A general and efficient method for finding cycles in 3D curve networks
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Figure 1: A curve network (misc2) representing a genus-7 mechanical part (left), cycles found by our algorithm (middle), and surface patches
generated from the cycles (right). The curve network contains 410 curves. Our algorithm completed in half a second.

Abstract

Generating surfaces from 3D curve networks has been a longstand-
ing problem in computer graphics. Recent attention to this area
has resurfaced as a result of new sketch based modeling systems.
In this work we present a new algorithm for finding cycles that
bound surface patches. Unlike prior art in this area, the output of
our technique is unrestricted, generating both manifold and non-
manifold geometry with arbitrary genus. The novel insight behind
our method is to formulate our problem as finding local mappings
at the vertices and curves of our network, where each mapping de-
scribes how incident curves are grouped into cycles. This approach
lends us the efficiency necessary to present our system in an interac-
tive design modeler, whereby the user can adjust patch constraints
and change the manifold properties of curves while the system au-
tomatically re-optimizes the solution.
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1 Introduction

Creating surfaces from a network of 3D curves, often known as
lofting or skinning, is a classical and fundamental problem in
computer-aided design (CAD). In a traditional CAD pipeline, engi-
neers start by defining a wireframe of the desired model, which then
needs to be turned into a surface representation for analysis, simu-
lation, and manufacturing. More recently, sketching tools [Wesche
and Seidel 2001; Bae et al. 2008; Schmidt et al. 2009; Grimm and
Joshi 2012] offer intuitive means for drawing 3D curves using 2D
input devices, allowing artists to quickly come up with concept de-
signs. Even though these sketches may not be used for defining the
final product, surface visualization could help users better appreci-
ate their design [Abbasinejad et al. 2011; Bessmeltsev et al. 2012].

An important first step in lofting is identifying a cycle of curves
in the network that bounds an individual surface patch. Although
humans can quickly “see” such cycles in a typical curve network
created by a designer, the actual process of selecting curves and
grouping them into cycles can be rather tedious. The process may
be significantly shortened if the computer can suggest most, if not
all, of the cycles, requiring only minimal input from the user in the
form of quick inspection and small adjustments.

Finding cycles automatically is a challenging task. First of all, there
is usually a huge number of cycles to choose from in a curve net-
work [Biondi et al. 1970]. Second, while the complete perceptual
model of how humans identify the “good” cycles is not yet well-
understood, it is evident that we evaluate the goodness of one cycle
not in isolation, but in the context of other cycles. Consider the ex-
ample in Figure 1 (left): among the many circular rings in the net-
work, only a few of them describe faces of the model while others
are cross-sections or ends of cylindrical shafts. Last but not least,
the specific application context often imposes additional constraints
on the cycles. For example, wireframe designs of mechanical mod-
els usually define closed manifolds (often times with high genus,
like the one in Figure 1), meaning that each input curve needs to be



Figure 2: A sketched design containing non-manifold curves with prescribed degrees (left), cycles found by our algorithm (middle), and
surface patches generated from the cycles (right). The curve network contains 102 curves. Our algorithm completed in 0.1 second.

used exactly twice in the resulting cycles. These factors make cycle
discovery a highly complex search problem.

Many algorithms for cycle discovery have been proposed in the past
few decades (see a more detailed discussion in Section 2). To tame
the search complexity, they rely on stringent assumptions on either
the geometry or the topology of their output. Some methods only
look for planar cycles, while others are usually limited to cycles
that define either a manifold surface with genus 0 or an open, non-
manifold surface that does not bound any solid space. It remains
difficult to model surfaces with both interesting geometry (e.g., with
highly curved faces) and complex topology (e.g., a manifold with
high genus) in an efficient manner.

Contribution We present a new algorithm for finding cycles that
bound potential surfaces in a curve network. Following previous
works on this problem, we take as input a “clean” network, in the
sense that a curve does not self-intersect and no two curves intersect
unless at their joining vertices.

Unlike existing methods, the output of our algorithm is not limited
to any particular class of geometry or topology. The cycles can be
highly non-planar, and the surface defined by these cycles can be
either manifold or non-manifold and have an arbitrary genus. In
addition, the user can exactly control the non-manifold topology of
the output by prescribing the degree of each non-manifold curve in
the input network (see Figure 2). The algorithm is highly efficient
and capable of achieving interactive speeds even on large networks
(like the one in Figure 1).

The key idea behind our method, which lends us efficiency without
sacrificing generality, is exploring a different search space. While
previous methods search in the space of cycles, our algorithm looks
for mappings locally at a vertex or a curve that describes how the
incident curves are grouped into cycles. A collection of such map-
pings over all vertices and curves, called a routing system, uniquely
determines a set of cycles, and vice versa. The advantage of con-
sidering the routing system is that the number of mappings at each
vertex or curve is far fewer than the number of cycles in a network.

We formulate the problem of finding an optimal set of cycles as
finding a routing system that minimizes the sum of costs associ-
ated with the mappings. Our cost functions capture both the quality
of individual cycles and the compatibility between adjacent cycles,
even though we never explicitly find a cycle. The optimal routing
system can be found using a simple dynamic programming search.
While the full search has exponential cost, we observe that, for a
typical curve network, the optimal solution can usually be found
very efficiently by considering only the few best mappings at each
vertex and using a banded search.

We tested our algorithm on an extensive suite of data that includes
CAD wireframes, sketched curves, and synthetic examples. The

algorithm runs within a second for every input, and it produces de-
sirable results for the majority of them. We also designed a inter-
active tool for prescribing degrees of non-manifold curves, viewing
surface patches, and correcting poor cycles. The efficiency of our
algorithm allows immediate feedback during these interactions.

2 Related Work

Here we attempt to categorize the literature on cycle discovery by
the search strategies used, with an emphasis on the assumptions
used by each strategy and the implication on their applicability.
Note that many of the early methods take as input a 2D projec-
tion of the curve network without 3D coordinates. In the following,
these methods are discussed together with those taking 3D inputs
without special distinction.

Planar graph embedding If the curve network encodes a pla-
nar graph that is 3-connected, the cycles can be found efficiently
by computing the (unique) planar embedding of the graph [Hanra-
han 1982; Dutton and Brigham 1983]. For curve networks whose
graphs are only 2-connected (but still planar), the planar embedding
is not unique, and heuristic searches have been proposed that seek
an optimal embedding guided by geometric criteria [Shpitalni and
Lipson 1996; Inoue et al. 2003]. However, these methods require
the input network to encode a planar graph and always produce
cycles that define a genus-0 manifold surface. Extension of these
methods to surfaces with non-zero genus is difficult, since there are
no efficient algorithms for high-genus graph embedding. Also, it
is not clear how the embedding approach can be extended to pro-
duce non-manifold outputs, which are often the case for conceptual
designs (see Figure 2).

Decomposition Agarwal and Waggenspack [1992] proposed an
approach that decomposes the solid object represented by a curve
network into tetrahedra and merges the faces of those tetrahedra
into cycles. The algorithm can be extended to also handle simple
non-manifold configurations. However, since the algorithm relies
on mostly topological information (e.g., degree at each junction),
the method may easily create erroneous output on geometrically
ambiguous models, as indicated in [Liu et al. 2002].

Cycle basis A cycle basis is a minimal set of cycles in a graph
such that any cycle not in the basis can be constructed by the ring
sum of some cycles in the basis. The algorithms of Ganter and
Uicker [1983] and of Brewer and Courter [1986] start with an ini-
tial cycle basis, which can be efficiently computed (using spanning
trees) but may contain undesirable cycles (such as cross-sectional
ones), then perform a greedy search for a better basis. A slightly
different approach is taken by Bagali and Waggenspack [1995] and,
more recently, by Abbasinejad et al. [2011]. Starting from either
the complete set of cycles or a pruned subset, they use a greedy
algorithm to construct the optimal cycle basis.



Current cycle-basis methods have inherent difficulty in modeling
closed, high-genus shapes. A cycle basis defines a non-manifold
that does not bound any solid space. While additional cycles can
be added to “close off” solids via heuristics, this remedy cannot be
applied to surfaces with non-zero genus. In a network representing
a closed manifold model with genus g > 0, a cycle basis has 2¢g —
1 more cycles than the faces of the model. None of the existing
methods address the deletion of redundant cycles, which has to be
done manually by the user. Furthermore, while cycle-basis methods
can produce non-manifold outputs, it is not clear how one could
enforce specific curve degrees while constructing a basis.

Heuristic cycle search Another popular approach is to perform
an exhaustive search over the space of all cycles, guided by some
form of geometric cost and/or topological constraints (e.g., degree
of each curve). To reduce the search complexity, methods in this
class only identify cycles with a limited variety of geometry, such
as planar cycles [Markowsky and Wesley 1980; Liu et al. 2002;
Varley and Company 2010] or cycles bounding low-degree alge-
braic surfaces [Sakurai and Gossard 1983]. While cycles in CAD
wireframe mostly fall into these types, curve sketches usually have
more geometric variation (see Figure 10). Often times additional
pruning criteria are used that are specific to 2D inputs, such as re-
quiring a projected cycle to not self-intersect [Shpitalni and Lipson
1996; Liu and Lee 2001].

3 Overview

The input to our algorithm is a 3D curve network made up of curves
joining at vertices. As mentioned earlier, we assume the curves
are free of self-intersections. The degree of a vertex refers to the
number of its incident curves. We refer to a cycle as a closed walk
in the graph. A cycle is simple if no vertex or curve appears more
than once in the walk. Given a set of cycles, the number of times
that a curve is used in these cycles is called the degree of that curve.

If a non-manifold model is desired, our algorithm also requires the
user to prescribe the degree of each non-manifold curve in the re-
sulting cycles. We call the prescribed degree of a curve the curve’s
capacity. Capacity gives users exact control over the non-manifold
topology of the output. Our algorithm assumes every curve has ca-
pacity 2 unless specified by the user. As a result, no user input is
needed if the desired output is a closed, manifold model.

It is not always possible to find a set of cycles that meet a given
set of capacity constraints. Even if such cycles exist, they may not
all be simple. An example of a trivially non-simple cycle is one
that visits the same curve twice in a row in opposite directions,
like making a U-turn. Such cycle does not bound any meaningful
surface. In Appendix A, we prove that the capacity constraints need
to satisfy two mild conditions to guarantee the existence of a set
of cycles that are free of U-turns: the sum of capacity of curves
incident to a vertex v is even, and the capacity of any curve incident
to v is no greater than the sum of the capacities of the remaining
curves incident to v.

Given a curve network and capacities that meet the above condi-
tions, our goal is to compute a set of cycles that define the most
plausible surface patches while satisfying the capacity constraints.
We first introduce an alternative representation of cycles, called a
routing system (Section 4), that is equivalent to any set of cycles
meeting the capacity constraints. With this representation, we give
anew formulation of optimal cycles and develop an efficient search
algorithm (Section 5). Finally we introduce an interactive tool that
allows users to easily specify non-manifold capacity, correct cycles,
and visualize surface patches (Section 6).

Curve network

Routing system
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Figure 3: Top: a curve network with capacities (curves are col-
ored by their capacity). Bottom-left: a routing system (darts are
drawn as circles, corner-mapped darts are connected by edges, and
bridge-mapped darts share the same color). Bottom-right: the cy-
cle set determined by the routing system.

4 Routing system

We take a local approach to describe how curves are grouped into
cycles. Informally, there are two types of groupings. Two curves
{a, b} incident to a common vertex form a corner if {a, b} are con-
secutive in one cycle. Two corners {a, b}, {b, ¢}, one at each end
of a curve b, form a bridge if {a, b, ¢} are consecutive in one cycle.
Note that the same curve may appear multiple times in a corner or
a bridge. We call this new representation of cycles, consisting of
corners and bridges, a routing system.

More formally, we associate each end of a curve with £ instances
of the curve, called darts, where k is the capacity of the curve. So
there are a total of 2k darts for each curve. The corners and bridges
can be written as mappings {c, 6} that act on these darts and have
the following properties:

1. o (the corner mapping) maps a dart at a vertex to a different
dart at the same vertex.

2. 0 (the bridge mapping) maps a dart at one end of a curve to
one of the darts at the other end of the same curve.

3. Both are involutions, i.e., o(o(d)) = d and 0(0(d)) = d.

Figure 3 shows an example of a routing system (bottom-left) for a
curve network with capacity constraints (top). The darts are shown
as round dots. A dart d is connected to its corner-mapped dart o (d)
by a black segment, and shares the same color as its bridge-mapped
dart 0(d).

A routing system uniquely determines a set of (possibly non-
simple) cycles that meets the capacity constraints. Consider the
graph whose nodes are the darts and whose edges connect darts that
are mapped to each other by o or €. Since each node, representing
a dart d, has exactly two edges, one to o(d) and one to 6(d), the
graph is made up of disjoint circuits. Furthermore, since each curve
with capacity k generates k pairs of darts, the curve appears in the
circuits for exactly k times. Figure 3 bottom-right shows the cycle
set determined by the routing system on the left. Conversely, any
set of cycles uniquely determines a routing system, up to permuta-
tions of the darts at each end of a curve.

The routing system is a variation of the classical rotation system
for graph embedding [Mohar and Thomassen 2001]. A rotation
system is also defined by darts and mappings {o, 6}, except that



each graph edge creates only 2 darts, one at each end of the edge,
and o is a permutation among darts at a same vertex (rather than an
involution). A rotation system determines a set of cycles that forms
faces of a manifold, orientable surface. In contrast, a routing system
can express surfaces that are neither manifold nor orientable.

5 Algorithm

We seek a routing system whose corresponding cycles bound plau-
sible patches. The advantage of optimizing the routing system over
directly optimizing the cycle set is two-fold. First, each variable in
a routing system is local and has a much smaller range of choices
than a variable in a cycle set. While the number of cycles grows
exponentially with the size of the entire network, the number of
possible corner mappings at a vertex (or possible bridge mappings
at a curve) only depends on the degree at the vertex (or the capacity
at the curve). Second, while any routing system automatically satis-
fies the capacity constraints, such constraints would have to be en-
forced when explicitly searching for cycles, which further increases
the complexity of search.

We first discuss our choice of metrics to evaluate a routing system
(Section 5.1). While we never explicitly construct a cycle, these
metrics locally reflect both the quality of an individual cycle and
the compatibility of adjacent cycles. We next describe an efficient
algorithm for finding the optimal routing system by dynamic pro-
gramming (Section 5.2). We then present a simple post-process
procedure to rectify the results when our metrics fail to character-
ize the desired cycles (Section 5.3).

5.1 Cost metrics

Unlike most of the previously proposed metrics that evaluate an en-
tire cycle, we need more localized metrics that can assess the likeli-
hood of two curves (i.e., a corner) or three curves (i.e., a bridge) to
be in a cycle. In our method we evaluate bridges instead of corners,
since bridges involve a larger neighborhood and hence have more
geometric information.

We consider two types of metrics. The first metric, the intra-bridge
cost, acts on a single bridge and favors the bridge that borders
a smooth and convex patch. The second metric, the inter-bridge
cost, acts on a group of bridges and favors the group whose corre-
sponding patches meet at a curve with small normal discontinuity.
The inter-bridge cost is important for avoiding cycles that represent
cross-sections rather than actual faces of the model, since surfaces
bounded by cross-section cycles usually form sharp angles with sur-
faces bounded by surrounding cycles. The computation and rational
of these costs are detailed below.

Intra-bridge cost Consider a bridge that involves a sequence of
three curves {a, b, ¢} (note that, as mentioned before, some of these
curves could be identical). Since we desire simple cycles, we first
test whether there is a path in the curve network connecting curves
a and c without visiting b or its end vertices. If such a path does not
exist, the intra-bridge cost is set to infinity. Otherwise, the cost is
computed based on the geometry of the bridge, as follows.

Popular cost functions that have been used in the past include the
length of a cycle (the shorter the better) and its planarity (the planar
the better). However, computing length requires the knowledge of
a complete cycle, which is exactly what our method is trying to
avoid. Furthermore, cycles in a curve network are often far from
being planar, and many planar cycles are not desirable cycles (e.g.,
those bounding cross-section faces).

Our cost functions are motivated by the following observations.

First, designers typically place curves along flow-lines of the in-
tended surface, which are strongly correlated with sharp features
and lines of curvature [Bessmeltsev et al. 2012]. This implies that a
desirable cycle should bound a surface that does not vary more than
the curves in the cycle. Second, shorter cycles are often more “con-
vex”, that is, they bound patches that form small interior angles at
the vertices. The correlation can be made clear in the common sce-
nario when the cycle bounds a developable patch [Rose et al. 2007]
and when each curve is a geodesic of the patch (e.g., a flow-line):
the sum of interior angles over all vertices in the cycle is exactly
(n — 2)m where n is the number of curves in the cycle.

Our intra-bridge cost measures the smoothness (as changes in sur-
face normal) and convexity (as sum of interior angles) of the most
smooth and convex patch that has the bridge as its border. While it
is expensive to explicitly construct a patch, we are only concerned
with the local shape of the patch at the bridge curves. Hence we
implicitly represent a “patch” by a family of normal vectors, one
associated with each line segment of curves {a, b, c}. To limit our
search space to plausible patches, we consider normals that are gen-
erated by parallel-transporting [Wang et al. 2008] an initial normal
vector at the first line segment of a. Such normals are ideal for
our purpose as they are twist-minimizing, implying that they do not
vary any more than the curves themselves. Two parallel-transport
families of normals are shown in Figure 4 top for a simple, planar
bridge (the initial normal vector in each family is thickened).

a a
b c
b c
Figure 4: Top: two families of normals generated by parallel-
transporting two initial normals (thickened) along the same bridge.

Bottom: the bending angle (o) and interior angle (6 + ) at a
bridge vertex v and notions used in their calculation.

Given a family of normals, we evaluate the smoothness and con-
vexity of the hypothetical patch having these normals as follows.
The evaluation is done at each of the two bridge vertices (i.e.,
the two ends of b). Let e, es be the vector for the two incident
line segments of the vertex, oriented consistently along the bridge,
and n1,n2 be the normal on each segment (see Figure 4 bottom).
Smoothness is measured by the bending angle, which is simply the
angle formed by n; and na. Convexity is measured by the interior
angle, which is the sum of the two angles formed by e; (i = 1, 2)
and the intersecting line [ of the two planes whose normals are re-
spectively n; (i = 1,2). Here we use [ = n1 X (e1 + e2), which is
stable even when n1 = n2. The cost for the normal family is given
by the sum of bending angles and interior angles at the two bridge
vertices.

The intra-bridge cost is the minimum cost among all parallel-
transport normal families on the bridge. For efficiency we restrict
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Figure 5: Intra-bridge costs and families of parallel transport nor-
mals on selected bridges of a curve network (Dog Head).

our search to a small number (e.g., 30) of families whose initial
normals are equiangularly spaced on the first line segment of a.
Figure 5 shows several bridges on a sketched curve network. The
intra-bridge cost is noted for each bridge, and the normal family
that attains the minimal cost is visualized along the bridge. Note
that the bridge surrounding a desirable face (top-left) has the low-
est cost, because it defines a smooth patch that forms small interior
angles at the bridge vertices (light gray spheres).

Inter-bridge cost Consider the set of all bridges {ai,b,c;} in a
routing system for ¢ = 1, ..., k over a curve b with capacity k. We
would like the patches that are bounded by these bridges to meet as
smooth as possible along b. In the best configuration, these patches
should partition the space around b in a uniform manner. That is,
if we order the patches radially around curve b, the dihedral angles
between consecutive patches should be identically 27 /k. In the
worst configuration, all £ patches overlap.

Let n; be the normal on the first line segment of b in the normal
family that attains the intra-bridge cost for the bridge {as, b, c;}.
Assuming that n; are sorted radially around that line segment, and
let o; be the angle formed by normals 7n;,n,41. The inter-bridge
cost is defined as

Ny (m — ai)?

k
k

—(k—2)w

The cost is bounded between 0 in the best situation («; = 27 /k for
all 7) and 27 in the worse situation (a; = O for all 7).

5.2 Optimization

With cost metrics defined, we would like to find a routing system
that minimizes the sum of intra-bridge costs over all bridges and
inter-bridge costs over all curves. We shall first re-state the task as
a graph search problem. We will then present an algorithm capable
of finding the optimal solution, followed by pruning strategies for
achieving practical performance.

Graph formulation Consider a graph G where each node repre-
sents a possible corner mapping at a vertex, and two nodes at the
ends of a curve are connected by an edge. The weight of the edge is
the minimal cost for bridging the two corner mappings represented

by the two nodes. Specifically, for an edge that connects two nodes
at the ends of curve b, we enumerate all possible bridge mappings
on b and find one with the lowest sum of intra-bridge and inter-
bridge costs. The edge is then associated with this lowest cost as
well as the bridge mapping that attains the cost. Figure 6 shows a
portion of this graph including the nodes and edges at two vertices
v1,v2 of a curve b.

Figure 6: A portion of the search graph (left) for the Dog Head
(right). The graph has multiple nodes for a vertex (e.g., v1), each
corresponding to a corner mapping at that vertex (darts are drawn
as white circles). Nodes at two ends of a curve (e.g., b) are con-
nected by edges, each weighted by the optimal bridging cost (lighter
gray has lower weight).

With the graph defined, our problem becomes searching for a
minimum-weight subgraph of G that covers all vertices. Here cov-
ering means that the subgraph contains exactly one node of G at
each vertex of the network.

Optimal solution We can use a dynamic programming algorithm
to find the optimal solution. Starting from a single vertex of the
curve network, the algorithm finds the minimum-weight subgraph
of G that covers an increasing larger set of vertices. Specifically,
we maintain a vertex set V' which starts off as an empty set and gets
expanded by one vertex at a time. We call vertices in V' that are
connected to some vertex not in V' the exterior vertices, noted as
OV After an expansion, we compute, for each possible combina-
tion of nodes that cover OV (called a state), the minimum-weight
subgraph of G that covers the entire V. These subgraphs can be up-
dated from those computed in the previous iteration. The update is
made possible by the fact that the optimality of the nodes at interior
vertices of V' is not affected by the expansion of V. The algorithm
terminates when V' contains all vertices.

Pruning strategies While capable of finding the optimal solu-
tion, the algorithm has a high computational cost. We can reduce
the search complexity to be linear in the total number of vertices by
restricting both the number of nodes at each vertex and the number
of states expanded at each iteration to be small constants. Specifi-
cally,

e When constructing G, we create nodes for only a few promis-
ing corner mappings at each vertex v. To do so, we assign a
cost to each pair of curves {a, b} incident to v that assesses
its likelihood in forming low-cost bridges with neighboring
curves. The cost is the minimum inter-bridge cost among all
bridges {a, b, c} for some curve ¢ plus the minimum inter-
bridge cost among all bridges {d, a, b} for some curve d. We
then search for the K; corner mappings at v with the smallest
total costs.

e During the dynamic programming search, we only maintain



the K> states with the smallest subgraph weights at each iter-
ation. To reduce the chance of missing out good solutions as
a result of this pruning, we expand the vertex set V' in a pre-
defined order that minimizes the number of states what would
have been expanded at each iteration without pruning. The
order is computed using a greedy expansion before dynamic
programming.

Here, both K, K5 are user-defined constants. We observed in our
tests that the algorithm can find the optimal solution even with small
values of these constants (we use K1 = 10 and K2 = 100).

The only component of the algorithm that can still have a high com-
plexity is searching for the lowest-cost corner mappings at a vertex
v. In the special case where every incident curve to v has capacity
2, the search reduces to the traveling salesman problem in a graph
whose nodes are the incident curves to v and whose edge weights
are the corner costs. To tame the complexity, we reduce the search
space by only considering a pair of curves {a, b} a possible corner
if the cost of the pair (as described above) is among the k, + K3
smallest in all curve pairs involving a or among the k;, + K3 small-
est in all curve pairs involving b, where k, and k; are the capacity
of a and b and K3 is another user-defined constant. We find that
setting K3 = 1 is sufficient to include the desirable corners in most
of our examples while allowing efficient computation.

In summary, we compute the optimal routing system in three
steps. First, we pre-compute the intra-bridge costs for each pos-
sible bridge in the network. Second, we build G by searching for
the most promising corner mappings at each vertex and computing
the cost of the optimal bridge mappings between them. Finally, we
use dynamic programming with a constant bandwidth to find the
optimal corner mapping at each vertex.

5.3 Breaking cycles

Our cost metrics prefer cycles bounding patches that are smooth,
making small interior angles at vertices, and having small normal
discontinuity across the curves. While most desirable cycles in
CAD wireframes or sketched curves fit into this profile, some cy-
cles can be highly twisty, making large obtuse angles at vertices, or
meeting at sharp angles with other cycles. In these cases, the op-
timal routing system computed by our algorithm may not be com-
pletely correct.

We found that such atypical cycles are usually few in number in a
curve network, and hence only a few vertices and curves will have
incorrect corner and bridge mappings. Furthermore, these wrong
mappings often manifest themselves as repeated vertices and curves
in a cycle. An example is shown in Figure 7, where all cycles com-
puted by our algorithm are correct except for 3 non-simple cycles,
one of which is shown in (b). These cycles are located in the nar-
row space between the four fingers of the hand, where the desirable
cycles (faces of adjacent fingers) meet at very sharp corners.

We can break a non-simple cycle into several disjoint ones by
adjusting the corner mapping o at a repeated vertex v. Let
di,da,...,d2m—1,d2m (M > 2) be the sequence of darts at v vis-
ited by the cycle, such that o(d2i—1) = da; fori = 1,...,m. By
modifying o so that o(d2;) = da2i+1 for all i (d2m+1 refers to dq),
the original cycle will be broken into m cycles. The modification
does not affect any other cycles. Note that the modification is only
made if no pair of darts {d2;, d2i+1} belongs to a same curve.

To break as many cycles as possible, we process each non-simple
cycle in turn. For each cycle, we order its repeating vertices by
their number of repetitions, and go through these vertices until we
can modify the corner mapping o as described above. If any newly

Figure 7: Curve network of a hand (a), a non-simple cycle pro-
duced by optimization (b), cycles after breaking (c), and the com-
plete set of cycles (d).

created cycle is still not simple, it is added to the list of non-simple
cycles and the process continues.

We observed in our tests that this procedure is highly successful in
correcting the occasional mistakes made by our optimization algo-
rithm. For example, the non-simple cycle in Figure 7 (c) is broken
into three simple (and more plausible) cycles in Figure 7 (d) after
modifying the mapping at only one vertex.

6 Interactive tool

We developed an interactive tool for users to provide capacity in-
formation for non-manifold curves. The tool also creates surface
patches for visualization, and offers convenient means for users to
modify the results. We next detail these features.

Changing capacity If the network contains non-manifold or
boundary curves, our tool allows the user to change the capacity
of these curves (which is 2 by default). The interface is designed
to eliminate the need for tedious button-clicking: as the user moves
the mouse cursor across the screen, the nearest curve is automati-
cally highlighted, and the user can increase or decrease the curve’s
capacity simply by scrolling up or down the mouse wheel (see a
demo in the accompanied video). The program also highlights the
vertices where the capacity conditions (see Section 3) are not met,
prompting the user to provide further inputs. An example is shown
in Figure 8. After changing the capacity of one curve to 1 (i.e., a
boundary curve), its two end vertices are highlighted by “X”, be-
cause the sum of curve capacities at each vertex is not even. After
changing the capacity of another curve to 3 (i.e., a non-manifold
junction), the parity condition is met at both vertices and the “X”
signs disappear.



Figure 9: Imposing constraints. (a): results of automatic algorithm on Espresso and Spider where cycles are colored by their costs (showing
close-ups of problematic cycles). (b): constraining curve sequences provided by the user (highlighted in blue). (c,d): the resulting (correct)

cycles and surface visualization.

Figure 8: Left and middle: two steps in changing the curve ca-
pacity at the bottom of the Boat example in Figure 2. Right: the
resulting cycles.

Viewing patches To help visualize the results, the tool can op-
tionally create one triangulated patch for each computed cycle. To
get better-looking patches, we utilize the parallel-transport normal
families that attains the intra-bridge cost for each curve on the cycle.
We then use a dynamic programming algorithm [Zou et al. 2013] to
compute a triangulation that matches these normals as best as possi-
ble while minimizing the average dihedral angle between triangles.
This initial triangulation is then refined and smoothed while still
maintaining the normal constraints [Andrews et al. 2011]. While
this method generates plausible surface geometry for most of our
examples, the results may be improved using more specialized sur-
facing algorithms such as [Bessmeltsev et al. 2012].

Modifying cycles If the user is not happy with the results, she can
adjust the cycles by clicking on a sequence of curves that belongs to
a desired cycle (the sequence does not have to form a complete cy-
cle). These sequences act as additional constraints to the algorithm.
To enforce these constraints, the algorithm simply needs to make
sure that each pair (resp. triple) of consecutive curves in a con-

straining sequence appears in the corner (resp. bridge) mappings
when constructing the graph G.

We found that it can be very difficult for a user to spot poor cycles,
even with surface visualization. Since poor cycles are usually more
twisty than desirable cycles, we offer a visualization mode where
each cycle is colored by the total intra-bridge costs over all triples
of consecutive curves on the cycle. The color varies in shades of
red where lighter red indicates a lower cost. Two examples are
shown in Figure 9 (a). In both cases, the highest-cost cycle is a bad
one, prompting the user to specify a constraint there (shown in (b)),
which in turns results in a desirable result (shown in (¢)).

7 Results

We tested our method on a variety of inputs that include CAD wire-
frames, curves created by sketching tools [Bae et al. 2008; Schmidt
et al. 2009], and synthetic examples extracted from existing sur-
face models. The shapes represented by these inputs include both
closed manifold (with possibly high genus) and non-manifold sur-
faces. For networks representing non-manifold surfaces, we use our
interactive tool to provide the capacity information on each non-
manifold curve. All experiments were done on a 6-core 3.0GHz
workstation with 12GB memory.

Our algorithm (optimization followed by cycle breaking) success-
fully found correct cycle sets for the vast majority of the test data.
Figure 10 shows a gallery of some of the results (the complete set
can be found in the supplementary material). Only a few inputs
require additional constraints, and two of them are shown in Fig-
ure 9. Such failure usually occurs when there are several nearby
desirable cycles with high costs. For example, in the Espresso ma-
chine, the exterior faces of the cup make large obtuse angles at four
vertices at the ends of the cup handle. In the Spider, a segment of
the leg forms a very flat tetrahedron whose faces meet at sharp an-



gles along two adjacent curves. In these cases, the optimal set of
cycles under our cost metrics may contain more than one incorrect
cycles at those vertices or curves, which cannot be corrected by cy-
cle breaking. However, these mistakes can be easily corrected with
a few constraints provided by the user.

As shown in Table 1, our algorithm takes less than a second to run
even for our largest test made up of hundreds of curves. In contrast,
existing methods usually take much longer to run on smaller inputs.
Our method achieves an order of magnitude improvement in speed
over the most recent method by Abbasinejad et al. [Abbasinejad
et al. 2011]; it takes our algorithm at most hundreds of milliseconds
to run the same models that took their method at least seconds to
run (compare Table 1 in their paper for common examples such as
Jetfighter, Speaker, Phoenix, Roadster, Boat, Spider, and various
Spacecrafts). More importantly, the complexity of our algorithm
scales roughly linearly with the size of the input graph, due to the
local formulation of the problem and the efficient search procedure,
whereas most existing approaches (e.g., cycle basis methods) scale
exponentially.

The interaction time for specifying capacity takes from a few sec-
onds to a few minutes using our tool. Since we did not create most
of these curve networks, the majority of this time was spent on
“reverse-engineering” the intent of the designer, looking for non-
manifold curves and figuring out their degrees. We expect the inter-
action time to be significantly shorter if it was done by the designer
of the curve networks, and better yet, during the design process.

8 Conclusions

We introduce a novel algorithm for finding boundary cycles of
patches in a curve network created by CAD or sketching tools. The
major departure from previous methods is that we consider an al-
ternative representation, called routing system, which implicitly en-
codes a set of cycles by local variables at each vertex and curve of
the network. By optimizing cost metrics designed for these vari-
ables, we are able to compute correct cycles more efficiently and
handle inputs with more complex topology and geometry than pre-
vious methods.

While our algorithm requires users to supply capacity information,
it would be ideal if the program can automatically identify possibly
non-manifold curves and suggest their capacity. This feature would
be particularly necessary if our algorithm is to be incorporated into
a curve-sketching system for providing surface visualization dur-
ing the sketching process. Such capability is not present in current
systems, partly due to the inefficiency of the cycle-discovery step.
While our algorithm is fast, without identifying “boundaries™ of a
partial sketch, it will always produce a closed object. There is some
initial research into detecting simple non-manifold elements [Sun
and Lee 2004]. However, identifying complex non-manifold con-
figurations is still a challenging, and often subjective, task.
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A Existence of cycles

Proposition A.1 There exists a set of cycles, free of U-turns, whose
curve degrees equal the capacities if and only if the following con-
ditions hold at every vertex v with a set of incident curves C,:

1. The sum of capacities of all curves in C', is even.

2. No curve in Cy, has a greater capacity than the sum of capac-
ities of remaining curves in C..

Proof: While the necessity follows in a straight-forward manner,
we will focus on sufficiency. We will show that a routing system
exists given capacities meeting these conditions. Since bridge map-
ping always exists, we will only need to construct a corner mapping
at v. To prevent U-turns, no two darts belonging to a same curve
can be mapped to each other.

The construction is iterative. At each iteration, we pair a dart of the
curve in C, having the most un-paired darts with a dart of the curve
having the second-most un-paired darts. If multiple curves have the
same number of un-paired darts, an arbitrary curve is chosen.

We first show that the two conditions in the proposition hold for the
un-paired darts at each iteration. It is evident that the total number
of un-paired darts remain even in the process. Suppose, after the
i-th iteration, some curve ¢ € (', has more un-paired darts than
the union of the remaining un-paired darts. We will show this is
impossible, by induction. First, this curve cannot be the one that
we just picked for pairing. To see this, let n} be the number of un-
paired darts of ¢ before the i-th iteration, and n' be the total number
of un-pair darts at v at that time. Since the conditions hold before,
we have n’ < n®—n’. If we had picked a dart of ¢ to pair during the
i-th iteration, and since ni™ =nl —1 < (n —2) — (n’ — 1) =
n't1 — npi*l the number of un-paired darts of ¢ will still be no
greater than the number of remaining un-paired darts. Now suppose
we picked darts from two other curves, a and b, during the i-th
iteration. Hence we have n}, > nf, nj > ni, nit' = nl — 1,
nllfl = n’f, — 1, and ni“ = né If, after the iteration, ¢ has more
un-paired darts than the union of all remaining un-paired darts, then
nitt > pitl 4 nlifl. These inequalities lead to n*! < 2. Hence
ni™ = 1, and no other curve has any un-paired darts after the
i-th iteration, which contradicts the fact that the total number of
un-paired darts should be even.

Next, we show that the iterative construction would finish with no
remaining un-paired darts. The only situation otherwise would be
that there is a single curve with multiple un-paired darts. How-
ever, this would contradict to the fact we just showed above that
no curve has more un-paired darts than the union of remaining un-
paired darts. [
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Figure 10: A gallery of results automatically generated by the algorithm: synthetic examples (top), sketched curves (middle), and CAD

wireframes (bottom).



