
Active-Learning-Based Surrogate Models for
Empirical Performance Tuning

Prasanna Balaprakash
Mathematics and Computer Science Division

Argonne National Laboratory
pbalapra@mcs.anl.gov

Robert B. Gramacy
Booth School of Business

University of Chicago
rbgramacy@chicagobooth.edu

Stefan M. Wild
Mathematics and Computer Science Division

Argonne National Laboratory
wild@mcs.anl.gov

Abstract-Performance models have profound impact on
hardware-software codesign, architectural explorations, and per­
formance tuning of scientific applications. Developing algebraic
performance models is becoming an increasingly challenging
task. In such situations, a statistical surrogate-based performance
model, fitted to a small number of input-output points obtained
from empirical evaluation on the target machine, provides a
range of benefits. Accurate surrogates can emulate the output of
the expensive empirical evaluation at new inputs and therefore
can be used to test and/or aid search, compiler, and autotuning
algorithms. We present an iterative parallel algorithm that builds
surrogate performance models for scientific kernels and work­
loads on single-core and multicore and muItinode architectures.
We tailor to our unique parallel environment an active learning
heuristic popular in the literature on the sequential design of
computer experiments in order to identify the code variants whose
evaluations have the best potential to improve the surrogate.
We use the proposed approach in a number of case studies to
illustrate its effectiveness.

I. INTRODUCTION

Automatic performance tuning is a response to the ever­
growing complexity of high-performance computing (HPC)
architectures and difficulties of manual tuning of scientific
applications. Autotuning consists of identifying relevant code
optimization techniques, assigning a range of parameter values
using hardware expertise and application-specific knowledge,
and then either exhaustively evaluating or searching this pa­
rameter space to find high-performing parameter configura­
tions for the given machine.

The primary goal of performance models in autotuning has
been to avoid running the corresponding code configuration
on the target machine by predicting performance metrics of a
given parameter configuration [1]. Such models are attractive,
for example, for the design and development of search algo­
rithms. Models can help prune large-scale search spaces [2],
and their ease of evaluation allows for rigorous experimental
comparisons among different search algorithms. Autotuning
without models is costly because it requires running many
different code variants on the target machine. Models also
provide low setup cost for search algorithm developers who
are typically not experts in autotuning. Moreover, accurate
performance models allow researchers to perform large-scale
experiments without requiring access to HPC systems except
during the final phase of experimental analysis [1]. However,
developing performance models is increasingly difficult be­
cause of the complexity of the HPC architectures and scientific
codes r21. r31.

U.S. Government work not protected by U.S. copyright

Analytical performance models, which use closed-form
mathematical expressions for predicting performance metrics,
have enjoyed significant success in the compiler optimization
community for accelerating serial codes [2]. However, this
approach is limited by the quality and extrapolatory power
of the mathematical model, which often fails to capture
complex interactions between the code, runtime systems, and
architecture. Moreover, developing a complex mathematical
model requires a wide range of expertise in the target system
architecture, programming models, and scientific applications.
Consequently, analytical models are less well suited for highly
specialized kernels and libraries for scientific applications that
require portability, scalability, and performance [4], [5], [6].

When analytical performance models become too restric­
tive for a given scientific workload and HPC architecture, em­
pirical performance modeling is an effective alternative [6], [7].
In this approach, a small set of parameter configurations (code
variants) is evaluated on the target machine to measure the
required performance metrics, and a predictive model is built
by using statistical approaches. We refer to these approximate
models as surrogate models. Our focus in this paper is on
empirical-based modeling, where we predict the outputs of new
configurations on a single machine, a task that we distinguish
from performance modeling tasks aimed at predicting outputs
of a single configuration on new architectures.

Surrogate models for HPC workloads and kernels on CPU­
based architectures have been based primarily on machine
learning approaches [8], [9], [10]. Similar models for scientific
kernels on multicore architectures have also been examined [3],
[4], [11]. Artificial neural networks have been used to model
power draw, execution time, and energy usage [5]. Boosted
regression trees were adopted in [6] for obtaining online
surrogate models (via sequential optimization procedure) for
a GPU implementation of a spatial image filtering kernel. In
all these works, the focus is on the deployment of various
algorithms for performance prediction. In a cluster computing
environment, a naIve way to build any of these surrogate
models is to sample a large number of configurations uniformly
at random, evaluate these in parallel, and fit a model. Although
such an asynchronous, embarrassingly parallel approach may
seem like a holy grail in terms of work scalability, it can result
in poor resource utilization due to poor model quality relative
to the work required.

Faced with computationally expensive evaluations, a cus­
tomary approach for developing surrogate models consists of
sequential evaluation of parameter configurations. At each iter-

ation, a model is fitted to all previously seen evaluations and is
then used to decide which parameter configuration to evaluate
next. In performance modeling, the sequential approach has
been used to build surrogate models for resource allocation on
networked utilities [12]. That work used a Plackett-Burman
design [13], whose general applicability is limited because its
Iinear-regression-based models are not appropriate for nonlin­
ear response functions. Note that the sequential approach has
been studied in the fields of statistics, applied mathematics,
and machine learning, where it falls under the umbrella of
design of experiments [14], simulation optimization [15], and
active learning [16], respectively. Such an approach cannot take
advantage of massively parallel environments.

The main difficulty of deploying active learning in parallel
environments is the a posteriori importance: Given a model
and a set of unevaluated parameter configurations, the active
learning approach can query the model to select a subset
(rather than a singleton) of the most-informative parameter
configurations for parallel evaluation. However, as soon as
a parameter configuration in the subset gets evaluated, the
other configurations in the subset can become significantly less
informative. Consequently, evaluating such configurations will
likely not result in improving prediction accuracy and may
therefore represent wasted evaluations.

In this paper we propose an iterative parallel algorithm
that builds surrogate models for performance modeling. The
novelty of the proposed approach consists of evaluating the
parameter configurations in a sequence of batches to make use
of multi core and multinode cluster computing environments in
order to reduce the overall time required to obtain high-quality,
fitted surrogate models. We address the a posteriori importance
issue by tailoring the active learning to select a configuration
based on surrogate model predictions of other configurations
to be evaluated in the same batch.

Active learning as a data acquisition scheme in surrogate
modeling is still in its infancy. The closest related work [17] is
from the design of experiments literature, where active learning
is used to model the multiple outputs from a computational
fluid dynamics simulator. This approach uses a nonlinear,
treed Gaussian process (GP) modeling approach and takes
into account asynchronous and batch mode evaluations. The
approach we adopt uses dynamic regression trees, which have
recently been shown to be more effective than treed GPs [18].

From the performance-modeling perspective, the main con­
tributions of the paper are as follows. Previous work on
surrogate models focused primarily on the adoption of machine
learning approaches. To our knowledge, this is the first work
on the design of a data acquisition strategy for building per­
formance models with the objective of efficiently using HPC
systems and minimizing the number of expensive evaluations
on the target machine. Furthermore, most existing work in
surrogate modeling deals with single-node architectures. In
this paper, we show that our surrogate models can predict
performances on massively parallel, leadership-class machines.

II. DYNAMIC TREES

Dynamic trees [18] can be seen as regression trees com­
bined with Bayesian inference. The former is a classical

nonlinear regression approach that recursively partitions a mul­
tidimensional input space into a number of hyper-rectangles
such that inputs with similar output values fall within the same
hyper-rectangle. This partitioning scheme gives rise to a set of
if-then-else rules that can be represented as a tree. Bayesian re­
gression trees [19] are specified by a prior distribution on how
the input space can be recursively partitioned and a likelihood
comprising a product of simple, independent regression models
applied in each partition. Together, these define a posterior
distribution on the output space. Samples from the posterior
distribution may then be obtained by simulation schemes such
as Markov Chain Monte Carlo.

Dynamic trees specify a similar process for how trees
evolve as new data arrive. At time t, after having seen data
(x,y)

t
== (Xl,Yl), ... ,(Xt,Yt) and inferred a tree 7t1(x,y)

t
,

a simple set of stochastic rules defines which 7t+l may be
considered when (Xt+l,Yt+l) arrives. In this process, the new
7t+l must be identical to the old 7t except near the leaf node
1](Xt+l) containing Xt+l. The process stochastically chooses
from three local modifications based on support from Yt+l in
the posterior distribution: keep 1](Xt+l) unchanged in 7t+l;
grow a new split, making 1](Xt+l) a parent of two new leaves
in 7t+l; or prune the tree to make the parent of 1](Xt+l) a
leaf in 7t+l. A particle approach-essentially applying these
rules independently to many similar trees grown stochastically
on the same data-can reduce Monte Carlo error (via aver­
aging) and lead to more accurate uncertainty quantification
(by studying the spread of trees). Taking a sequential Monte
Carlo, or "filtering," approach that appropriately couples the
particles/trees can offer further statistical efficiency gains.

Dynamic tree models have been shown to be competitive
with several related nonparametric regression schemes in out­
of-sample prediction exercises, both on batch data (with ran­
dom data orderings) [18] and in online settings [20]. They have
also proven useful for variable selection and input sensitivity
analysis in contexts where the amount of data available tradi­
tionally swamps other comparators, such as GP models [21].
Software is available through the R package dynaTree [22].

The greatest potential of dynamic trees may lie in se­
quential design contexts, where the model fit is allowed to
recommend the future inputs Xt+l (and corresponding outputs)
on which it is trained. The original dynamic trees paper
[18] suggested a heuristic called active learning-Cohn (ALC),
which has been used to approximate maximum information
designs in serial applications [23]. The ALC method involves
choosing among new potential inputs x the one that gives
the largest reduction in predictive variance averaged over the
input space. For most response surface models (e.g., GPs),
calculating this aggregated statistic requires numerical meth­
ods. However, conditional on the tree structure, it is analytic
for dynamic trees-representing a large computational savings.
The resulting designs allocate a heavier concentration of points
in areas where the response surface is changing rapidly and
put correspondingly fewer points in areas of the input space
that are easier to predict.

Unfortunately, this methodology is tailored to one-at-a-time
sequential design and model updating. That is, in a general
iteration t, one recommends a new Xt+l based on an N -particle
approximation {7;(i) }�1; obtains Yt+l; and updates the parti-

cle approximation to rT;�)d�l' Many computer experiments
are a hybrid of batch and sequential (see, e.g., [17]), which
means that this scheme requires modification for the types of
experiments we have in mind.

III. PAR ALLEL ACTIV E LE ARNING WITH DYNAMIC TREES

The main obstacle that precludes direct adoption of any
active learning scheme for parallel environments, whether
based on dynamic trees or otherwise, is a posteriori impor­
tance. An active learning method, say ALe, can easily suggest
a batch of parameter configurations for parallel evaluation.
However, most appropriate spatial models for computer ex­
periments (e.g., dynamic trees) facilitate the learning of a
correlation structure between all outputs. Therefore, once any
configuration in the batch finishes evaluation and the model
fit is updated, uncertainty may greatly be reduced for the
other points in the batch, possibly destroying their utility in
improving the fit in a subsequent update (once their evaluations
have completed).

In order to address this issue, the active learning algorithm
should first identify the single best candidate location Xi, say
by ALe, and then identify other potential candidates whose
predictive uncertainties are likely to be substantially reduced
when Xi gets selected for the parallel evaluation. This latter
set should be avoided when selecting the second candidate
for the batch, and so on. One way this can be achieved is
by treating the active learning model's prediction for Xi as
"correct" as soon as Xi is selected for evaluation. We suggest
using the fitted surrogate model to predict the output Yi of
Xi and update the model with (Xi, Yi). This approach will
reduce the predictive variance of configurations that depend
on (Xi, Yi), which may be all configurations for stationary GPs
or just those sharing a leaf with Xi in the dynaTree particle
approximation. Since the predicted values from the fitted
surrogate model may not be accurate-in particular during the
initial iterations or when the algorithm moves to a previously
unseen part of the input space-when the configurations in the
batch are evaluated, the model has to unlearn the (Xi, yd and
relearn the value from the original evaluation (Xi, Yi).

Algorithm 1 (ab-dynaTree, where "a" and "b" stand
for active learning and batch mode, respectively) summarizes
the new iterative active learning algorithm. The symbols U,
-, and I . I denote set union, difference, and cardinality
operators, respectively. The algorithm takes a set Xp of un­
evaluated configurations and a maximum number of code­
variant evaluations nmax as input. The two parameters of
the algorithm are the subsample size ns and batch size nb,
with nb ::; ns. The initialization phase (lines 1-4) consists
of sampling ns configurations at random from Xp, obtaining
a set of corresponding outputs, and using them as a training
set to build a dynamic tree model M. At each iteration, a
configuration Xi that maximizes the ALe statistic is selected
from the subsample set Xs and added to the batch set Xb.
The a posteriori importance issue within the same batch is
addressed by using two models M and Mimp' The imputed
model Mimp is used to predict the output of Xi, and Mimp
is then updated using the predicted value Yi (lines 11-12). As
soon as the batch evaluation is over, the relearning phase is
realized by copying the current active learning model M to
Mimp (line 16). We can also use the training points (Xout,

Algorithm 1 ab-dynaTree.
Input: pool of configurations Xp, max evaluations nmax,

batch size nb ::; IXpl, subsample size ns 2: nb

Xout +- sample min {ns, nmax} distinct configurations
from Xp

2 Yout +- Evaluate_Parallel(Xout)
3 M +- dynaTree (Xout, Yout); Mimp +- M
4 Xp +- Xp - Xout; Xs +- Xp; Xb +- 0
5 for i +- ns + 1 to nmax do

/* begin optional biased sampling */
6 if IXbl = 0 then
7 Yp +- predict(M, Xp)
8 Xs +- biased_sampling(ns, Xp, Yp)
9 end if

/* end optional biased sampling */
10 Xi +- X E Xs that maximizes ALe statistic for Mimp
11 Yi +- predict(Mimp, Xi)
12 update Mimp with (xi,yd
13 Xb +- Xb U Xi; Xs +- Xs - Xi
14 if IXbl = nb then
15 Yb +- Evaluate_Parallel(Xb)
16 update M with (Xb,Yb); Mimp +- M
17 Xout +- Xout U Xb; Yout +- Yout U Yb
18 Xp +- Xp - Xb; Xb +- 0
19 end if
20 end for

Output: Xout, Yout, M

Yout) obtained from active learning as a training set to build
surrogate models using other regression approaches.

Before selecting the candidate configurations for a given
batch, one can optionally select a subsample set according to
a user-defined criterion (lines 6-9). Given a limited number
of evaluations as a budget, and depending on the complexity
of the unknown response function (for example, the number
of disjoint local minima), there is a tradeoff between the
number of training points and the prediction accuracy. In
performance modeling for autotuning, one typically desires
surrogates with higher prediction accuracy for configurations
with good performance, rather than for configurations with
poor performance. For this purpose, in the results described
in the next section we take advantage of the optional pro­
cedure in Algorithm 1 to bias the sampling toward high­
quality parameter configurations. At each iteration, instead
of considering the entire pool of unevaluated configurations
Xp for the ALe statistic computation, the algorithm first
predicts the performance metric of each configuration in the
pool, assigns a weight to each configuration that is inversely
proportional to its performance metric, and selects a subset Xs
by weighted sampling. The poor-quality configurations (e.g.,
those with longer run times or higher power consumption) are
thus queried less frequently even if they are deemed to improve
the overall prediction accuracy.

IV. EXPERIMENTAL RESULTS

We now examine the effectiveness of ab-dynaTree in
developing surrogate models of empirical performance data.

Our goal is to detennine whether active learning provides sig­
nificant benefits over random search in parallel environments
and whether the active learning approach is inherently tied to
the dynaTree surrogate model.

To analyze the quality of evaluations performed by
ab-dynaTree, we build models using three regression al­
gorithms for the given problem. First we use the dynaTree
algorithm (dT) with 10 repetitions, as recommended by the
package authors, taking the prediction at each x as the mean of
the 10 predictions. We compare this algorithm with two others:
random forest (rf) [24], a state-of-the-art and robust tree­
based regression approach, and neural networks (nn), which
has been shown to be effective for surrogate modeling [5].
For each algorithm, we consider two variants: ai, in which
the points obtained from ab-dynaTree are used for training
the model, and rs, in which points are selected at random. The
inclusion of rf and nn allows us to assess whether the obtained
training points can also benefit other learning algorithms.
The parameter values of all these regression algorithms have
an impact on the prediction accuracy. To avoid bias due to
parameter tuning, we use the default parameter values (as in
[22]) for dT and rf. Since our exploratory studies showed that
the prediction accuracy of nn variants is poor, we use the tuned
parameter values as suggested in [5]. We note that the results
are biased toward nn variants because of this parameter tuning.

As a measure of prediction accuracy, we use root-mean­
squared error (RMSE). We repeat each variant 10 times to
reduce the impact of randomness throughout, and we consider
the prediction accuracy of a variant as RMSE averaged over
10 repetitions. We also use a t-test to check whether the
observed differences in the prediction accuracy of the variants
are significant.

A. Modeling run times on serial codes

The first set of experiments was carried out on dedicated
nodes of Fusion, a 320-node cluster at Argonne National
Laboratory, comprising 2.6 GHz Intel Xeon processors with
36 GB of RAM, under the stock Linux kernel v2.6.I8.

We build surrogate models for problems from SPAPT
[25], a collection of portable search problems in automatic
perfonnance tuning. Each problem in SPAPT is defined by a
kernel, input size, set of tunable parameters, feasible set of
possible parameter values, and default/initial configuration of
these parameters. The kernels in SPAPT include elementary
dense linear algebra, dense linear algebra solver, stencil code,
and elementary statistical computing kernels.

The tuning parameter space includes loop unrolling E
[1, ... ,30], cache tiling E {I, 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024, 2048} (treated as {l, ... ,I2}), and register tiling E
{I, ... ,32}. SPAPT problems also include binary parameters;
however, here we set these to their nominal value (false) and
consider only those parameters that can take several (integer)
values, since these are primarily responsible for the size of
search spaces in SPAPT. The resulting number of parameters
ranges between 8 and 38, and the size of the search spaces
range between 5.31 x 1010 and 1.24 x 1053.

Given a problem, our goal is to build a surrogate model that
can predict the mean run time of a parameter configuration x.

TABLE l. RMSE AVERAGED OVER 10 REPLICATIONS ON THE 725%
TEST SET FOR 2,500 (1,500 FOR BG/Q) TRAINING POINTS.

Problem dT(al)

A. SPAPT Run Times
adi 0.021
atax 0.045
bicgkernel 0.021
correlation 0.060
covariance 0.055
dgemv3 0.057
gemver 0.100
hessian 0.045
jacobi 0.029
lu 0.037
nun 0.064
mvt 0.032
seidel 0.076
stencil3d 0.080
B. Power
lu(cpu) 0.017
lu(dimm) 0.016
mm(cpu) 0.024
mm(dimm) 0.034
stencil(cpu) 0.015
stencil(dimm) 0.041
c. BO/Q
cg(mftops) 0.000
cg(time) 0.000
dot(mflops) 0.003
dot(time) 0.001
matvec(mftops) 0.001
rnatvec(time) 0.001
waxpy(mftops) 0.001
waxpy(time) 0.000

dT(rs) nn(al)

0.025 0.034
0.057 0.064
0.024 0.038
0.066 0.212
0.064 0.104
0.069 0.100
0.l20 0.155
0.054 0.059
0.045 0.058
0.060 0.072
0.079 0.078
0.036 0.044
0.097 0.092
0.100 0.100

0.022 0.119
0.021 0.083
0.031 0.023
0.051 0.074
0.016 0.014
0.048 0.039

0.000 0.005
0.001 0.002
0.003 0.007
0.001 0.003
0.001 0.004
0.001 0.002
0.001 0.003
0.001 0.002

nn(rs)

0.031
0.072
0.043
0.199
0.114
0.137
0.180
0.070
0.057
0.084
0.079
0.053
0.098
0.122

0.116
0.096
0.024

0.095
0.014
0.050

0.010
0.003
0.012
0.004
0.006
0.003
0.007
0.004

rf(al) rf(rs)

0.022 0.025
0.056 0.069
0.032 0.038
0.053 0.057
0.059 0.072
0.065 0.077
0.103 0.132
0.070 0.094
0.044 0.053
0.050 0.067
0.061 0.075
0.044 0.053
0.080 0.095
0.084 0.105

0.018 0.029
0.034 0.055
0.036 0.045
0.057 0.076
0.019 0.023
0.040 0.052

0.015 0.024
0.007 0.016
0.014 0.018
0.005 0.011
0.013 0.024
0.007 0.014
0.013 0.030
0.007 0.015

Note: I he value IS typeset," lIaltes (bold) when a vanant IS SIgnIficantly worse (better)
than dT(al) according to a t-test with significance (alpha) level 0.05.

The mean is computed over 35 code runs. For ab-dynaTree,
we set the subsample size as ns=100 and batch size as nb=50.
We generated 100,000 unevaluated configurations for Xp and
set the maximum evaluations nmax= 5,000.

To allow cross-comparison of prediction accuracy between
the problems, we scale the run time values for each problem:
each Yi is divided by Yi , where Yi is the maximum run
time from Yout. For the

m
;�tive learni;g

X
variants, we consider

the first 2,500 points from (Xout,Yout) as the training set to
build the surrogate model. We derive two test sets from the
remaining 2,500 points: (i) the subset of points 725o/c from the
training set whose mean run times are within the I�wer 25%
quantile of the empirical distribution for the 5,000 run times in
Yout; and (ii) a set 7100% of 1,000 randomly generated points.
For the random sampling variants, we use the same test sets
725% and 71 00% but a different training set, with the 2,500
points for training being randomly chosen from (Xout, Yout) -
725%' Since the training points of random sampling variants
are not uniformly random, their perceived effectiveness may
be artificially higher than one could expect in reality.

Table I-A shows RMSEs averaged over 10 replications for
2,500 training points and tested on 725%' The results show
that, except for bicgkernel, dT(al) obtains lower average RMSE
than does dT(rs). The trend is similar on the nn variants. We
can also observe that the dT variants completely dominate the
nn variants despite the latter using tuned parameter values.
The key advantage of dT(al) comes from it requiring rela­
tively fewer evaluations to achieve a smaller RMSE. This is
illustrated in Fig. 1, which shows the RMSE as a function of
the number of training points. The results show that dT(al)
achieves a lower RMSE than does dT(al) with relatively fewer
training points. We found that nn variants are sensitive to

CD
N 0
c:i

LU
(/)
:2
a:

N N 0
c:i

co 0
c:i

CD
LUCO!
(/)0
:2
a:"<t 0

c:i

N
CO!
0

c:i

(j)
CO!

LUo
(/)
:2
a:1'--CO!

0

en 0
c:i

adi

OU !:lOU

� ')(;

200·0
Number of training 10ints

bicgkerne

00 50Q 20UO
Number of tr�lning points

covanance

O·
Number of training points

(j) o
c:i

LU
(/)
:21'-­
a:CO!

o

en o
c:i

o
c:i

LU
(/)co
:2CO!
a:o

CD o
c:i

o

CD o
c:i

atax

OU !:lOU 20UO
Number of training points

correlation

����m-����

Fig. I. RMSE for the first six SPAPT problems on the test set 725%'
The dotted lines represent the RMSE for each replication and the bold lines
represent the mean RMSE over the 10 replications.

the randomness which can be attributed to an underlying
optimization solver's convergence issue. In Fig. 2, we compare
the number of evaluations required by the variants to reach the
RMSE obtained by dT(rs) (with 2,500 evaluations). On 5 out
of 10 problems, dT(al) reaches the RMSE of dT(rs) within
1,000 training points. Only for bicgkernel and mvt is there no
significant difference in the number of training points.

B. Modeling power consumption of serial code kernels

In this section, we focus on modeling the power consump­
tion of serial code kernels. We obtained the component-level
(CPU and DIMM) power consumption data used in [5] for
mm, stencil, and lu computations. The data was collected on an
Intel Xeon E5530 workstation with two quad-core processors,
where each core has 32 KB Ll cache and 256 KB L2 cache;
see [5] for further details.

The mm, stencil, and lu kernels have 7, 5, and 11 parameters
and search space sizes of 6.5 x 105, 5.6 x lOlD, and 8.3 x lOlD

configurations, respectively. The parameters are tiles, unroll,
input size, and clock frequency. The data set comprises 8,285,
4,900, and 9,700 randomly sampled configurations for mm,

2500

2000

1500

1000

500

o

• dT(al)
!illI dT(rs)
• nn(al)
CJ nn(rs)
• rf(al)
m:! rf(rs)

Fig. 2. Number of evaluations required to reach the RMSE of dT(rs) (with
2,500 evaluations) for SPAPT problems on the test set 725%'

stencil, and lu, respectively. We stored these configurations and
their corresponding outputs in a lookup table and simulated the
batch mode for ab-dynaTree, where the randomly sampled
configurations were given as the configuration pool.

The results are shown in Fig. 3. We observe that the
al variants obtain lower RMSE when compared with the
rs variants, suggesting that the active learning approach is
beneficial. The results from Table I-B show that dT(al) obtains
significantly lower RMSE than do other variants except for
stencil, where nn variants obtain slightly lower RMSE than
does dT(al). The computational savings are shown in Fig. 4,
where we can see that dT(al) requires fewer than 1,000 training
points to reach the RMSE of dT(rs). The correlation between
observed and predicted values of dT(al) is shown in Fig. 5.

C. Modeling run time and FLOPS of MPI code

In this section, we study miniFE, a mini application that
comprises the most significant performance characteristics of
an implicit finite element method using a conjugate-gradient
(cg) solver; see [26] for details. We used the following
parameters: number of nodes E {8, 16, 32, 64, . . . , 4096} ,
number of processes per node E {2, 4, 8, 16, 32, 64}, % of
artificial load imbalance E {5, 10, 20, 30, . . . , 90}, overlapping
communication and computation indicator E {O, I}, and size
of the box domain (10 values from 100 to 500 considered at
equal intervals). The total number of configurations is 12,000.
The experiments were carried out on Mira, a lOPF IBM Blue
Gene/Q at the Argonne Leadership Computing Facility. It
has 49,152 nodes organized in 48 cabinets, where each node
comprises 16 cores of 1.6 GHz PowerPC A2 and 16 GB of
DDR3 memory.

We run ab-dynaTree only once with the objective of
building a model for the run times of the cg kernel with the
maximum number of evaluations of 2,500. For each evaluation,
in addition to the run time, we record the FLOPS taken by
cg and the run time and FLOPS taken by the dot product
(dot), matrix-vector product (matvec), and vector-scalar prod­
uct (waxpy) kernels within cg. We use the same evaluations
for modeling both the FLOPS and run time metrics.

lu(cpu) I.{)
NTIE�---------------' o

� I "'.,----!�� .. : .. �, �M ��!! �OO 000 20rrO
Number of traininQ. points

mm(cpU)

o
o

UI
(/)<0
:20
((0

lu(dimm)

N � j ��� �OCI 000 20rrO
Number of training �oints

mm(dimm}

Fig. 3. RMSE for lu, mm, and stencil CPU and DIMM power on the test set
725%' The dotted lines represent the RMSE for each replication and the bold
lines represent the mean RMSE over 10 replications.

2500

2000

1500

1000

I
• dT(al)

l I1l! dT(rs)
500 I � • nn(al)

0 nn(rs)
0 • rf(al)

I:l! rf(rs)
S E s E s E 0.. E 0.. E 0.. E � � �
.2 � E � '(3 �

.2 E E c '(3 E 2 c
Ul Q) -

Ul

Fig. 4. Number of evaluations required to reach the RMSE of dT(rs) (with
2,500 evaluations) for predicting CPU and DIMM power of lu, mm, and stencil
on the test set 725%'

For the validation experiments, the al variants use the first

lu(cpu)
C>

"'0) Ol ' ",0
(ij
>00 -0 . OlO
ti
:.01'-Ol ' �O a.

<0
0

0:7 0.8 0.9
observed val�es

mm cpu
C>

",0)
Ol ' ",0

(ij
>00

-00 Ol
."§f'.. -0 .
OlO
0::

<0
0

o.
Observed' value�
stencil(cpu

I.{)
0)

"'0 Ol '"
(iii.{) >00 -00 Ol
ti '-1.{) a;r--:
0::0

I.{) <0
0

Observed values

1:

lu(dimm)
C> r-�----------------"

O,Q 0,8 1,0
Observed values

stencil(dimm)
C>r---------�------�

-0, , ,
Observed values

Fig. 5. Correlation plot for the CPU and DIMM power of lu, mm, and stencil
on 7100%' The vertical, dotted line represents the 25% quantile,

1,500 configurations obtained from ab-dynaTree, The results
are shown in Fig, 6, Fig, 7, and Table I-D, The differences
in mean RMSE between dT(a1) and dT(rs) are small (in the
range of 0,001 to 0,003) and the t-test shows that, out of the
8 problems, only on 4 problems does dT(al) obtain an RMSE
significantly lower than that of dT(rs), On the remaining four
problems, we do not have significant evidence to say that one
is better than the other. However, the differences between the
al and rs variants of nn and rf are larger and clearly show
that adoption of ab-dynaTree results in reducing RMSE, The
overall low RMSE values and illustrative scatter plots of eg
and dot in Fig, 8 show that the training points, though obtained
with the goal of modeling run times of eg, are highly effective
for obtaining surrogate models for the other 7 metrics.

D. Experiments on batch size

We now study the impact of batch size on the RMSE.
We used the same experimental setup as in Sections IV-A
and IV-B. Each iteration of ab-dynaTree does nb parallel
evaluations. We consider nb E {I, 50,100, 200} and set the
subsarnple size to max{100, 2nd. The training points obtained
from ab-dynaTree are given to dT(a1) and each (nb) version
starts with an initial sample of size 100. We assume each

cg(mflops)

� ,---,.---,--. -',', " ,"'--0---,
� v.- dT(!al)

o o
o

- dT(rs)
rf(rs)
nn(rs)

OU LUU !:lOU 1 00'0
Number of training points

co dot(mflops) O �--c--------,,---�
� -+- dT(ai{
� - dT(r�)

w� rf(rs)
(/)

�-.;- .··.{In(rs)
� \;j:;:,:�\
N o
��U�U'-�LO�U'-�!:l�U�U-'1�0�0 Number of training points
If) matvec(mflops)
g �-�������. �

w: I!��\
(/)0
::2;0 �; nh(rs)
c:

o o
o�'-�'--'�-'�rro

Number of training points
If) waxpy(mflops)
� �--n������n
o

\ \ Jff l�l�:&�
rf(rS)Y
nn(rs)

o o
o ./-"",-""",--.""'-,�

C') o o
W ·
(/)0
::2;
c:

o o
o

N o o
o

N o o
o

cg(time)
,.,--------,---,-"----,,,,---

UU LUU !:lUU 1 00'0
Number of training points

matvec(time)

OU LOU !:lOU 1 001
Number of training �oints

waxpy(time)

Fig. 6. RMSE for predicting run times and FLOPS of miniFE kernels on
the test set 725%' The dotted lines represent the RMSE for each replication
and the bold lines represent the mean RMSE over the to replications.

evaluation takes the same time unit. Consequently, the number
of iterations corresponds to the wall clock time.

The results in Fig. 9 show that an increase in the batch
size from 1 to 50 decreases the number of iterations required
(to obtain most RMSE levels) by approximately l.5 orders
of magnitude. Further increases in the batch size (to 100 and
200) reduce the number of iterations but the relative differences
become smaller. These observations indicate that the adoption
of larger batch sizes is beneficial but the computational savings
obtained diminish as the batch size increases.

2500

2000
1500
1000

500

0
UJ <D UJ <D c. E c. E 0 0 :;:: B :;:: :e.
E OJ -S

-
u 0

OJ - "0
u 0 "'0

UJ <D UJ c. E c. 0 0
E :e. :;:: u E Q) cr � >: Q) c.
� ro x E ro ro � E

<D
E

B >. c. x ro
�

• dt(al)
Cil dt(rs)
• nn(al)
D nn(rs)
• rf(al)
Ii.1I rf(rs)

Fig. 7. Number of evaluations required to reach the RMSE of dT(rs) (with
1,500 evaluations) for miniFE kernels on the test set 725%'

cg(mflops) cg(time)
� �

Ultq Ultq IDO IDO :::J :::J
ro<o ro<o
�6 �6
2-.;-() . �o

2-.;-() . :.cO
ID ID �N 0.. . 0

�N 0.. . 0
0 0
0 U.L U.4 0.6 0.8 1.0 0

Observei values
dot(m lops)

��-------� ��-------�

..
:'.A�

1.
0 ,
o Xi7<----"-"...--""",----,,,,,,,,,....,.,,n-"-'\

Observed values

Fig. 8. Correlation plot of observed and predicted values for miniFE kernels
on 7100%' The vertical, dotted line represents the 25% quantile.

V. SUMM ARY AND OUTLOOK

We have proposed an algorithm that adaptively selects
inputs for parallel evaluation in order to build surrogate models
over the input space. We augmented a popular active learning
scheme for the sequential design of experiments to ensure
that a batch of inputs, taken collectively, will lead to updates
that are better than one-at-a-time schemes used in serial
environments. Our experiments show that our batch-parallel
scheme is effective at building surrogates for run time, power
consumption, and FLOPS on a variety of architectures. For the
surrogate model types tested, including our preferred dynamic
tree model, our active learning approach yields designs that
produce better surrogates than do ones based on random

mvt stencil3d

Fig. 9. Average RMSE for different batch sizes on the test set 0.5%'

sampling. Naturally, the significance of this benefit, especially
as pertains to the benefit of one surrogate model over others,
depends on the output characteristics over the input space.

We envision several extensions that can improve the
power of ab-dynaTree for practical autotuning, including:
i) asynchronous updates for ab-dynaTree; ii) multi-objective
surrogate modeling (e.g., for run time, power consumption,
and FLOPS) with a single run of ab-dynaTree; and iii)
capturing/modeling metrics at a finer granularity to exploit
additional structure for whole application modeling and tuning.

Acknowledgments

Support for this work was provided through the Scientific
Discovery through Advanced Computing (SciDAC) program
funded by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research under Contract No.
DE-AC02-06CHl1357. Computational resources were pro­
vided by the Argonne Laboratory Computing Resource Center
and the Argonne Leadership Computing Facility. We thank
Ananta Tiwari for providing the power measurement data from
[5].

REFERENCES

[I] D. Bailey and A. Snavely, "Performance modeling: Understanding the
past and predicting the future," in Euro-Par 2005 Parallel Processing.
Springer, 2005, pp. 185-195.

[2] D. Bailey, R. Lucas, and S. Williams, Performance Tuning of Scientific
Applications. Chapman & Hall, 2010.

[3] R. Vuduc, J. Demmel, and J. Bilmes, "Statistical models for empirical
search-based performance tuning," Int. J. High Perf. Comput. Appl.,
vol. 18, no. I, pp. 65-94, 2004.

[4] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and
D. Patterson, "Predicting mUltiple metrics for queries: Better decisions
enabled by machine learning," in IEEE Int. Conf. Data Engineering
(ICDE'09), 2009, pp. 592-603.

[5] A. Tiwari, M. A. Laurenzano, L. Carrington, and A. Snavely, "Modeling
power and energy usage of HPC kernels," in IEEE Int. Conf. Par.
Distrib. Proc. Symp. Workshops (lPDPSWI2), 2012, pp. 990-998.

[6] J. Bergstra, N. Pinto, and D. Cox, "Machine learning for predictive auto­
tuning with boosted regression trees," in Innovative Parallel Computing
(In Par' 12). IEEE, 2012, pp. 1-9.

[7] S. F. Rahman, J. Guo, and Q. Yi, "Automated empirical tuning of
scientific codes for performance and power consumption," in ACM Int.
Conf. High Perf. Embed. Arch. Compo (HiPEAC ' II), 2011, pp. 107-
116.

[8] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O'Reilly, "Meta
optimization: Improving compiler heuristics with machine learning,"
ACM SIGPLAN Notices, vol. 38, no. 5, pp. 77-90, 2003.

[9] J. Cavazos, "Intelligent compilers," in IEEE Int. Conf. Cluster Comput.,
2008, pp. 360-368.

[10] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, E. Bonilla, 1. Thomson, H. Leather et aI., "MILEPOST
GCC: Machine learning based research compiler,'-;-;;] GCC Summit,
2008.

[II] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. O'Boyle, and
O. Temam, "Rapidly selecting good compiler optimizations using
performance counters," in IEEE Int. Symp. Code Gen. Opt. (CGO'07),
2007, pp. 185-197.

[12] P. Shivam, S. Babu, and J. Chase, "Active and accelerated learning of
cost models for optimizing scientific applications," in Int. Conf. Very
Large Databases, 2006, pp. 535-546.

[13] R. L. Plackett and J. P. Burman, 'The design of optimum multifactorial
experiments," Biometrika, vol. 33, no. 4, pp. 305-325, 1946.

[14] T. J. Santner, B. J. Willianls, and W. I. Notz, The Design and Analysis
of Computer Experiments. Springer, 2003.

[15] M. c. Fu, "Optimization for simulation: Theory vs. practice,"
INFORMS J. Comput., vol. 14, no. 3, pp. 192-215,2002.

[16] B. Settles, Active Learning. Morgan & Claypool, 2012.
[17] R. B. Gramacy and H. K. Lee, "Adaptive design and analysis of

supercomputer experiments," Technometrics, vol. 51, no. 2, pp. 130-
145,2009.

[18] M. A. Taddy, R. B. Granlacy, and N. G. Polson, "Dynamic trees for
learning and design," J. Amer. Statist. Assoc., vol. 106, no. 493, pp.
109-123,2011.

[19] H. Chipman, E. George, and R. McCulloch, "Bayesian treed models,"
Mach. Learn., vol. 48, pp. 303-324, 2002.

[20] c. Anagnostopoulos and R. Gramacy, "Dynamic trees for streaming and
massive data contexts," The University of Chicago, Tech. Rep., 2012,
arXiv: 1201.5568.

[21] R. B. Gramacy, M. A. Taddy, and S. M. Wild, "Variable selection and
sensitivity analysis via dynamic trees with an application to computer
code performance tuning," Ann. App. Stats., vol. 7, pp. 51-80, 2013.

[22] R. B. Gramacy and M. A. Taddy, dynaTree: Dynamic Trees for
Learning and Design, 2011, R package version 2.0. [Online]. Available:
http://faculty.chicagobooth.edu/robert.gramacy/dynaTree.html

[23] D. A. Cohn, "Neural network exploration using optimal experimental
design," in Advances in Neural Information Processing Systems, vol.
6(9). Morgan Kaufmann Publishers, 1996, pp. 679-686.

[24] L. Breiman, "Random forests," Mach. Learn., vol. 45, no. I, pp. 5-32,
2001.

[25] P. Balaprakash, S. M. Wild, and B. Norris, "SPAPT: Search problems
in automatic performance tuning," Proc. Compo Sci., vol. 9, pp. 1959-
1968,2012.

[26] M. A. Heroux, D. W. Doerer, P. S. Crozier, and J. M. Willenbring,
"Improving performance via mini-applications," Sandia National Lab­
oratories, Tech. Rep. SAND2009-5574, September 2009.

