| then the set of possible outcomes for S is denoted by outcomes(SS),
where an element o € outcomes(S) is a tuple (o1,...05) where o; represents the
outcome of the " test in S.

Definition 2.1 An outcome ¢ = (01,...0|5|) € outcomes(S) is consistent if there
1s some substitution of values for the variables of S that makes the outcome of the
ith test in S equal o; for every i, 1 < i < |S|. The set of all consistent outcomes of
a set .S of primitive tests is denoted outcomes*(S). 1

Definition 2.2 Given a set of tests U, S C U is an equivalence class if S is
minimal with respect to the property that for every o in outcomes*(S) and 7 in
outcomes™ (I/ — S), there exists a valuation # of the variables in U such that 6(5)
has outcome o and #(U — S) has outcome 7. 1

Although it 1s not immediately obvious, it can be shown that the classes defined
above are indeed equivalence classes and induce a partition on the set of tests. A
point to note is that this generalizes the intuitive notion of a pair of tests being
(in)dependent: according to this notion, we can only talk of the dependence of a set
of tests, which means that the outcome of one of them provides some information
about the possible outcomes of the others (this is roughly analogous to the notion
of a set of vectors being linearly (in)dependent).

Example 2.1 Consider the following clause:
p(X, Y) :- X<0,X>7Y|

Previous authors have considered the notion of a clause “caring” about a test (e.g.,
see [7]): a clause C cares about a test g if there is a test ¢’ in the guard of C' such
that exactly one of the tests ¢’ A g, ¢’ A g is satisfiable. By this definition, the
clause given above does not care about the test Y > 0. However it is clear that the
guard tests ‘X < 0, X > Y’ cannot be satisfied if Y > 0 is true. In our notion, the
three tests {X < 0, X> Y, Y > 0} would be in the same equivalence class, since it
is the minimal set of tests in this case that satisfies the definition of an equivalence
class above (no proper subset of this set satisfies the definition). O

As this example illustrates, the notion of an equivalence class differs from the
notion of “cares about” in that we consider all possible outcomes of the tests in an
equivalence class, not just the outcomes where the guard tests are true. The intutive
justification for this is that we get valuable information not only from finding out
that certain guard tests hold, but also from finding out that certain guard tests do
not hold.



The algorithmic problem of breaking up a set of primitive tests into equivalence
classes is in general rather complex. A sophisticated algorithm would analyze the
relations (if any) between the variables mentioned in the primitive tests and take
these relations into account in deciding equivalence classes. It is not hard to prove
that the general equivalence class finding problem is NP-Complete. In practice,
however, a good heuristic is to put two tests in the same equivalence class if the
tests both involve a common variable. Algorithms for finding equivalence classes are
not the main focus of this paper, since in most examples that we have encountered,
this is far easier than the other tasks involved in finding the optimal decision tree.

In the next section we describe the algorithm to find the optimal decision tree.
At a very high level, the algorithm breaks up the problem of sequencing the primitive
tests in a procedure definition into hierarchical problems of sequencing the various
equivalence classes of queries and sequencing the queries within an equivalence class.
We show that there is no loss of optimality in this hierarchical breakup and that
the sequencing between equivalence classes is independent of the weights on the
various possible actions. The weights only affect the sequencing of tests within each
equivalence class.

In order to describe our heuristic for ordering the tests within an equivalence
class we borrow the notion of entropy (also known as the uncertainty function) from
information theory[1]:

Definition 2.3 Let X be a random variable that takes on a finite number of pos-
sible values x1, s, ...,z with probabilities pi, pa, ..., pm, respectively, such that
pi > 0,1 <i<m,and ", pi = 1. The entropy of X, denoted H(X), is defined

to be Z?il —pilogs(pi). I

At first glance the choice of this particular function seems somewhat arbitrary,
but 1t can be shown that this is the only function that satisfies some very reason-
able axioms on the behaviour of an uncertainty function (see [1] for details). The
notion of entropy extends in a straightforward way to tests: if a test ¢ has m pos-
sible outcomes, with probabilities pq, ..., py respectively, then the entropy of t 1s
H(t) = 527 —pilogy(pi). The underlying idea here is that execution frequencies
for different clauses (i.e., guards) can be normalized to give us estimates of exe-
cution probabilities for the guard tests, whence we can use entropies to guide the
generation of decision trees.

Intuitively, the way to think of entropies in our situation is that, when we enter
a procedure definition, the average amount of uncertainty we have to dispel before
choosing the clause to execute is represented by the entropy. Each test that we
perform dispels a certain amount of uncertainty based on the probabilities of each
of the outcomes of that test. The relevant property of entropy here is that, given
an 1nitial entropy eq, if we perform a test with etropy es, then the average amount
of uncertainty that remains given the outcome of the test is ey — e5. Hence, tests
that dispel a greater amount of uncertainty make greater progress towards our
goal. Another feature that makes this approach very attractive is that the entropy
function (and a normalized version of it) is especially useful for comparing tests
that take differing numbers of instructions to perform (i.e., have different costs)
and have different numbers of outcomes.? For instance we can use a normalized
entropy function to compare a binary decision, as exemplified by an if statement,

2Initially, we looked for more elementary ways to solve what we hoped would be a simple
compilation problem. However, we were unable, after considerable thought, to come up with a



with a multiway decision, as exemplified by a case or switch statement. To this
end we define the normalized entropy of a test as follows:

Definition 2.4 The normalized entropy of a test t with entropy H(t) and cost C'
is given by H(t) = H(t)/C. 1

We defer a discussion of the use of this definition to the next section. In the
next section we will see the application of entropy (or uncertainty) to ordering tests
within an equivalence class.

3 Generating Weighted Decision Trees
3.1 The Mutually Exclusive Case

Recall that a set of guards is exhaustive if any consistent outcome of the primitive
tests comprising the guards turns on at least one of the guards. In practice most
procedure definitions satisfy a further property which we call mutual exclusion.

Definition 3.1 A pair of tests ¢1 and ¢z is mutually exclusive if and only if 3(¢t1 Atz)
1s not satisfiable.

A set of tests is mutually exclusive if the tests are pairwise mutually exclusive.

In this section we will focus on procedure definitions where the set of guards
are exhaustive as well as mutually exclusive — i.e. every consistent outcome of the
primitive tests turns on ezactly one of the guards.

For such procedure definitions we can rigorously establish the ‘form’ of the (prov-
ably) optimal decision tree. Our results in this section will apply to arbitrary pro-
cedure definitions that are mutually exclusive and exhaustive (note that that the
general problem of generating an optimal decision tree where the tests may not be
mutually exclusive and exhaustive is NP-Complete [4]). We can show that in any
procedure definition where the guards are mutually exclusive and exhaustive, there
is a single equivalence class such that each guard “cares about” this class. In other
words, the outcome of the tests in the equivalence class must be determined before
we can decide which guard is turned on.

Definition 3.2 An equivalence class is said to be dominant if the outcome of the
tests in the equivalence class must be determined before we can decide if any of the
guards is true. 1

Theorem 3.1 In any procedure definition where the guards are exhaustive and mu-
tually exclusive, there is a dominant equivalence class of tests. g

The proof is omitted due to space constraints. This result immediately suggests
an optimal algorithm for generating a decision tree in the case where the procedure
definition is mutually exclusive and exhaustive:

1. Find a dominant equivalence class.

reasonable approach using only execution weights that would be able to compare the relative costs
of two-way branches using conditional branches and multi-way branches using a branch table.



2. Produce a decision tree for the equivalence class (along the lines of Figure 1),
and recursively construct trees for the subproblems at each of the leaves of
this tree.

The optimality of the algorithm follows from the fact that the outcome of tests
in the dominant equivalence class must be determined by any scheme to evaluate
the procedure definition.

The central part of the above algorithm is to produce an optimal decision tree
for an equivalence class. This is the subject of our next subsection.

3.2 Generating the Decision Tree for an Equivalence Class

In this section we present a heuristic for finding a near-optimal decision tree for
an equivalence class using the notion of normalized entropy defined in the previous
section. This is the portion of our general algorithm for mutually exclusive and
exhaustive procedure definitions that is not necessarily optimal. Recall that each
test is assumed to be of the form ‘f(Z) op ¢’, where f is an evaluable function
and ¢ is a constant over a totally ordered domain. Given an equivalence class of
tests S for which to generate a decision tree, we first group the elements of S into
partitions, called families, such that tests in the same family compute the same
“left hand side” expression f(#). For example, given the tests

{1>0,J3>0,1-J<0, I-J =0, I-J >= 1}

we get three families: {I > 0},{J > 0}, and {I-J < 0, I-J = 0, I-J >= 1}. To
generate the decision tree for the original equivalence class, we have to construct the
decision tree for each family so generated. As discussed at the end of the previous
section, at each point we construct a decision tree for a dominant equivalence class
of tests. There may be semantic dependencies that impose an ordering, e.g., it may
be necessary to test that a variable is bound to a cons cell before attempting to
access the head of that cell: if there are such dependencies, we assume that the
different families are ordered in a way that respects these dependencies and yields
a legal ordering. Our choice of an order for processing these families may also
be guided by low-level considerations, e.g., we may choose an order that groups
together different families that test the same variables, so as to improve our use of
registers and better exploit the cache. For all these reasons; we do not focus on the
ordering between families in this paper, although this ordering has a bearing on the
average number of instructions executed.

According to earlier treatments of decision tree compilation, the next step,
namely the construction of a decision tree for a family of tests, which is of the
form {f(z) opy c1,..., f(Z) op, cn}, is trivial: we generate a multi-way jump
based on the value of the expression f(#). This does not address the crucial im-
plementation decision of how this multi-way branch is to be realized. Depending
on the addressing modes available on our target architecture, there may be a vari-
ety of options available, with different capabilities and costs: for example, we may
use a tree of conditional branches (corresponding to if-then-else statements),
or an indirect jump through a branch table (corresponding to a case or switch
statement), or possibly a combination of both. In general, each option has different
capabilities and different costs: for example, a conditional branch takes two or three
machine instructions but is able to address only two alternatives, while an indirect
jump through a branch table may take a total of six to ten machine instructions,



but can address a large number of alternatives. Further, even if we decide to use a
conditional test rather than jump through a branch table, we still have to make the
choice of what that test should be. Typically, the best choice will be a test that tries
to balance, as far as possible, the weights corresponding to each of its outcomes:
this may produce a test that does not appear in the original source program. One
of the novel features of our algorithm is that it (when appropriate) generates tests
which do not occur in the source program, resulting in improved performance.

Our aim is to generate a decision tree that reduces, as far as possible, the ex-
pected length (in machine instructions) over all paths. To do this, we use normalized
entropies (see Definition 2.4) to compare the “merit” of alternative realizations, and
pick the best.?. The justification for using normalized entropy is as follows: What
we would like to do is to minimize the average path length which is the weighted
average of the number of instructions it takes to get to each leaf of the tree. On
the average, we need to dispel an amount of uncertainty equal to the entropy of the
probability distribution induced by the weights on the leaves before we can get to
the leaves. In order to find the way that takes the fewest number of instructions to
dispel this uncertainty, we use the greedy heuristic and pick the test that dispels
the greatest amount of entropy per instruction. Of course, this is only a heuristic
and we can construct somewhat pathological examples where it is not optimal. Our
algorithm is described below and the decision trees produced by our algorithm for
some examples are described in the next section. To simplify the discussion that
follows, we assume that there are only two alternative realizations possible: condi-
tional jumps, with cost Chrancn, and indirect jumps through a branch table, with
cost Csysten: the algorithm can be extended to deal with other realizations (e.g.,
where a set of tests is realized using a switch after “lopping off” the boundaries
using two if-then-else statements) without much trouble. We use the following
notation:

— the probability (i.e., normalized weight) of a test ¢ is denoted by prob(t);

— because not every set of tests can be realized using a branch table (for example,
if there are tests of the form x > 0), we assume that there is a predicate
switchable(S) that is true if and only if the set of tests S can be implemented
using a branch table; and

— given a family of tests .S, we use the notation (S, ¢, Sa) = split(S)’ to indicate
that

(7) S is partitioned into two pieces S; and Sz such that the total weight of
the tests in S 1s as close as possible to the total weight of tests in Ss;
and

(#%) cis the “dividing line” between the tests Sy and Sz, i.e., tests in Sy imply
that the expression being evaluated has a value less than ¢, while tests
in Sz imply that this value is greater than (or equal to) c.

The algorithm, which is given in Figure 1, can be extended in a straightforward way
to consider more than two alternative realizations. In the function gen_tree, it 1s

31If one were only interested in finding the optimal binary decision tree for the example above,
techniques for generating optimal binary search trees using dynamic programming would apply,
but these techniques do not permit an easy comparison of this tree with a decision tree using
multiway branches.



Input : A set of tests S forming an equivalence class.
Output : A decision tree T realizing the tests S.

Method : return T := gen_tree(S);

function gen_tree(S) : decision_tree
begin
normalize the weights of tests in 5
partition S into families;
arrange these families in some order {S7,...,5,};
for i := 1 ton do /* construct decision trees for each family */
if switchable(S;) and entropy_switch(S;) > entropy_cond(S;) then
gen_switch(S;);
else
gen_cond(S;);
fi;
od
end;
procedure gen_switch(S)
begin
implement the tests in S at n as an indirect jump through a jump table;
end

procedure gen_cond(S)
begin
let S be a family of tests {£(Z) op; c1,...,E(Z) op,, ¢n};
let {S1, ¢, Sa) = split(S);
let py =5 {prob(t) |t € S1} and ps = > _{prob(t) | t € S=};
generate the decision tree “if £(z) < ¢ goto U; else goto Us;”
where Uy = gen_tree(S1) and Uz = gen_tree(Ss);
end

function entropy_switch(S) : real
begin
return (> {—prob(t)log,(prob(t)) |t € S})/Cswiten;

end

function entropy_cond(S) : real

begin
let {S1, ¢, Sa) = split(S);
let py = > {prob(t) |t € S1} and pa = > {prob(t) |t € Sa};
return —(p1 log,(p1) + p2logs(p2))/Coranch;

end

Figure 1: An Algorithm for Ordering Tests Within an Equivalence Class




important that the weights be normalized before proceeding with the construction:
otherwise, in subsequent invocations of gen_tree from within gen_cond, the com-
putations of weighted entropies may become distorted. Note that the procedure
gen_cond can introduce tests into the decision tree that are not present in the origi-
nal source program. Given the treatment of type tests such as integer/1, atom/1,
etc., described in Section 2.1, an esthetically pleasant consequence of this is that a
set of type tests on a variable may compile into decision tree tests with non-equality
comparisons on type tags, e.g., something like ‘if fag(X) < LIST ...’

Example 3.1 The following example illustrates the working of the algorithm of
Figure 1. Let the cost of an indirect branch through a jump table be 10 instructions,
while that of a test/conditional-branch combination is 2 instructions (these are the
assembly instruction counts for switch and if statements in C on Sparcstations).
Consider the predicate p/1 defined by 100 clauses:

1]
-

p(X) - X | true.

p(X) :- X = 100 | true.
Suppose that the weights of the clauses, for different values of the argument X, are

given by the following table (the distribution is somewhat artificial, but it illustrates
the algorithm in a simple way and produces a pretty decision tree):

| X | weight | normalized wt. |
1 520 0.5200
2-49 3 0.0030
50 236 0.2360
51-100 2 0.0020

We first consider the root node of the decision tree. The weighted entropy ffﬁ for
a jump table implementation of this node is given by

Hie = 75((=0.5210g, 0.52) + 5.2, =0.003 log, 0.003 + (~0.236 log, 0.236) +
S0 —0.0021og, 0.002)

= 0.308.

For a conditional branch implementation, the “split point” that balances the nor-
malized weights best, given the distribution given above, is 2 (i.e., the test generated
will be ‘X < 2°). The weighted entropy f]cb for a conditional branch implementa-
tion is given by

Hep = 3((=0.5210g, 0.52) + (—0.48 log, 0.48)) = 0.499.

Since f]cb > ffﬁ, a conditional branch ‘if (X < 2) ...’ is used to implement this
node.

One of the children of this node is the node 1, which is a leaf node that does not
need a decision tree. The other child requires a decision tree for the cases 2—100.
For this, the recursive call to the function gen_tree results in a renormalization of
the relevant weights, which produces the following:



| X | weight | normalized wt. |

2-49 3 0.0063
50 236 0.4917
51-100 2 0.0042

Computing weighted entropies as above, with the split point for the conditional
branch case being at 50, we get Hj;; = 0.437, Ho, = 0.442. Since Hep, > Hy, a
conditional branch ‘if (X < 50) ...’ is used to implement this node.

One of the children of this node is for the cases 2—49. Each of these cases has a
normalized weight of 0.0208. With the split point for the conditional branch at 25,
the weighted entropies are computed as H;; = 0.558, H., = 0.500. Since Hj; > Hp,
this subtree is implemented using a jump table.

The other child is for the cases 50-100. On normalization, we have

| X | weight | normalized wt. |
50 236 0.7024
51-100 2 0.0059

In this case, with the split point for the conditional branch at 51, the weighted
entropies are computed as H]t = 0.254, ch = 0.439. Since ch > Hﬂ, a conditional
branch ‘if (X < 51) ...’ is used to implement this node.

One child of this node is the leaf node 50, which does not need a decision tree.
The other child is for the cases 51-100, for which each test has a normalized weight
of 0.02. In this case, with the split point for the conditional branch at 25, the
weighted entropies are computed as H]t = 0.564, ch = 0.500. Since H]t > ch,
this subtree is implemented using a jump table.

The overall decision tree that is produced for this example is shown in Figure
2. The average number of instructions executed for this tree, given the weight
distribution and implementation costs assumed above, is 5.78. By comparison, the
average cost is 10 instructions if the decision tree is implemented as a single switch
statement, and between 12 and 14 instructions (depending on the exact structure of
the tree) if it is implemented as a binary tree without taking weights into account.
(A cursory examination of the tree in Figure 2 suggests that it may be better, given
the weight of the leaf labelled 50, to test for this case earlier, e.g., using the test ‘X
= 50’ immediately after the test ‘X < 2’. However, a careful examination indicates
that the average number of instructions executed for such a tree would be 5.94,
which is slightly higher than that of the tree obtained using our algorithm.)

To simplify the discussion in this example, we have ignored the possibility of
suspension due to underinstantiated inputs. To deal with suspension, it suffices to
add a clause that specifies when suspension should occur:

p(X) :- tag(X) = VARIABLE | suspend(...).

The weight of such a “suspension clause” will depend on the execution characteris-
tics of the program. For example, if p/1 is almost always called with a non-variable
argument, and therefore rarely suspends, then the suspension clause will have a
very small weight, and the corresponding node in the decision tree generated using
our approach will be fairly deep, i.e., it will be considered towards the end. On the



51 100

Figure 2: The decision tree produced for Example 3.1

other hand, if p/1 is usually called with a variable argument and has to suspend (as
might happen in programs written in an “object-oriented” style), then the suspen-
sion clause will have a high weight and its node in the decision tree will be close to
the root, i.e., 1t will be considered early in the execution of the predicate. As far
as we can tell, earlier approaches, e.g., those of Kliger and Shapiro [6, 7], generate
decision trees that consider suspension in otherwise branches, which appear to be
considered at the end if none of the non-otherwise branches is taken, and therefore
do not offer this flexibility. O

3.3 The Non-Mutually Exclusive Case

In this case, at any point there is a set of equivalence classes of tests, each of which 1s
“cared about” by some subset of the set of clauses under consideration, rather than
a single dominant equivalence class that every clause cares about. Theoretically,
the notion of entropies seems less obviously applicable here, because the tests are
not mutually exclusive. However, it turns out that we get intuitively reasonable
results if we use weights or normalized entropies to order the different equivalence
classes, then apply the previous algorithm to the equivalence classes in this order.

4 Performance

In this section, we compare the performance of the entropy based technique de-
scribed earlier with those of a number of other plausible ways of implementing
decision tree for an equivalence class. Our experiments considered an equivalence
class consisting of a single multiway branch, which corresponds to several tests on
the same group of variables. Our decision tree compiler takes a (switchable) set
of tests with weights, together with machine cost parameters, and emits C code
for these tests. The results reported are execution times for the code so gener-
ated, compiled using gcc on a Sparcstation-2: this allows us to examine the relative
machine-level costs of different realizations of decision trees without obscuring the
results by including time spent in non-decision-tree computations. The results are
given in Table 1. The different approaches that we compare with our entropy-based



approach are as follows:

If-Then-FElse : Here, the n-way branch is implemented as a series of if-then-else
statements. As a result, the last branch is executed only after n — 1 tests have
been performed. (This is not quite the same as not compiling a decision tree
at all, since it is possible, in such a scheme, that tests from different guards
are shared.)

Weighted If-Then-Else : Similar to the above, except that the tests are ordered in
decreasing order of weight, with the branch with the highest weight tested for
first.

Weighted Binary Tree : When the underlying set of values is totally ordered, it is
possible to organize a set of tests so that we effectively use a binary search
tree. The tests at the leaves of the tree are the tests that appeared originally in
the program and the tests on the internal nodes are the ones that are inserted
such that the probability of execution of either branch is as equal as can be
made, depending on the probability values of the original program branches.
Unlike the decision tree compilation schemes suggested in the literature, this
scheme can generate (internal node) tests that do not appear in the original
program.

Jump Table : The most obvious way of coding an n-way branch is using an indirect
jump through a jump table. However, this approach is not suitable for non-
equality tests, e.g., x > 2.

The benchmarks tested were the following:

1. Lexical Analyzer: In a compiler front-end, a lexical analyzer must examine
each character of the input program to determine the lexical structure of the pro-
gram. This requires a decision tree with an n-way branch, where n is the size of
the alphabet. We restricted our alphabet to digits and lower case letters, so that
the decision tree had 36 leaves. Letters were given heavier weight than digits (each
letter had a weight of 10, and each digit a weight of 1). We used a 2 Mbyte text file
as test input for our experiments. The decision tree produced by the entropy-based
scheme in this case was a binary tree.

2. Final Code Generator: After all final code generation decisions have been
made in the back end of a compiler, i1t is necessary to actually emit the instructions
to create an object file. For this, the compiler must examine the opcode of each
instruction (which is typically in some internal representation) to determine the
exact bit patterns to emit. Thus, it 1s necessary to create a decision tree based on
the relative (static) frequencies of different opcodes. We used gec to compile itself
on a Sparcstation and generate an assembler file, then used the static instruction
counts obtained from this to estimate the relative frequency of different opcodes.
The decision tree in this case had 53 leaves. The decision tree produced by our
entropy-based approach was an indirect jump through a branch table. The time
reported is the time taken to process the gcc opcodes.



|| Approach | Lexical Analyser | Code Generator | Byte-Code Interpreter ||

entropy-based 1.000 1.000 1.000
jump table 1.114 1.000 1.000
binary tree 1.114 1.347 1.470
if-then-else 2.770 1.732 >5

weighted-if-else 1.033 1.732 2.625

Table 1: Normalized Performance Figures

3. Byte-Code Interpreter: Many programming language implementations use
byte code interpreters, where programs are compiled to (a byte-code encoding of)
a virtual machine instruction set, which is then interpreted by a machine-level pro-
gram. Many well-known Prolog implementations follow this approach. Such an
interpreter requires a decision tree on byte-code instruction opcodes. While the in-
ner loop of such interpreters is typically implemented as an indirect branch through
a jump table, it is not obvious that this is necessarily the best implementation, since
this fails to take into account the relative (dynamic) frequencies of different opcodes.
For our experiments, we instrumented SB-Prolog to obtain dynamic opcode traces
for a number of medium-sized Prolog programs (e.g., boyer, the SB-Prolog com-
piler, the Berkeley PLM compiler, a dataflow analyser for Prolog, etc.), then used
the opcode frequencies so obtained to measure the time taken by different decision
tree realizations to process the traces so obtained. In this case, the decision tree
had 91 leaves, and the particular byte-code encodings used, the dynamic opcode
distribution, and the relative machine level costs assumed caused the entropy-based
method to generate an indirect branch through a jump table.

5 Conclusions

While decision tree compilation 1s a promising way to carry out guard tests ef-
ficiently, the methods given in the literature do not take into account either the
execution characteristics of the program or the machine-level tradeoffs between
different ways to implement branches. These methods therefore offer little or no
guidance for the implementor with regard to how decision trees are to be realized on
a particular machine. In this paper, we describe an approach that takes execution
frequencies of different program branches, as well as the costs of alternative branch
realizations, to generate decision trees. Experiments indicate that the performance
of our approach is uniformly better than that of other plausible alternatives.
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