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1 Introduction

The goal of establishing GMs (Graphical Models) is to represent a joint distribution P over some set of
random variables χ = {X1, . . . , Xn}. Consider the simplest case where each variable is binary-valued, a
joint distribution requires total 2n − 1 numbers (minus 1 comes from sum-to-one constraint).This explicit
representation of the joint distribution is unmanageable from every perspective1.

• Computationally, it’s very expensive to manipulate and too large to store in memory.

• Cognitively, it is impossible to acquire so many numbers from a human expert, and the numbers are
very small and do not correspond to events that people can reasonably contemplate.

• Statistically, if we want to learn the distribution from date, we would need ridiculously large amounts
of data to estimate this many parameters robustly.

However, Bayesian Networks are able to represent compact representations by exploiting Independence
Properties.

2 The student Example

We’ll introduce perhaps the simplest example to see how independence assumptions produce a very
compact representation of a high-dimensional distribution.

We now assume that a company would like to hire some graduates. The company’s goal is to hire intelligent
employees, but there is no way to test intelligence directly. However, the company have access to student’s
SAT scores and course grades. Thus, our probability space is induced by three relevant random variables
I, S and G. Assuming that G takes on three values g1, g2, g3, representing grades A,B and C, I takes on
two values i0(low intelligence), i1(high intelligence), S takes on two values s0(low score) and s1(high score).

We can get some intuitive independences in this example. The student’s intelligence is clearly correlated
both with his SAT score and grade. The SAT score and grade are also not independent.If we on the fact
that the student received a high score on his SAT, the chances that he gets a high grade in his class are also
likely to increase. Thus, we assume that, for our distribution P ,

P (g1 | s1) > P (g1 | s0)

However, it’s quite plausible that our distribution P satisfies a conditional independence property. If
we know that the student has high intelligence, a high grade on the SAT no longer gives us information

1The following mainly quotes from Koller andFriedman Textbook Ch.3
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Figure 1: Simple Bayesian networks for the student example

about the students performance in the class. That is:

P (g | i1, s1) = P (g | i1)

Generally, we may assume that
P |= (S ⊥ G | I)

Note that this independence holds only if we assume that student’s intelligence is the only reason why his
grade and SAT score might be correlated, which means that it assumes that there is no correlations due to
other factors. These assumptions are also not “True” in any formal sense of word, and they are often only
approximations of our true beliefs.

As in the case of marginal independence, conditional independences allows us to provide a compact specifi-
cation of the joint distribution. The compact representation is based on a very natural alternative parame-
terization. By simple probabilistic reasoning, we have that

P (I, S,G) = P (S,G | I)P (I).

But now, the conditional independence assumption implies

P (S,G | I) = P (S | I)P (G | I).

Hence, we have that

P (I, S,G) = P (S | I)P (G | I)P (I)

Thus, we have factorized the joint distribution P (I,G,G) as a product of three conditional probability
distributions (CPDs). This factorization immediately leads us to the desired alternative parameterization.
Together with P (I), P (S | I), P (G | I), we can specify the joint distribution. For example, P (i1, s1, g2) =
P (i1)P (s1 | i1)P (g2 | i1).

We note that this probabilistic model would be represented using the Bayesian network shown in Figure 1.

In this case, the alternative parameterization is more compact than the joint. We now have three binomial
distributions — P (I), P (S | i1) and P (S | i0), and two three-valued multinomial distributions — P (G | i1)
and P (G | i0). Each of the binomials requires one independent parameter, and each three-valued multinomial
requires two independent parameters, for a total of seven (3 ∗ (2 − 1) + 2 ∗ (3 − 1)).By contract, our joint
distribution has twelve entries, so that eleven independent parameters.

3 Bayesian Networks

Bayesian networks build on the intuition as the naive Bayes model by exploiting conditional independence
properties in order to allow a compact and natural representation.However, they are not restricted to the
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Figure 2: Factorize example graph

strong independence assumptions naive Bayes model makes.

The core of the Bayesian network representation is a directed acyclic graph (DAG), whose nodes are the
random variables in our domain and whose edges correspond, intuitively, to direct influence of one node on
another.

We can view the graph in two ways:

• a data structure that provides the skeleton for representing a joint distribution compactly in a
factorized way.

• a compact representation for a set of conditional independence assumptions about a distribution.

3.1 Factorization Theorem

Given a DAG, the most general form of the probability distribution that is consistent with the graph factors
according to “node given its parents”:

P (X) =
∏

1=1:d

P (Xi | Xπi
)

where Xπi
is the set of parent node of xi, and d is the number of nodes.See Figure 2 for an example. This

graph can be factorized and represented as follows:

P (X1, X2, X3, X4, X5, X6, X7, X8) =

P (X1)P (X2)P (X3 | X1)P (X4 | X2)P (X5 | X2)P (X6 | X3, X4)P (X7 | X6)P (X8 | X5, X6)

3.2 Local Structures and Independences

Graphical models have three fundamental local structures that composes bigger structures.

• Common parent Fixing B decouples A and C. When two variables A and C have a common parent
B, conditional independence A ⊥ C | B holds.
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• Cascade Knowing B decouples A and C. When a middle node in a cascaded three random variables
is known, a conditional independence A ⊥ C | B holds.

• V-structure If C is not observed, then A and B are independent. However, if it is given, then the
independence is lost. (A and B are not independent given C). In this case, A and B are marginally
independent.

The unintuitive V-structure can be described by a simple example. Suppose A = clock on tower, B = traffic
jam on Eric’s way to campus, and C = Eric on time for class. If Eric is not on time and the clock is on time,
then our belief that B occurred is higher.

4 I-maps

Definition 4.1 Let P be a distribution over X. We define I(P ) to be the set of independence assertions of
the form (X ⊥ Y | Z) that hold in P.

Definition 4.2 Let K be an any graph object associated with a set of independences I(K). Then K is an
I −map for a set of independences I if I(K) ⊆ I

For example, if a graph K is totally connected, then every pair of variables are dependent, more formally,
I(K) = ∅ ⊂ P . A complete graph is “useless”, since it does not give any knowledge about the structural.

4.1 Facts about I-maps

For G to be an I-map of P , it is necessary that G does not mislead us regarding independences in P . In
other words, any independence that G asserts must also hold in P , but conversely, P may have additional
independences that are not reflected in G.

Figure 3:
I-map example

Example:

Consider a joint probability space over two independent random variables X and Y . There are three possible
graphs (as shown in Figure 3) over these two nodes: G∅, which is a disconnected pair X Y ; GX→Y , which
has the edge X → Y ; and GX→Y , which contains Y → X. The graph G∅ encodes the assumption that
(X ⊥ Y ). The latter two encode no independence assumptions.

Consider following two distributions:
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X Y P (X,Y )
x0 y0 0.08
x0 y1 0.32
x1 y0 0.12
x1 y1 0.48

X Y P (X,Y )
x0 y0 0.4
x0 y1 0.3
x1 y0 0.2
x1 y1 0.1

In the example on the left, X and Y are independent in P ; for example, P (x1) = 0.48 + 0.12 = 0.6,
P (y1) = 0.8, and P (x1, y1) = 0.48 = 0.60.8. Thus, (X ⊥ Y ) ∈ I(P ), and we have that G∅ is an I-map
of P . In fact, all three graphs are I-maps of P : I(GX→Y ) is empty, so that trivially P satisfies all the
independences in it (similarly for GY→X ). In the example on the right, (X ⊥ Y ) 6∈ I(P ), so that G∅ is not
an I-map of P . Both other graphs are I-maps of P .

4.2 Local independences

Definition 4.3 A Bayesian network structure G is a directed acyclic graph whose nodes represent random
variables X1, . . . , Xn . Let PaXi

denote the parents of Xi in G, and NonDescendantsXi
denote the variables

in the graph that are not descendants of Xi . Then G encodes the following set of local conditional
independence assumptions Il(G):

For each variable Xi : (Xi ⊥ NonDescendantXi
|Paxi

).

In other words, a node Xi is independent of any non descendants given its parents.

5 D-separation

Direct connection The simple case is that X and Y are directly connected via an edge, say X → Y . For
any network structure G that contains the edge X → Y , it is possible to construct a distribution where X
and Y are correlated regardless of any evidence about any of the other variables in the network. In other
words, if X and Y are directly connected, we can always get examples where they influence each other,
regardless of Z.

Figure 4: The four possible two-edge trails from X to Y via Z

Indirect connection Now consider the more complicated case when X and Y are not directly connected,
but there is a trail between them in the graph. We begin by considering the simplest such case: a three-node
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network, where X and Y are not directly connected, but where there is a trail between them via Z. It is clear
that there are four cases where X and Y are connected via Z, as shown in Figure 4.

• Causal trail X → Y → Z, and evidential trail X ← Y ← Z: active iff Zis not observed. These two is
shown in Figure 4 (a),(b)

• Common cause X ← Z → Y : active iff Z is not observed.

• Common effect X → Z ← Y : active iff Z or one of its descendants is observed.

Definition 5.1 Let X, Y , Z be three sets of nodes in G. We say that X and Y are d-separated given Z,
denoted d − sepG(X; Y | Z), if there is no active trail between any node X ∈ X and Y ∈ Y given Z. We
use I(G) to denote the set of independences that correspond to d-separation:

I(G) = {(X ⊥ Y | Z) : d-sepG(X; Y | Z)}.

This set is also called the set of global Markov independences.

6 Soundness and completeness

Soundness If a distribution P factorizes according to a graph G, then I(G) ⊆ I(P ).

Completeness d-separation detects all possible independences.

However, it is important to note that if X and Y are not d-separated given G, then it is not the case that
X and Y are dependent given Z in all distributions that factorize over G. For example, consider the graph
A→ B. Clearly, A and B are dependent. Note that every distribution over A and B factorizes according to
this graph, since it is always true that P (A,B) = P (A)P (B | A). But if we consider the specific distribution
give in Table 1, then A ⊥ B. However, we can assert that if X and Y are not d-separated given Z, then
there is at least one distribution which factorizes according to the graph, and where X is not independent
of Y given Z. Combining this with the above theorems gives us an important result.

b0 b1

a0 0.4 0.6
a1 0.4 0.6

Table 1: The distribution specified in this table factorizes according to the graph A→ B but A is independent
of B.

7 Uniqueness of BN

Very different BN graphs can actually be equivalent, in that they encode precisely the same set of conditional
independence assertions.For example, the three networks in figure 4(a),(b),(c) encode precisely the same
independence assumption: X ⊥ Y | Z. Note that the v-structure network in figure 4(d) induces a very
different set of d-separation assertions, and hence it does not fall into the same I-equivalence class as the
first three.

Definition 7.1 Two graph structures K1 and K2 over X are I-equivalent if I(K1) = I(K2). The set of all
graphs over X is partitioned into a set of mutually exclusive and exhaustive I-equivalence classes, which are
the set of equivalence classes induced by the I-equivalence relation.
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Definition 7.2 The skeleton of a Bayesian network graph G over X is an undirected graph over X that
contains an edge {X,Y } for every edge (X,Y ) in G.

Theorem 7.1 Let G1 and G2 be two graphs over X. If G1 and G2 have the same skeleton and the same set
of v-structures then they are I-equivalent.

8 Minimum I-Map

Complete graph is a trivial I-map for any distribution over all variables, since it does not reveal any of the
independence structure in the distribution.

Definition 8.1 A graph K is a minimal I-map for a set of independences I if it is an I-map for I, and if
the removal of even a single edge from K renders it not an I-map.

9 Perfect Maps

Definition 9.1 We say that a graph K is a perfect map (P-map) for a set of independences I if we have
that I(K) = I. We say that K is a perfect map for P if I(K) = I(P ).

Note that not every distribution has a perfect map.

10 Summary

• Definition 10.1 A Bayesian network is a pair B = (G,P ) where P factorizes over G, and where P
is specified as a set of CPDs associated with Gs nodes. The distribution P is often annotated PB.

• BN utilizes local and global independences to give a compact representation of the joint distribution.

• Joint likelihood is computed by multiplying CPDs.

• Local and global independences are identifiable via d-separation.


