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Nigeria is one of the current cholera hotspots in 
Africa (1). The World Health Organization re-

port on cholera cases in countries in Africa for Janu-
ary 2022–December 2023 showed that most cases in 
West Africa were in Nigeria (n = 26,452) (2).

In 1970, the seventh cholera pandemic in Africa 
was initiated by the Vibrio cholerae O1 El Tor lineage 
(7PET), which became endemic to many countries in 
Africa (3). The pathogenicity of that lineage is char-
acterized by 2 factors: cholera toxin, encoded by the 
ctxAB operon in the lysogenic bacteriophage CTXΦ, 
and the toxin coregulated pilus (TCP), encoded on the 
Vibrio pathogenicity island 1 and an essential factor 
for intestinal colonization and CTXΦ uptake (4). Wei-
ll et al. reconstructed the spatiotemporal spread of  
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Analysis of clinical and environmental Vibrio chol-
erae O1 strains obtained during 2008–2015 in Nigeria 
showed that lineages Afr9 and Afr12 carrying cholera 
toxin and Vibrio pathogenicity island 1 can be isolated 
from water. Our findings raise concerns about the role 
of the environment in maintenance and emergence of 
cholera outbreaks in Nigeria.
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Figure. Maximum-likelihood tree of clinical and environmental Vibrio cholerae O1 strains, Nigeria, 2008–2015. The best evolutionary 
model was Kimura 3-parameter plus ascertainment bias correction plus FreeRate model 2 selected by Bayesian information criterion. 
The highlighted clusters represent genomes from Afr9 (blue) and Afr12 (pink) lineages. To the right of the genome name is information 
about source of isolation (red, human; blue, environment), year of isolation, presence of ctxAB genes (dark green block), and complete 
TCP cluster (light green circle). Red dots on branches represent >70% bootstrap values. Available GenBank accession numbers are 
provided. CTX, cholera toxin; TCP, toxin coregulated pilus.



cholera in Africa during the seventh and current pan-
demics, showing that the 7PET lineage evolved into 
>13 sublineages and that the Afr9 and Afr12 lineages 
are the main sublineages causing cholera outbreaks 
in Nigeria and Cameroon (West Africa) (3). As part 
of efforts to provide information for cholera control, 
we used conventional microbiology, whole-genome 
sequencing, comparative genomics, and phylogenetic 
analysis to characterize clinical and environmental 
V. cholerae O1 strains obtained during the 2008–2015 
cholera outbreaks in Nigeria.

We analyzed 24 V. cholerae strains comprising iso-
lates from clinical (n = 16), environmental (n = 5), and 
unknown (n = 3) sources (Appendix, https://wwwnc.
cdc.gov/EID/article/30/11/24-0495-App1.xlsx). We 
used standard culture methods to identify and con-
firm that all strains were V. cholerae serogroup O1. 
We sequenced the genomes of those strains by using 
an Illumina Hiseq 2500 (https://www.illumina.com), 
assembled them with SPAdes v3.15.2 (https://github.
com/ablab/spades), and analyzed them with Abricate 
by using the CARD and VFDB databases (https://
github.com/tseemann/abricate). We analyzed the 24 
environmental/clinical genomes from our study along 
with 36 other representative environmental/clinical V. 
cholerae genomes from Africa spanning all Afr sublin-
eages (Afr1–12) of the seventh pandemic (3). We sub-
jected genomes to a phylogenomic analysis that used 
Roary version 3.13.0 (https://github.com/sanger-
pathogens/Roary), snp-dist version 2.5.1 (https://
github.com/sanger-pathogens/snp-sites), and IQtree 
version 1.6.12 (https://github.com/Cibiv/IQ-TREE).

On the basis of the V. cholerae core genome, we 
determined that the 24 genomes from our study be-
longed to the Afr9 or Afr12 sublineages, including 
the clinical and environmental strains (Figure); those 
2 sublineages have been associated with cholera out-
breaks in countries in West Africa (3). The Afr9 ge-
nomes showed the wild-type sequence for GyrA 
and ParC, and the Afr12 genomes showed the S83I 
(GyrA) and S85L (ParC) mutations. V. cholerae strains 
from Nigeria had been previously characterized with 

those mutations, which were associated with resis-
tance to nalidixic acid and decreased susceptibility to 
ciprofloxacin (5). The differences between the resis-
tance profile of the Afr9 and Afr12 strains could be 
observed in the antimicrobial susceptibility profile 
(Table). Furthermore, we observed other resistance 
differences, mainly concerning resistance to strepto-
mycin, sulfonamide, trimethoprim/sulfamethoxa-
zole, and chloramphenicol (Table). By analyzing the 
resistome of the genomes (Appendix), we identified 
genes associated with resistance to those antimicro-
bials: aph(3′′)-Ib (strA) and aph(6)-Id (strB) (strepto-
mycin), sul2 (sulfonamide), dfrA1 (trimethoprim/
sulfamethoxazole), and floR (chloramphenicol). The 
genes were located in the integrative and conjugative 
element STX, which is predominant in genomes of 
current V. cholerae O1 strains, contrasting with 7PET 
strains from the 1970s (5). Of note, VC23, VC62, VC64 
(Afr9), and VC105 (Afr12) presented a deletion in the 
integrative and conjugative element STX region that 
contained the strA/B, floR, and sul2 genes, which re-
sulted in differences in the antimicrobial resistance 
profile between those strains and the others (Table). 

Environmental and clinical genomes were relat-
ed, particularly observed in 2 pairs of genomes: VC64 
(Afr9/environmental/2007) and VC62 (Afr9/clini-
cal/2007), and VC49 (Afr12/environmental/2010) 
and VC47 (Afr9/clinical/2010) (Figure). All Afr9 and 
Afr12 environmental genomes from Nigeria harbored 
the 2 major virulence determinants of epidemic V. 
cholerae O1, the ctxAB operon, and the TCP cluster, as 
well as most clinical genomes (Appendix). Those data 
represent evidence that strains belonging to the Afr9 
and Afr12 epidemic lineages could be recovered from 
the environment in a West Africa country (Nigeria) 
and would still harbor the main virulence determi-
nants of V. cholerae. A study conducted in East Africa 
(Tanzania) showed that the Afr10e sublineage, associ-
ated with a cholera outbreak in that region, could also 
be isolated from the environment (fish and water) 
and, as shown here, also harbored the ctxAB operon 
and the TCP cluster (8).
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Table. Antimicrobial susceptibility profile of environmental and clinical strains of Vibrio cholerae, Nigeria* 
Strains Lineage Source Isolation date ICE STX GEN STR NAL CIP SUL SXT TET CHL 
VC18 VC19 VC21 VC25 VC66 Afr9 Clinical 2008/2010 + S R S S R R S S 
VC23 VC62 Afr9 Clinical 2007/2010 – S I S S S S S S 
VC64 Afr9 Water 2007 – S I S S S S S S 
VC29 VC30 VC31 VC40 VC47 
VC73 VC74 VC84 VC100 

Afr12 Clinical 2008/2009/20
10/2013/2015 

+ S R R S R R S I 

VC105 Afr12 Water 2009 – S I R S S S S S 
VC49 VC52 VC108 Afr12 Water 2009/2010 + S R R S R R S I 
VC89 VC96 VC97 Afr12 Unknown Unknown + S R R S R R S I 
*Phenotypic resistance was determined according to Clinical and Laboratory Standards Institute breakpoints (6,7). CHL, chloramphenicol; CIP, 
ciprofloxacin; GEN, gentamicin; ICE, integrative and conjugative element; NAL, nalidixic acid; STR, streptomycin; SUL, sulfonamide; SXT, 
trimethoprim/sulfamethoxazole; TET, tetracycline; +, indicates presence of the region with antimicrobial resistance genes in ICE STX; –, indicates 
absence of the region with antimicrobial resistance genes in ICE STX. 

 



The global initiative for cholera control aims to 
reduce cholera deaths by 90% by 2030 (9). However, 
despite adoption of cholera elimination measures by 
many countries, cholera cases in 2023 demonstrated a 
huge and alarming resurgence across Africa, includ-
ing Nigeria. The recent resurgence of cholera in some 
countries in Africa may be associated with climate 
change (10), but evidence of the presence of choler-
agenic Vibrio in the environment reveals the funda-
mental role of safe drinking water, sanitation, and hy-
giene in preventing and controlling cholera. Overall, 
our study highlights the need for continued genomic 
surveillance considering clinical and environmental 
V. cholerae strains.

The V. cholerae whole-genome sequences from this study 
were deposited in GenBank. Accession numbers are listed 
in the Appendix.
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