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ABSTRACT
Detection of fire and smoke in video is of practical and

theoretical interest. In this paper, we propose the use of opti-
mal mass transport (OMT) optical flow as a low-dimensional

descriptor of these complex processes. The detection process

is posed as a supervised Bayesian classification problem with

spatio-temporal neighborhoods of pixels;feature vectors are

composed of OMT velocities and R,G,B color channels. The

classifier is implemented as a single-hidden-layer neural net-

work. Sample results show probability of pixels belonging to

fire or smoke. In particular, the classifier successfully distin-

guishes between smoke and similarly colored white wall, as

well as fire from a similarly colored background.

Index Terms— Optimal Mass Transport, Neural Net-

work, Vision, Video, Detection, Supervised Classification.

1. INTRODUCTION

The detection of fire and smoke in video is particularly ap-

plicable in industrial monitoring and surveillance. Currently,

detection is performed by point detectors that use ionization

and light scattering [1].They are not effective in large, open

spaces and have an inherent delay because of the time it takes

for combustion particles to reach the sensor.

The method in [2] uses only color information at a given

pixel. Other approaches use Fourier Descriptors to character-

ize fire boundaries [3]. In [4], a wavelet analysis is used to

resolve the problem of selecting a window size to perform a

FFT. This approach relies on deciding what is a sufficient de-

crease in wavelet energy, from what point in time one should

start looking for this decrease, and is susceptible to noise.

The authors in [5] propose a system that models fire

pixels as a hidden markov model with (temporal) wavelet

coefficients of spatially-fixed pixels being the variables that

change between three states. Additionally, they use boundary

smoothness of regions as a variable for classification. The two

properties are combined as weak classifiers. In [6] non-smoke

regions are filtered out using background estimation and color

information. Then, Lucas-Kanade Optical Flow is computed,

and a neural network is trained using statistics of the flow.

(a) Training Pipeline

(b) Classification Pipeline

Fig. 1. TOP: Training data is created by manually marking

example image sequences. Examples contain spatio-temporal

pixel neighborhoods that are marked as to whether they con-

tain fire, smoke, or neither. OMT optical flow is computed

via sparse-matrix fininte-difference solver. Feature vectors

are formed containing R,G,B color channels and optical flow

velocities are compiled and processed by a backpropagation

neural network classifier. BOTTOM: the classifier is tested

by creating feature vectors for each pixel neighborhood in a

new video frame using the trained classifier weights. The fi-

nal output contains probability of class membership (Smoke,
Fire, None) for each pixel.

The authors do not attempt to classify individual pixels, as

done in this paper, instead they have a binary output: smoke

is present in the frame or it is not. And, we propose using the

optimal mass transport (OMT) Optical Flow, which is better

suited for this application, as explained in Section 2.2 .

The remainder of this paper is as follows: in Section 2,

the classification pipeline is described. A review of OMT and

its application to image analysis is given in Section 2.1. Sec-

tion 3 describes the architecture of the Neural Network clas-

sifier. We conclude with some example results in Section 4
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and final remarks in Section 5.

2. CLASSIFIER FEATURE SELECTION

The majority of existing methods are based on a heuristic

model that roughly characterizes fire or smoke but tends to

be sub-optimal. A natural approach is to learn the model

from training data that describes smoke or fire by training a

classifier such as a neural network. The training and testing

pipelines are described graphically in figure Fig. 1 .

Computing optical flow for an image sequence rather than

simple frame differencing allows one to take into account ex-

pected properties of the process being imaged; for reasons

discussed in the next sections, optical flow based on optimal

mass transport(OMT) is calculated for fire and the Horn and

Schunck optical flow for smoke region classification.

2.1. Optimal Mass Transport

The mass transport problem was first formulated by Gaspar

Monge in 1781, and concerned finding the optimal way, in the

sense of minimal transportation cost, of moving a pile of soil

from one site to another. This problem was given a modern

formulation in the work of Kantorovich, and so is now known

as the Monge–Kantorovich problem.
We now give a modern formulation of the Monge–

Kantorovich problem. Let Ω0 and Ω1 be two subdomains

of Rd , with smooth boundaries, each with a positive density

function, μ0 and μ1, respectively. We assume
∫
Ω0

μ0 =

∫
Ω1

μ1

so that the same total mass is associated with Ω0 and Ω1. We

consider diffeomorphisms ũ from (Ω0, μ0) to (Ω1, μ1) which

map one density to the other in the sense that

μ0 = |Dũ|μ1 ◦ ũ, (1)

which we will call the mass preservation (MP) property, and

write ũ ∈ MP. Equation (1) is called the Jacobian equation.
Here |Dũ| denotes the determinant of the Jacobian map Dũ.

In particular, Equation (1) implies, for example, that if a small

region in Ω0 is mapped to a larger region in Ω1, there must

be a corresponding decrease in density for the mass to be pre-

served. A mapping ũ that satisfies this property may thus be

thought of as defining a redistribution of a mass of material

from one distribution μ0 to another distribution μ1.
There may be many such mappings, and we want to pick

out an optimal one in some sense. Accordingly, we define the

Lp Kantorovich–Wasserstein metric as follows:

dp(μ0, μ1)
p := inf

ũ ∈ MP

∫
‖ũ(x)− x‖pμ0(x) dx. (2)

An optimal MP map, when it exists, is one which minimizes

this integral. This functional is seen to place a penalty on the

distance the map ũ moves each bit of material, weighted by

the material’s mass.

A fundamental theoretical result [7, 8], is that there is a

unique optimal ũ ∈ MP transporting μ0 to μ1, and that this

ũ is characterized as the gradient of a convex function w, i.e.,

ũ = ∇w. Note that from Equation (1), we have that w satis-

fies the Monge–Ampère equation

|Hw|μ1 ◦ (∇w) = μ0,

where |Hw| denotes the determinant of the Hessian of w.
Hence, the Kantorovich–Wasserstein metric defines the

distance between two mass densities, by computing the

cheapest way to transport the mass from one domain to the

other with respect to the functional given in (2), the optimal

transport map in the p = 2 case being the gradient of a certain

function. The novelty of this result is that like the Riemann

mapping theorem in the plane, the procedure singles out a

particular map with preferred geometry.

2.2. Optical Flow

Optical flow is a computational procedure to compute the mo-

tion between a set of images taken within a short time differ-

ence. The main idea is that the gray values of each image do

not change between two images. This leads to the optical flow
constraint

It + �u · ∇I = 0. (3)

where I is the image and �u = [u, v] is the flow field. Given

two images taken in a short time interval, it is possible to solve

for the optical flow field �u by solving the following optimiza-

tion problem

min
�u

1

2
‖It + �u · ∇I‖2 + αR(�u) (4)

where R(�u) is a regularization operator, typically chosen to

be the gradient of �u and α is a regularization parameter.

Notice that the underlying assumption for Equation (4)

is one of intensity constancy. Under this assumption an ob-

jects brightness is constant from frame to frame. This as-

sumption holds for rigid objects with a Lambertian surface,

but fails for fluid and gaseous materials. In computer vi-

sion, these are modeled by so-called dynamic textures. The

dynamic textures typical of smoke and fire possess intrinsic

dynamics and so cannot be reliably captured by the standard

optical flow method. Also, the fire/smoke region tends to flow

much faster than the area around it which again may cause the

model given by Equation (4) to produce erroneous results.

Our goal in this paper is to obtain better optical flow field

models for fire and smoke. One way to do so is to base the

optical flow on the physical attributes of these processes. One

simple attribute is that fire and smoke tends to approximately

conserve intensity taken as a generalized mass and move the

762



mass in an optimal way [9, 10]. Thus, an appropriate mathe-

matical optical constraint is not intensity preserving but rather

mass conservation or brightness conservation. This model

can be written as

It +∇ · �uI = 0. (5)

The justification is as follows:∫
Ω

ItdA = −
∫
∂Ω

I�u · �NdL.

This means that total rate change in intensity can only occur

through a flow (entering or exiting on the boundary). This is

a conservation law. But by the divergence theorem∫
∂Ω

I�u · �NdL =

∫
Ω

∇ · (I�u)dA so

∫
Ω

It +∇ · (I�u)dA = 0 and

It +∇ · (I�u) = 0.

This is precisely the condition of infinitesimal brightness

(mass) conservation.

Following the reasoning in the previous section, we pro-

pose the following for optical flow for dynamic texture seg-

mentation:

min α

∫
Ω

∫ T

0

I |�u|2 dx dt +
1

2
‖It +∇ · �uI‖2. (6)

The first term in this optimization problem represents the total

energy of moving the images while the second is the mass

preserving optical flow equation.

3. CLASSIFICATION WITH NEURAL NETWORKS

The problem of smoke detection is posed as a two class sys-

tem that must decide if a given pixel belongs to class smoke
or class non-smoke. Neural Networks compute a least-squares

model fit to Bayes discriminant functions [11]; the output is

a probability of a pixel belonging to a particular class, thus

a user’s choice of threshold level for classifying a pixel as

smoke/non-smoke directly corresponds to his desired confi-

dence level. From Bayes theorem, we know that for a multi-

class problem the posterior probability can be written as

p(Ck|x) = p(x|Ck)p(Ck)

Σip(x|Ci)p(Ci)
, (7)

where x is assigned to the class Ck that corresponds to the dis-

criminant function, yk(x,w), having the largest value. Here,

target values tk(x) = 1 if x belongs to class Ck and zero oth-

erwise. The error committed by the neural network per output

is defined to be

E(w) =

N∑
n=1

(yk(xn,w)− tn)
2
. (8)

In the limit that N, the number of samples approaches infinity,

it can be shown [11] that back-propogation approach to min-

imizing the error committed by a neural network minimizes

the following sum

n∑
k=1

∫
(yk(x, w)− P (Ck|x))2p(x)dx , (9)

where n is the number of classes. This shows that as the num-

ber of data point goes to infinity the output of the discrimi-

nant function is equal to the posterior probability yk(x, w) ≈
P (Ck|x) . Hence, assigning x to the class Ck, which maps to

the discriminant function with the largest value, is equivalent

to assigning x to the class with the highest posterior probabil-

ity.

Bayes theorem is used again to determine the form of

the discriminant functions. The posterior probabilities can be

written as

p(Ck|x) = p(x|Ck)p(Ck)

Σip(x|Ci)p(Ci)
=

exp(ak)

Σiexp(ai)
, (10)

also known as the softmax function, with the substitution

ak = ln(p(x|Ck)p(Ck)) [12] . This is precisely the activa-

tion function a neural network uses.

Assume that the class-conditional probability densities

p(x|Ck) belong to the restricted exponential family of distri-

butions, which take the form

p(x|wk) = h(x)g(wk) exp
(
wk

Tx
)

. (11)

Substituting this density into (10), the resulting equation for

ak(x) is linear in x:

ak(x) = wk
Tx+ ln g(wk) + ln p(Ck) . (12)

Thus, the discriminant function takes the form of an activation

function acting on a linear combination of non-linear basis

functions φ(x):

y(x,w) = f(

M∑
i=1

wjφj(x) + w0) , (13)

where f(·) is the activation function.

In a neural network the non-linear basis functions, imple-

mented as hidden units, are adaptively selected and are them-

selves functions of a linear combinations of inputs

φj(x) = h(

L∑
i=1

lixi + l0) (14)

where h(·) is also a softmax function. The Neural Network

used herein is fully connected and made up of a single hidden

level containing twenty hidden units with a softmax nonlin-

earity in the hidden layer and in the output.
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4. RESULTS

To obtain the following results, just six frames of a video were

used in training a neural network classifier. Certain fire/non-

fire and smoke/non-smoke regions were manually delineated.

The number of samples used is small and it comes from the

same video. The classifier can be extended to work with

other videos by providing significantly more samples espe-

cially from varying video sources of positive and negative

data samples.

The output of a neural network classifier is a posterior

probability p(Ck|x) for each pixel, where Ck is the class,

fire/smoke or non-fire/non-smoke, and x is the feature vec-

tor for a given pixel. Figure 2(b) shows a sample output of

the classifier for all pixels in a video frame. A threshold can

be applied to make a binary decision about a pixel’s class; this

is shown in figure 2(c) for smoke and figure 3(b) for fire.

(a) Input Image (b) Probability of class

Smoke
(c) Binary decision by

probability threshold

Fig. 2. Feature vectors containing image and OMT Optical

Flow velocity values in a spatio-temporal pixel neigbhorhood

are extracted and fed into a neural network classifier. The

output assigns a probability of each pixel belonging to class

Smoke, shown in Fig. 2(b). Binary decisions are formed by

thresholding the probabilities. Notice that the white smoke is

distinguished from the white wall.

Similarly the binary classification of pixels in a video

frame containing fire can be seen in figure 3.

(a) Original Image (b) Image after threshold is applied

Fig. 3. An image sequence is fed into a neural network clas-

sifier that has been trained with examples of Fire and Not Fire
pixel neighborhoods. The fire in the image is marked by a

threshold of probabilities given by the classifier.

5. CONCLUSION

Video detection of flame/smoke is the preferred detection

method because it allows a single camera to cover a large

area and integrates easily into existing closed circuit surveil-

lance systems. In this work, we presented an OMT based

optical flow calculation that respects physical properties of

the process being measured and an approach to training a

classifier rather than creating one from heuristics.
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