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Abstract. In this paper, we investigate whether is it possible to train
a neural network directly from user inputs. We consider this approach
to be highly relevant for applications in which the point of optimality is
not well-defined and user-dependent. Our application is medical image
denoising which is essential in fluoroscopy imaging. In this field every
user, i.e. physician, has a different flavor and image quality needs to be
tailored towards each individual. To address this important problem, we
propose to construct a loss function derived from a forced-choice experi-
ment. In order to make the learning problem feasible, we operate in the
domain of precision learning, i.e., we inspire the network architecture by
traditional signal processing methods in order to reduce the number of
trainable parameters. The algorithm that was used for this is a Laplacian
pyramid with only six trainable parameters. In the experimental results,
we demonstrate that two image experts who prefer different filter char-
acteristics between sharpness and de-noising can be created using our
approach. Also models trained for a specific user perform best on this
users test data. This approach opens the way towards implementation of
direct user feedback in deep learning and is applicable for a wide range
of application.

1 Introduction

Deep learning is a technology that has been shown to tackle many important
problems in image processing and computer vision [1]. However, all training
needs a clear reference in order to apply neural network-based techniques. Such
a reference can either be a set of classes or a specific desired output in regression
problems. However, there are also problems in which no clear reference can be
given. An example for this are user preferences in forced-choice experiments.
Here, a user can only select the image he likes best, but he cannot describe or
generate an optimal image. In this paper, we tackle exactly this problem by
introduction of a user loss that can be generated specifically for one user of such
a system.

In order to investigate our new concept, we explore its use on image en-
hancement of interventional X-ray images. Here, the problem arises that differ-
ent physicians prefer different image characteristics during their interventions.
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Some users are distracted by noise and prefer strong de-noising while others
prefer crisp and sharp images. Another requirement for our user loss is that we
want to spend only few clicks for training. As such we have to deal with the
problem of having only few training samples, as we cannot ask your users to
click more than 50 to 100 times. In order to still work in the regime of deep
learning, we employ a framework coined precision learning that is able to map
known operators and algorithms onto deep learning architectures [2]. In litera-
ture this approach is known to be able to reduce maximal error bounds of the
learning problem and to reduce the number of required training samples [3]. Fu
et al. even demonstrated that they are able to map complex algorithms such as
the vesselness filter onto a deep network using this technique [4].

2 Methods

We chose an Laplacian pyramid de-noising algorithm as basis [5]. In this section
first image denoising using the Laplacial pyramid is described. Then, we follow
the idea of precision learning to derive the network topolgy based on the known
approach followed by an detailed description of the loss function.

2.1 Subband decomposition

Image densoising using a Laplacian pyramid is carried out in two steps. First the
image is decomposed into subbands followed by an soft threshold to reduce the
noise. The Laplacian pyramid [5] is an extension of the Gaussian pyramid using
differences of Gaussians (DoG). To construct a layer of the Laplacian pyramid
the input has to be blurred using a Gaussian kernel with a defined standard
deviation σ and mean μ = 0 with a subsequent subtraction from the unblurred
input itself.

2.2 Soft-thresholding

After sub-band decomposition, we assume that small coefficients are caused by
noise in each band Ibp,n. We employ soft-thresholding to suppress this noise
with magnitudes smaller than ε. Note that for both, the Gaussian that is used
for the sub-band decomposition, as well as for the soft thresholding function
sub-gradients [6] can be computed with respect to their parameters. As such
both are suited for use in neural networks [2].

2.3 Neural network

Following the precision learning paradigm, we construct a three layer Laplacian
pyramid filter as a neural network. A flowchart of the network is depicted in
Fig. 1. The low-pass filters are implemented as convolutional layers, in which the
actual kernel only has a single free parameter σ. Using point-wise subtraction,
these low-pass filters are used to construct the band-pass filters. On each of those
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filters, soft-thresholding with parameter ε is applies. In a final layer, the soft-
thresholded band-pass filters are recombined to form the final image. As such we
end up with a network architecture with nine layers that only has six trainable
parameters σ1, σ2, σ3, ε1, ε2, ε3. In the following, we summarize these parameters
as a single vector φ that can be trained using the back-propagation algorithm
[7].

2.4 User loss

Let Ipref be the user preferred image, INN the denoised image produced by our
net. Below equation would be the main objective of our net

argminφ ||Ipref − INN||22 (1)

The main problem with this equation is that the user is not able to produce
Ipref. To resolve this problem, we introduce errors to the optimal image that
cannot be observed directly

e = ||Ipref − I||22
However, if we provide a forced-choice experiment using four images I0 . . . I3,
we can determine which of the four errors e0 . . . e3 is the smallest. This gives
us a set of constraints that need to be fulfilled by our neural network. For the
training of the network, we define our error in the following way

eq = ||INN − Iq||22
Let s be the total number of frames, es,q denote the quality q dedicated to frame
s, and Q denote the number of choices. Assuming es,∗ is selected by the user,
the following expected relationships between the errors emerge

es,∗ ≤ es,q ∀q ∈ {0, . . . , Q− 1} (2)

For user selection is ∗ = 2, the constraint below are used to set up our loss
function. Similar to implementation of support vector machines in deep networks,
we map the inequality constraints to the hinge loss using the max operator [8]

es,2 < es,0 −→ es,2 − es,0 < 0 −→ max(es,2 − es,0, 0)

es,2 < es,1 −→ es,2 − es,1 < 0 −→ max(es,2 − es,1, 0)

es,2 < es,3 −→ es,2 − es,3 < 0 −→ max(es,2 − es,3, 0)

(3)

Fig. 1. Schematic of
the neural network de-
sign used in this work.
The architecture mim-
ics a Laplacian pyra-
mid filter with soft-
thresholding.
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This gives rise to three different variants of the user loss that are used in this
work:

1. Best-Match: Only the user selected image is used to guide the loss function

argminφ

S∑
s=1

es,∗ (4)

2. Forced-Choice: The user loss seeks to fulfill all criteria imposed by the user
selection

argminφ

S∑
s=1

Q−1∑
q=0

max(es,∗ − es,q, 0) (5)

3. Hybrid: The user selected image drives the parameter optimization while all
constraints implied by the forced-choice are sought to be fulfilled

argminφ

S∑
s=1

es,∗ +

Q−1∑
q=0

max(es,∗ − es,q, 0) (6)

Note that the hybrid user loss is mathematically very close to the soft-margin
support vector machine, where es,∗ takes the role of the normal vector length

and
∑Q−1

q=0 max(es,∗ − es,q, 0) the role of the additional constraints.

3 Experiments and results

For generating different scenarios, in the first step the Laplacian pyramid is ini-
tialized for each input image. Considering the center values of our parameter sets
φ, the four different scenes are generated using random parameters. The result-
ing scenes for each frame are then imported to a GUI in order to take the user
preferences (Fig. 2). The network is implemented in Python using Tensorflow
framework. ADAM algorithm is used as optimizer iterating over 5000 epochs
with learning rate of μ = 10−2 and the batchsize is set to 50. The datasets which
are used in this work are 2D angiography fluoroscopy image data. The dataset
contains 50 images of size 1440 × 1440 with different dose levels. We created
200 scenarios via randomly initializing the Laplacian pyramid parameters.Our
dataset is divided such that 60% of the dataset for training data, 20% for val-
idation and 20% for test set. In this work stratified K-Fold Cross-Validation is
used for data set splitting.

3.1 Qualitative results

Qualitative results of our approach are presented in Fig. 3 for the first user. These
indicate an influence of different loss functions on the parameter tuning of one
user’s preferences. The Best Match loss shows better noise reduction, however
reduces the sharpness more than the other losses. In contrast to Best Match,
Forced Choice loss shows better sharpness and higher noise level. In order to
favor both targets the Hybrid Loss eliminates noise and preserve sharpness of
image data as well.
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Table 1. Quantitative comparison of loss functions: Best-Match (BM), Forced-Choice
(FC), Hybrid(HY).

Low dose data User 1 User 2

BM FC HY BM FC HY

Model Nr. 1 BM 1431.1 — — 2436.7 — —

FC — 248.8 — — 253.1 —

HY — — 1771.1 — — 2675.9

Model Nr. 2 BM 1381.5 — — 2391.5 — —

FC — 249.5 — — 964.9 —

HY — — 1781.1 — — 2359.1

3.2 Quantitative evaluation

In this section, we evaluate the three loss functions for both of our users against
each other. Tab. 1 displays the models created with the respective loss functions
versus the test sets of both users. To set fair conditions for the comparision, we
only evaluated models with the respective loss functions that were used in their
training. The results indicate that Best-Match and Forced-Choice only are not
able to result in the lowest loss for their respective user. The Hybrid loss models,
however, are minimal on the test data of their respective user. Hence, the Hybrid
loss seems to be a good choice to create user-dependent de-noising models.

Fig. 2. Graphical
user interface designed
for proposed network
training.

Fig. 3. Comparison of
original low-dose image
and its corresponding
results obtained from
different user losses for
the first user. For bet-
ter visualization win-
dowing is applied on
the second row.
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4 Conclusion and discussion

We propose a novel user loss for neural network training in this work. It can be
applied to any image grading problem in which users have difficulties in finding
exact answers. As a first experiment for the user loss, we demonstrate that it
can be used to train a de-noising algorithm towards a specific user. In our work
200 decisions using 50 clicks were sufficient to achieve proper parameter tuning.
In order to be able to apply this for training, we used the precision learning
paradigm to create a suitable network with only few trainable parameters.

Obviously also other algorithms would be suited for the same approach [9,
10, 11, 12, 5]. However, as the scope of the paper is the introduction of the user
loss, we omitted these experiments in the present work. Further investigations
on which filter requires how many clicks for convergence is still an open question
and subject of future work.

We believe that this paper introduces a powerful new concept that is applica-
ble for many applications in image processing such as image fusion, segmentation,
registration, reconstruction, and many other traditional image processing tasks.
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