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An effective method is developed for selecting sample
snapshots for the training data used to compute the adaptive
weights for an adaptive match filter (AMF); specifically
a space/time adaptive processing (STAP) airborne radar
configuration is considered. In addition, a new systematic
robust adaptive algorithm is presented and evaluated against
interference scenarios consisting of jamming, nonhomogeneous
airborne clutter (generated by the Research Laboratory STAP
(RLSTAP) or knowledge-aided sensor signal processing and
expert reasoning (KASSPER) high-fidelity clutter models or using
the multi-channel airborne radar measurement (MCARM) clutter
data base), internal system noise, and outliers (which could take
the form of targets themselves). The new algorithm arises from
empirical studies of several combinations of performance metrics
and processing configurations. For culling the training data, the
generalized inner product (GIP) and adaptive power residue
(APR) are examined. In addition two types of data processing
methods are considered and evaluated: sliding window processing
(SWP) and concurrent block processing (CBP). For SWP, a
distinct adaptive weight is calculated for each cell-under-test
(CUT) in a contiguous set of range cells. For one configuration
of CBP, two distinct weights are calculated for a contiguous set
of CUTs. For the CBP, the CUTs are in the initial training data
and there are no guard cells associated with the CUT as there
would be for SWP. Initial studies indicate that the combination of
using the fast maximum likelihood (FML) algorithm, reiterative
censoring, the APR metric, CBP, the two-weight method, and
the adaptive coherence estimation (ACE) metric (we call this
the FRACTA algorithm) provides a basis for effective detection
of targets in nonhomogeneous interference. For the KASSPER
data, FRACTA detects 154 out of 268 targets with one false alarm
(PF ¼ 3£ 10¡5) whereas the FML algorithm with SWP detects 11
with one false alarm. The clarvoyant processor (where each range
cell’s covariance matrix is known) detects 192 targets with one
false alarm.
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NOMENCLATURE

ACE Adaptive coherence estimate
AMF Adaptive matched filter
APR Adaptive power residue
CBP Concurrent block processing
CFAR Constant false alarm rate
CTD Censored training data
CUT Cell-under-test
FML Fast maximum likelihood algorithm
FRACTA FML, reiterative censoring, APR

metric, concurrent block processing,
two weight method, adaptive
coherence estimate (a combination of
the above six methods)

GIP Generalized inner product
ITD Initial training data
KASSPER Knowledge-aided sensor signal

processing and expert reasoning
MCARM Multi-channel airborne radar

measurements
MLE Maximum likelihood estimate
NB Narrowband
RCFML/APR Reiteratively censored fast maximum

likelihood with adaptive power
residue (metric) algorithm

RCFML/GIP Reiteratively censored fast maximum
likelihood with generalized inner
product (metric) algorithm

RLSTAP Research Laboratory space-time
adaptive processor high-fidelity clutter
model

STAP Space-time adaptive processing
SWP sliding window processing
UTD Uncensored training data.

I. INTRODUCTION

Good performance for a class of multi-channel
adaptive matched filters (AMF) requires the accurate
estimation of the unknown input covariance matrix of
the input channels. The true covariance matrix is used
to find the optimal linear weighting of input sensors
or channels such that the output signal-to-interference
ratio is maximized. Due to this lack of knowledge of
the external environment, adaptive techniques require
a certain number of input data vectors (snapshots) to
estimate effectively the input covariance matrix. In
order to estimate the covariance matrix associated
with a given snapshot, a group of snapshots in near
proximity (in space and/or time) must be found
which share (in some sense) the covariance matrix
of a given snapshot. Normally for adaptive radar
applications, the sample covariance matrix is estimated
using training data from range cells close to the
range cell-under-test (CUT). In the derivation of
the maximum likelihood estimate (MLE) of the
covariance matrix, it is normally assumed that the
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CUT sample vector (the data vector to which the
adaptive weight is applied) and all of the training data
vectors are independent and identically distributed
(IID). Such sample data are characterized as being
homogeneous. In this work, we develop effective
methods for selecting sample snapshots for the
training data used to compute the adaptive weights
for an AMF. Specifically, our interference scenario is
related to the space/time adaptive processing (STAP)
airborne radar configuration. We concern ourselves
with the problem of estimating the covariance matrix
when the input data vectors are 1) nonhomogeneous,
2) contain outliers, and 3) the CUT sample vector is
in the training data.
There are a variety of conditions for which outlier

data can be present. For example, unintentional
temporally sporadic electromagnetic interference
(EMI) could cause outliers, along with bad input
sensor channels, or an intentional blinking interference
source. These fluctuations in the input statistics could
result in the covariance estimate of the external noise
environment being severely misestimated which
in turn results in degraded detection performance
and an increase in the probability of false alarm.
In addition, for the radar problem, sidelobe clutter
discretes could be present in only a few range cells.
The spatio-temporal covariance matrix of the sidelobe
clutter discretes can be much different than say the
surrounding clutter. This problem is closely related to
the existence of land-sea clutter interfaces which cause
significant degradation in airborne radar adaptive
processing [1]. Also, power levels can be significantly
different among the various patches of clutter. Another
source of outlier data is the desired targets themselves.
For example, if one is trying to detect an individual
target adaptively in the presence of a formation of
targets (such as an airborne formation), the other
desired target returns located in distinct range cells
about the individual desired target with essentially the
same velocity vector can be present in the training
data. All of the desired targets have approximately
the same desired steering vector. The presence of
the desired target returns in the training data can
severely degrade the AMFs performance [2]. This
is because the training data is used to estimate a
weighting vector which is in the null space of the
signal and interference sources that are in the training
data. Hence, if a signal that has the desired signal’s
steering vector is in the training data, the adaptive
weight vector may null the desired signal. In fact,
this type of outlier, where the outlier has the same
form as the desired signal vector, is a principal model
for outliers that we use in our performance results.
It was found that this type of outlier caused the
most performance degradation of the “unrobustified”
adaptive algorithms.
In [3], Gerlach developed a robust AMF whereby

outlier data vectors in the training data were censored

from the covariance matrix estimate using the
MLE setting. A reiterative censored fast maximum
likelihood (RCFML) technique was presented which
is based on eliminating a fixed number of snapshots
from the training set in reiterative fashion using a
version of the generalized inner product (GIP) [4]
metric. The RCFML’s convergence performance was
shown to be relatively unaffected by the presence of
outliers where the interference scenario consisted of
homogeneous Gaussian noise plus the outliers. Other
work [5—12] on nonhomogeneous AMF interference
rejection is surveyed in [3]. Also see [23—25].
In addition to evaluating the RCFML developed

in [3], we also evaluate a similar censoring method
which uses the adaptive power residue (APR) metric
as a discriminant for censoring sample snapshots. In
its most simplistic form, the APR is the instantaneous
power of the adaptive filter output for a range cell
associated with a particular snapshot. The motivation
for using the APR metric for censoring data samples
is intuitively straightforward: a large APR (relatively
speaking) would indicate that the given cell does
not share all of the covariance matrix structure of
the ambient cells and thus should be censored. A
mathematical justification for using the APR is given
in Section III.
We extend the methodology of [3] here by

considering interference that results from the
airborne radar STAP problem. For this scenario, the
interference consists of nonhomogeneous airborne
radar clutter, barrage jamming, receiver thermal
noise, and outliers. The clutter was modeled using
three mutually exclusive clutter data bases. Two
of the clutter data bases were generated by clutter
models: Research Laboratory STAP (RLSTAP)
model [13] and the knowledge-aided sensor signal
processing and expert reasoning (KASSPER) model
[30] (a KASSPER challenge data cube was issued in
April 2002 by DARPA and AFRL; we call this the
KASSPER I data). These are high-fidelity airborne
clutter generation models which produce site-specific
airborne clutter radar data for the areas where the
United States Geological Survey (USGS) digital
terrain evaluation data (DTED) and land use cover
(LULC) data are available. For the RLSTAP model,
the nonhomogeneous terrain at White Sands, NM was
chosen to provide representative nonhomogeneous
land clutter for the more stressing radar scenarios
where STAP is expected to be required for good
performance. The KASSPER I data cube is a
site-specific airborne radar scenario that addresses
the ground moving target indicator (GMTI) problem
in which the radar returns of several dense clusters
of slow-moving (relative to the airborne platform)
ground targets are buried in background land clutter.
The terrain near Olancha, CA was chosen due to
the nonhomogeneous land clutter from nearby
mountains and deserts. The third clutter data base
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is the multi-channel airborne radar measurements
(MCARM) airborne radar data collected over the
Delmarva pennisula [31].
Results are presented related to the performance of

the APR and GIP censoring algorithms in a variety of
interference scenarios and processing configurations.
It is shown for representative examples that the APR
is a more effective metric for identifying outliers
than the GIP. In addition, a systematic approach
for adaptively processing nonhomogeneous data
which may contain outliers is presented. Initial
studies indicate that the combination of using
the fast maximum likelihood (FML) algorithm,
reiterative censoring, the APR metric, concurrent
block processing (CBP), the two-weight method, and
the adaptive coherence estimation (ACE) metric (we
call this the FRACTA algorithm) provides a basis
for effective detection of targets in nonhomogeneous
interference. This approach has the desirable feature
of reducing the computational load by calculating one
or two adaptive weights for a given block of input
data rather than a distinct adaptive weight for each
snapshot in a data block. A detailed description of the
FRACTA algorithm is given in Section III.
The RLSTAP clutter model and MCARM data

are employed in different scenarios to evaluate the
performance of the different metrics and processing
configurations and thereby validate the algorithmic
combination denoted as the FRACTA algorithm. The
FRACTA algorithm is then applied to the KASSPER
I challenge data cube whereby results associated
with the detectability of ground targets for a given
probability of false alarm are presented.

II. PRELIMINARIES

Consider a radar antenna system that consists of an
N-element uniform linear array. The radar antenna
system provides N RF input signals or channels.
Time delayed inputs of these N inputs are to be
combined via linear weighting to form an output
such that an output performance measure (such as
signal-to-noise (S/N) power ratio) is optimized. If
the linear weighting is derived adaptively, such an
implementation is called a STAP processor and is
depicted in Fig. 1. Assume that for each of these RF
channels, the radar frontend carries out amplification,
filtering, reduction to baseband, and analog-to-digital
(A/D) conversion. The output of each A/D is a data
stream of in-phase and quadrature phase (I,Q) output
pairs. The I and Q components represent the real and
imaginary parts, respectively, of the complex valued
data stream.
The radar waveform is assumed to be a burst

of M identical pulses with pulse repetition interval
(PRI) equal to T. Target detection is based upon
the returns from this burst. The input data in the
respective channels are sampled to form range-gate

Fig. 1. Generic STAP for airborne radar.

samples for each pulse. For a given range gate, we
form an MN-length sample vector called a snapshot
by stacking in succession the N-length data vectors
associated with each of the antenna channels for each
of the M pulses. Signal presence is sought in one
range gate (called the CUT) at a time. A collection
of data vectors (of length MN) called the training
data are used to estimate AMF weight vector (of
length MN). This adaptive weight is applied to the
CUT data vector (of length MN) which may or may
not be one of the training data vectors. The training
data and CUT vectors are assumed to have the same
covariance matrix in the derivation of the optimal
adaptive weighting vector. However, the issue of
the effects of nonhomogeneous CUT and training
data vectors (i.e., they may have different covariance
matrices) on performance is important because of the
resultant performance degradation [3—12]. We model
this effect via the RLSTAP, MCARM, or KASSPER I
clutter data bases whereby nonhomogeneous clutter in
range is present.
The input interference present in the main and

auxiliary channels consists of three statistically
independent components: thermal noise (system noise
and external thermal noise), clutter, and jamming.
Let z represent one of the MN-length data vectors.
Assuming that there is no desired signal present, then

z= zt+ zc+ zJ (1)

where zt, zc, zJ represents the thermal noise, clutter,
and jamming components, respectively. Let R̄t,
R̄c, and R̄J represent the MN £MN covariance
matrices associated with the thermal noise, clutter, and
jamming components, respectively, where each is a
positive semi-definite Hermitian (PSDH) matrix. If R̄
is the covariance matrix of z defined as R̄ = Efzz0g,
where E denotes the expected value and (¢)0 denotes
the conjugate transpose operation, then because of
the mutual statistical independence of thermal noise,
clutter, and jamming components:

R̄ = R̄t+ R̄c+ R̄J : (2)

We can assume without loss of generality that
the thermal noise on each of the MN elements of zt
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are statistically independent and with power equal to
one. Thus R̄t = IM − IN where Ih denotes the hth order
identity matrix and − the Kronecker matrix product
[14]. Furthermore it is commonly assumed that the
jamming components are statistically independent
from pulse to pulse (i.e. barrage jamming); thus it can
be shown that R̄J = IM −RJ where RJ is the spatial
N £N jamming covariance matrix associated with the
elements of the linear array.
A data vector may contain a desired signal vector

denoted by as where a is an unknown complex
amplitude and s is an MN-length column vector
related to the desired signal. For the input data
structure previously described, the spatio-temporal
steering vector s takes the form:

s= sd − ss (3)

where sd is an M-length temporal steering vector
related to the desired signal’s Doppler shift and ss is
an N-length spatial steering vector associated with
the desired signal’s spatial phase shift. For a moving
target with Doppler phase shift per pulse equal to Á:
sd = (1e

jÁe2jÁ ¢ ¢ ¢e(M¡1)jÁ)T where superscript T denotes
transpose.
Given s and the MN £MN interference covariance

matrix R̄, it is well known [29] that conjugate
weighting of the MN-length primary data vector
which maximizes the output signal-to-interference
power ratio (SIR) is given by

w= R̄¡1s: (4)

For adaptive problems, R̄ is generally not known but
we may have a priori information about the structure
of R̄. For example, previously we stated the jamming
component of R̄ has the form IM −RJ where RJ is
the unknown N £N spatial jamming covariance
matrix. Furthermore, for radar systems at microwave
frequencies, the thermal noise is generally dominated
by the internal noise power that can be readily
measured. Hence, we assume that the thermal noise
covariance matrix is known. Given this knowledge,
we use the FML, [15, 16] algorithm to compute the
adaptive weight from the training data.
The FML algorithm is used to estimate the

unknown interference covariance matrix via MLE.
Hence it was assumed that the unknown interference
covariance matrix has the form of a known diagonal
matrix (assumed to be the identity matrix) plus an
unknown PSDH matrix. The FML convergence
properties are similar to many of the fast converging
techniques (such as loaded sample matrix inversion
[20], eigen-projection [21, 22]; e.g. in a narrowband
(NB) jamming scenario, convergence time (measured
in the number of training snapshots necessary to attain
an output signal-to-noise power performance that
is 3 dB less than optimal) is on the order of twice
the number of NB jammers [27, 28]. Furthermore, a

misestimation of the thermal noise level by as much
as §10 dB does not significantly effect the FML’s
convergence performance [16]. The technique also
works for any external interference environment, for
example for wideband jammers and clutter without
requiring modification.
In general, the covariance matrix R̄ will have

to be estimated from a number of training data
input vectors. Let K be the number of training
data vectors. Normally for a given range CUT, the
training data vectors used to calculate the adaptive
weight are chosen to be associated with range
indices that are in close proximity of the CUT range
index. The motivation for choosing these indices
is that it is highly likely that the training data and
CUT will have approximately the same covariance
matrix.

III. FRACTA DESCRIPTION

In this section we describe the last five
components of the FRACTA algortithm (the FML
algorithm was briefly discussed in the previous
section). In addition, several alternative processing
methods are discussed. First, methods are presented
for censoring input data vectors from the training
data. Let us define the initial training data (ITD)
as an initial or original set of K input snapshots of
length MN, the censored training data (CTD) as an
Kout element subset of ITD of censored snapshots
where Kout is a fixed number of input data vectors
that are censored, and the uncensored training data
(UTD) as the K ¡Kout element subset of ITD of
uncensored snapshots. Thus ITD =UTD[CTD. Let
zk, k = 1,2, : : : ,K, denote the MN £1 vectors of ITD,
and R̃ equal the estimate of the covariance matrix
which is derived using ITD.
There are two metrics that are most often used

[1, 4, 6] to censor data vectors from the ITD. These
are the GIP and the APR. For illustrative purposes
(there are other ways of defining these metrics), these
are defined by

GIP: z0kR̃
¡1zk, k = 1,2, : : : ,K (5)

APR: js0R̃¡1zkj2, k = 1,2, : : : :K: (6)

The simplest form of a censoring algorithm using
either one of the above metrics is as follows. Let mk
(k = 1, : : : ,K) denote either z0kR̃

¡1zk or js0R̃¡1zkj2. Let
m(k), k = 1,2, : : : ,K denote the ordered sequence where
m(1) ·m(2) · ¢¢ ¢ ·m(k). If Kout data vectors are to be
censored, then the data vector indices corresponding
to some combination of the Kout lowest and/or
highest valued metrics are censored. The data vectors
associated with the indices that were not censored
are used to estimate the covariance matrix and hence
to calculate the adaptive weight. For the censoring

932 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 3 JULY 2004



algorithms to be presented, the highest valued metric
indices are always censored.
Just as the GIP metric for outlier discrimination

was derived in an approximate sense from an MLE
setting [3], we now show that the APR metric can be
derived under certain conditions in a similar fashion.
The setup for demonstrating this is as follows. As
mentioned previously, an outlier in the training data
that is coaligned with the desired signal vector seems
to cause the most significant performance degradation.
Thus, let us assume that the outlier has steering vector
s. Assume that a given snapshot zk has a complex
normal distribution denoted by CN(0,R+ css0) were R
is the interference covariance matrix (assumed known
just for this derivation), and c is the unknown power
of an outlier whose steering vector is s. The likelihood
function (LF) for zk is given by

LF(zk,a) =
1
¼MN

1
jR+ css0j expf¡z

0
k(R+ css

0)¡1zkg
(7)

where j ¢ j denotes determinant. The MLE solution for
c is found by solving

cML = argmaxc
LF(zk,c): (8)

It is straightforward to show that

cML=

8<:
µ js0R¡1zkj2

s0R¡1s
¡1
¶

1
s0R¡1s

if
js0R¡1zkj2
s0R¡1s

>1

0, otherwise.
(9)

Thus in order to determine if the outlier is present, we
check if cML is greater than some threshold ¿ , which
is equivalent to checking if

js0R¡1zkj2 > ¿ 0 (10)

where
¿ 0 = (¿s0R¡1s+1)(s0R¡1s) (11)

and js0R¡1zkj2 is the APR metric. Hence the APR
metric results for this specific MLE setting.
An effective censoring methodology was

introduced in [3], whereby data snapshots are
censored reiterately. If − denotes the set of sample
indices for a given ITD set, then it is evident that
a reiterative procedure for eliminating an arbitrary
number of data snapshot indices from − is to
eliminate snapshots one at a time where at each step,
− is set equal to the set of indices of the remaining
snapshots. For example, if the APR metric were used,
then on the first iteration the unknown covariance
matrix would be estimated from the ITD using the
FML. Thereafter, the APR metric is calculated for
each of the K snapshots in the ITD (see (6)) and these
are put in ascending order. The range sample snapshot
associated with the largest APR is censored resulting
in a new training data set that consists of the K ¡ 1

remaining snapshots. The second iteration censors
in similar fashion a snapshot from the remaining
K ¡ 1 snapshots where the unknown covariance
matrix is calculated via the FML algorithm from
these snapshots. This methodology is reiterated for
as many times as desired. With respect to the GIP
and APR metrics, we denote these censoring/adaptive
weight technique as the reiterative censored FML
using the GIP metric (or simply RCFML/GIP) and
the reiterative censored FML using the APR metric
(RCFML/APR).
In this work, we consider two methods of

processing input data: standard sliding window
processing (SWP) and concurrent block processing
(CBP). For SWP, the CUT (a single range cell) and
a fixed number of cells to the right and left of the
CUT (these cells are called guard cells) are not in
the ITD. In addition, the ITD changes for each CUT
and consists of the K=2 (assume K is even) snapshots
(indexed in range) to the immediate right of the right
guard cells and K=2 snapshots to the immediate left
of the left guard cells. The CUT has the center index
of the ITD. An adaptive weight is calculated from
the ITD or UTD (depending on whether censoring
is used). This adaptive weight is applied just to the
CUT. After a given CUT is adaptively processed,
the next CUT (i.e., the CUT associated with the
next contiguous range cell) is adaptively processed,
and so on and so on. If SWP is used for the two
censoring algorithms previously discussed, we
designate these algorithms as SWP RCFML/GIP and
SWP RCFML/APR. For CBP, there are no guard cells
and the CUTs are a group of range indices centered
on the center index of the ITD. One or two adaptive
weights are calculated and applied back onto the
CUTs. If CBP is used and one adaptive weight is
calculated, we designate the previously mentioned
censoring adaptive algorithms as CBP RCFML/GIP1,
and CBP RCFML/APR1. A motivation for using CBP
over SWP is the significant computational savings of
computing one (or two) CBP adaptive weights for
a block of CUTs versus computing a distinct SWP
adaptive weight for every CUT in the block.
It was found via simulations that a two-weight

CBP adaptive censoring algorithm yielded
significantly better performance than the single-weight
algorithm. For a single-weight algorithm, the adaptive
weight is calculated from the UTD and applied to the
ITD. For the two-weight algorithm, we calculate one
weight from the ITD and apply it to the UTD; and
calculate another weight from the UTD and apply
it to the CTD. It was found for the single-weight
algorithm that the average output noise power residue
(no targets) associated with the uncensored range
cells was considerably higher than the two-weight
algorithm’s average output noise power residue.
Normally, the cells around a given CUT (and guard
cells about the CUT) are used to establish the local
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constant false alarm rate (CFAR) threshold. Hence a
real target will stand higher above the local noise floor
for the two-weight algorithm than the single-weight
algorithm and thereby be more detectable. If CBP and
the two-weight algorithm are used, we designate the
previously mentioned censoring algorithms as CBP
RCFML/GIP and CBP RCFML/APR (we suppress
the subscript 2 on the GIP and APR for notational
simplicity).
As a further measure of detectability, we use the

Adaptive Coherence Estimate (ACE) [17, 18]. For a
given range index k this is defined as

ACE(k) =
js0R̃¡1k zkj2

(s0R̃¡1k s)(z
0
kR̃

¡1
k zk)

(12)

where R̃k is the estimated covariance matrix for the
kth range index. The ACE test statistic is often used
in cascade with the CFAR test statistic in order to
determine target detectability. The ACE screens
out detections that are not closely coaligned with
the desired steering vector s, such as undernulled
clutter or targets that are in the antenna/Doppler
filter sidelobes. In essence, it is a signal correlation
parameter which is normalized between 0 and 1.
The use of the ACE test statistic is highly

motivated by the two-weight CBP adaptive censoring
algorithm previously discussed. It was found that the
APR of the range indices associated with the censored
range indices (the ones that use the UTD to calculate
the adaptive weight) was noticeably higher than the
uncensored range indices (the ones that use the ITD to
calculate the adaptive weight). Thus in some cases, a
typical CFAR algorithm that averages the power of the
cells about a given CUT might detect censored range
indices that do not contain targets of interest (i.e.,
are not closely coaligned with the desired steering
vector). Hence, a secondary test such as the ACE
is necessary in order to screen these detections. In
addition, the CFAR and ACE thresholds will have
to be set accordingly in order to achieve a given
probability of false alarm.
It was found that the combination of the

two-weight CBP RCFML/APR test statistic and
the ACE test statistic proved to be effective metrics
for discerning real targets in nonhomogeneous
interference. We call the combination of using the
FML algorithm, reiterative censoring, the APR metric,
CBP, the two-weight-method (2 adaptive weights) and
the resultant ACE metric, the FRACTA algorithm
where the first letter of each six components of the
method is used to form the acronym.
A flowchart of the FRACTA algorithm is given

in Fig. 2 (wU and wC denote the weight vectors for
the uncensored and censored cells, respectively).
The FRACTA algorithm operates as follows. APR
censoring is applied to the ITD z1,z2, : : : ,zK such
that the ITD is divided into UTD and CTD sets.

Fig. 2. FRACTA flowchart.

The UTD is used to compute the adaptive weight
vector wC which is applied to the CTD to generate
the censored output power residues. The ITD is used
to compute the adaptive weight vector wU which
is applied to the UTD to generate the uncensored
output power residues. The censored output power
residues are considered as CUTs for the local CFAR
which uses the uncensored output power residues
to estimate the quiescent local noise power level.
The cells passing the CFAR detector are also tested
with an ACE detector that compares the ACE test
statistic of the respective candidate cells with some
predetermined threshold. Cells that pass the ACE
detector are declared as detections.

IV. RESULTS

In this section we first evaluate the effectiveness
of different censoring metrics (e.g. GIP, APR) and
processing configurations (e.g. SWP, CBP) using
the the RLSTAP clutter model and the MCARM
data base. This is done in order to validate the
various processing components of the FRACTA
algorithm. We then apply the FRACTA algorithm
to the KASSPER I challenge data cube. Results
indicating the detectability of the simulated ground
targets are presented. For the results to be shown,
all power levels are normalized with respect to the
internal noise power level which is set equal to 0 dB.
Target powers are given as the integrated power level
(integrated over antenna elements and pulses). Jammer
and clutter power levels are given with respect to a
given antenna element and pulse.

A. Preliminaries for RLSTAP Modeling

In this subsection, representative RLSTAP
simulation results are presented which compare the
performance of the various adaptive algorithms: SWP
FML, SWP RCFML/GIP, SWP RCFML/APR, CBP
FML, CBP RCFML/GIP, CBP RCFML/APR, and
CBP RCFML/APR1. The FML algorithm (using
either SWP or CBP) was chosen as representative
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Fig. 3. Clutter power (dB) versus range index for RLSTAP data
base.

of the variety of rank reduction techniques (e.g.,
LSMI, eigenprojection). The proposed algorithms
were evaluated using a software clutter model called
RLSTAP developed under a contract by the Air Force
Research Laboratory (AFRL) in Rome, NY [13]. This
software is a high fidelity airborne clutter generation
model which produces site-specific airborne clutter
radar data for the areas where the USGS DTED
and LULC data are available. For this work, the
nonhomogeneous terrain at White Sands, NM was
chosen to provide representative nonhomogeneous
land clutter for the more stressing radar scenarios
where STAP is expected to be required for good
performance. A plot of the clutter power (normalized
to the internal power level) versus range index is
shown in Fig. 3. From this plot, it is clear that the
clutter power is nonhomogeneous and varies from
15—63 dB. The simulated radar was flying at 7000 m
altitude at 250 m/s going true north, while operating at
a UHF frequency of 435 MHz and transmitting a peak
power of 140 kW. The 14 antenna array elements
were spaced just less than a half-wavelength apart
at 0.3331 m (0.97 half-wavelength spacing), and the
antenna boresight was pointed exactly northwest, i.e.,
45 deg from the direction of the platform velocity
vector so as to point directly towards a nonfluctuating
10 square meter (radar cross section) moving target.
The simulated airborne target velocity components
were 100 m/s south and 100 m/s east (flying directly
towards the radar along boresight), at an altitude of
2500 m, and at a distance of 70.7 km. The crab angle
of the linear array was 315±. The pulse repetition
frequency (PRF) was 625 Hz and there are 8 pulses
per coherent processing interval (CPI). There are 829
range cells in the CPI to provide sample support for
the adaptive processing.
We present plots of the APR or output power

residue (after adaptive processing) versus the range
index of the data for the various adaptive processing

methods. For the window of range indices shown
on the plots, the interference consists of airborne
clutter, barrage jamming, and internal noise at all
ranges. In addition there are range-limited target(s)
at various powers, range extents, and Doppler phases.
The target(s) are always centered on the main beam
of the radar antenna pattern. In previous studies
[3, 23—25], it has been found that outliers that are
almost coaligned with the desired signal vector cause
the most significant degradation in adaptive processing
performance. Hence, if the target(s) themselves are
in the training data, these returns look like outliers.
In fact, our outlier modeling will consist mostly of
target-like returns in the ITD.
For the robust algorithms presented and evaluated,

we arbitrarily chose the number of data snapshots to
be censored (Kout). It is clear that a more effective
procedure would be to develop an automatic stopping
rule which estimates the number of outliers K̂out and
sets the number of censored snapshots to K̂out plus an
integer constant. This constant is chosen to ensure that
with high probability (to be chosen) Kout is greater
than the true number of outliers. The development of
an effective stopping rule is left as a topic of future
research.
For the representative RLSTAP performance

plots to be shown, the snapshot length is (number of
antenna elements)£(number of pulses)= 14£ 8 = 112.
It was found via simulation (not shown) that about
80 snapshots in the ITD was sufficient in order to
obtain good clutter and jamming rejection for the
algorithms to be compared for the no outliers case.
Targets, jamming, and internal noise are added to the
RLSTAP clutter data base. The clutter power level
(normalized to the internal noise level) for the various
range indices is indicated in Fig. 3. The simulated
target(s) have a Doppler phase shift of 171± and the
¯-parameter [26] (the number of half-wavelength
spacings traversed by the airborne radar platform
during a PRI) is 2.73. The ¯-parameter is directly
related to the effective rank of the clutter covariance
matrix. Finally, the number of sample snapshots
censored from the ITD, Kout, is set equal to 20. This
number was chosen to be slightly greater than the
maximum number of added outliers in the ITD. The
resultant number of snapshots in the CTD will be
60 which is still sufficient in order to attain good
interference rejection in the presence of no outliers.

B. RLSTAP SWP Results

Performance results for SWP are shown in
Figs. 4—7. For the SWP the number of guard cells
used is six (three on each side of the CUT). For these
figures (and Figs. 4—21 except Fig. 19), there are two
30 dB jammers (along with the other interference). In
Figs. 4 and 5, there is a single 35 dB target centered
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Fig. 4. APR versus range index for SWP FML and SWP
RCFML/GIP algorithms, 1 target, RLSTAP.

Fig. 5. APR versus range index for SWP FML and SWP
RCFML/APR algorithms, 1 target, RLSTAP.

at range index 487 with range extent equal to 7. The
relative performances of the SWP RCFML/GIP (we
suppress the SWP in the figure legend) versus the
FML and the SWP RCFML/APR versus the FML
can be viewed in Figs. 4 and 5, respectively. For
this single target example, it is clear that the FML
outperforms the censoring algorithms and that the
SWP RCFML/GIP is slightly better than the SWP
RCFML/APR.
We now examine the effect of two spatially distinct

targets on the adaptive algorithm’s performance. For
Figs. 6 and 7, the set-up is identical to Figs. 4 and 5
except a second target of power 30 dB is centered a
range index 480 and has range extent equal to 3. From
Figs. 6 and 7, it is seen that the FML algorithm’s
performance has significantly degraded (relative
to the one target case). Furthermore, in terms of
target detection, the SWP RCFML/APR reveals the
range extent of the second target whereas the SWP
RCFML/GIP does not. However, the range sidelobes

Fig. 6. APR versus range index for SWP FML and SWP
RCFML/GIP algorithms, 2 targets, RLSTAP.

Fig. 7. APR versus range index for SWP FML and SWP
RCFML/APR algorithms, 2 targets, RLSTAP.

(where targets are not present) are higher (by about
5 dB) for the SWP RCFML/APR than the SWP
RCFML/GIP.

C. RLSTAP CBP Results

For the rest of the RLSTAP figures, we consider
exclusively CBP which was discussed in Section III.
Thus there are no guard cells and all target returns are
in the ITD. Besides showing the APR measure in the
figures, we plot the ACE*10 metric and show which
range indices are censored. This is accomplished by
plotting the indicator function, CENSOR (k), where
CENSOR (k) = 5, if the snapshot associated with
range index k is censored, and CENSOR (k) = 0, if
it is not censored.
For Figs. 8—21 (except Fig. 12), two-weight

adaptive censoring algorithms are used (i.e., CBP
RCFML/APR or CBP RCFML/GIP). For notational
simplicity, we suppress the CBP designation in the
figure legend. For Figs. 8 and 9, we use the same

936 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 3 JULY 2004



Fig. 8. APR versus range index for CBP FML and CBP
RCFML/GIP algorithms, 1 target, RLSTAP.

Fig. 9. APR versus range index for the CBP FML and CBP
RCFML/APR algorithms, 1 target, RLSTAP.

target and interference scenario as Figs. 4 and 5.
There is one target centered at range index 487 and
it has extent equal to 7. From these figures, it is clear
that the adaptive censoring algorithms are superior
to the FML. Also comparing Figs. 8 and 9 with
Figs. 4 and 5, CBP is superior to SWP. It is seen from
these figures as noted previously, that the censored
data indices’ APRs are noticeably higher than the
noncensored data indices’ APRs. However, if these
were detected via a local cell-averaging CFAR test
(where censored samples are not included in the
averaging which is used to estimate the local power
level), then the ACE test (as indicated by the ACE¤10
metric in the figures), would most likely screen out
these detections.
For Figs. 10 and 11, we use the same target

and interference as Figs. 6 and 7. There are two
targets. It is clear from these two figures that the
CBP RCFML/APR algorithm is superior to the CBP
RCFML/GIP. In fact for a number of simulation

Fig. 10. APR versus range index for CBP FML and CBP
RCFML/GIP algorithms, 2 targets, RLSTAP.

Fig. 11. APR versus range index for CBP FML and CBP
RCFML/APR algorithms, 2 targets, RLSTAP.

results (not shown), the CBP RCFML/APR was much
more robust than the CBP RCFML/GIP. A possible
explanation for the discrimination superiority of
the APR metric to the GIP metric can be found by
examining their forms given by Eqs. (5) and (6).
If we define uk ´ R̃¡1=2zk and s0 ´ R̃¡1=2s, then for
the GIP, the test statistic equals ju0kukj2 which is a
noncoherent integrator form, and for the APR, the test
statistic equals js00ukj2 which is a coherent integrator
form. From detection theory (see e.g. [19, p. 391]),
we know under certain conditions, for a given false
alarm probability and signal-to-noise ratio that the
detection probability for a coherent integrator test
statistic is greater than that of a noncoherent integrator
test statistic. This would imply that the APR metric
is better at detecting/censoring outliers than the GIP
metric.
For Fig. 12, the target and interference scenario is

identical to Fig. 11, except we use the single-weight
censoring algorithm, CBP RCFML/APR1. From
this figure (and other simulations not shown), it
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Fig. 12. APR versus range index for CBP FML and CBP
RCFML/APR1 (single weight) algorithms, 2 targets, RLSTAP.

Fig. 13. APR versus range index for CBP FML and CBP
RCFML/APR algorithms. Two targets located about range index

170, RLSTAP.

is seen that the range sidelobe noise floor rises
significantly (10 dB) when a single-weight algorithm
is used. Hence the two-weight adaptive censoring
algorithm has markedly better performance than the
single-weight algorithm.
For Fig. 13, we show performance results for

when there are two targets, two jammers, and the
targets are located at range indices 164 and 171. Both
targets have range extent equal to 3. Referring to
Fig. 3, it is seen that the instantaneous clutter power
varies from 45 dB to 65 dB (i.e., the power level is
large and highly nonhomogeneous) across the 80
range indices that are used in the ITD. From Fig. 13,
it is seen that the two targets are easily discernible.
For the results shown in Fig. 8—13, the ITD was

centered at range index 487. Hence the ITD was
roughly centered about where the two targets were
placed for the target scenarios presented. We wish
to determine the effects on performance when the
center index of ITD is considerably different than

Fig. 14. APR versus range index for CBP FML and CBP
RCFML/APR algorithms. Two targets. Adaptive weight calculation

range index offset = 40, RLSTAP.

Fig. 15. APR versus range index for CBP FML and CBP
RCFML/APR algorithms. Two targets. Adaptive weight calculation

range index offset = 30, RLSTAP.

the range indices where targets and/or outliers reside.
For Figs. 14—16, the range index where the ITD is
centered is varied by an offset from range index 487.
On the figures this is indicated by the parameter,
offset. For Figs. 14, 15, and 16 the offset is 40, 30,
and 20, respectively (e.g. an offset = 40 indicates that
the ITD is centered at range index, 487¡ 40 = 447),
and the target/interference scenario is identical to
Fig. 9. An offset of 40 places the target centered at
range index 487 at the very edge of the data indices
contained in the ITD. From Fig. 14 (offset = 40),
it is clear that performance degrades significantly;
the target at range index 487 is discernable but its
extent is not. The target at range index 480 is no
longer discernable. From Fig. 15 (offset = 30), the
two targets and their range extent is discernable but
the range sidelobe level is significantly degraded (as
compared with Fig. 9). For Fig. 16 (offset = 20), the
performance is very close to when the offset = 0. Thus
for this representative example, it would seem that
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Fig. 16. APR versus range index for CBP FML and CBP
RCFML/APR algorithms. Two targets. Adaptive weight calculation

range index offset = 20, RLSTAP.

Fig. 17. APR versus range index for CBP FML and CBP
RCFML algorithms. Two targets; target powers = (30 dB,45 dB),

RLSTAP.

the CUT’s block length (i.e., the number of range
indices to which the two adaptive weights derived
from a single ITD would be applied) is 40. Thus for a
contiguous set of range indices being processed, there
would be a 50% overlap in the indices associated with
the successive ITDs. As a result the CBP adaptive
censoring methods would require 1/40th of the
computations used by the SWP adaptive censoring
methods for the interference scenarios presented.
For Figs. 17 and 18, the target/interference

scenario is identical to Fig. 9 (2 targets) except the
power of the target at range index 480 is varied:
45 dB in Fig. 17 and 15 dB in Fig. 18. From the two
figures, the targets are readily discernable using the
APR and ACE metrics.
For Fig. 19, the target/interference scenarios is

identical to Fig. 9 (2 targets) except the number
of 30 dB sidelobe jammers is four. Performance is
similar to the two jammer case shown in Fig. 19.

Fig. 18. APR versus range index for CBP/FML and CBP
RCFML/APR algorithms. Two targets; target

powers = (30 dB,15 dB), RLSTAP.

Fig. 19. APR versus range index for CBP FML and CBP
RCFML/APR algorithms. Two targets. Four jammers, RLSTAP.

For Figs. 20 and 21, the target/interference
scenario is identical to Fig. 9 (2 targets) except, we
have injected 30 dB target/outliers every fifth range
index. All target/outliers are at the center of the
radar antenna main beam. For Fig. 20, the injected
targets/outliers Doppler phase is random; each chosen
from a uniform distribution on: (¡40±,40±). For
this figure, it is seen that the injected target/outliers
are not discernable using the combined APR/ACE
metrics. At some range indices where the off-Doppler
target/outliers reside, the APR metric is high when
compared with the surrounding range indices, but the
ACE metric is very small indicating the absence of
a target sharing the desired signal’s steering vector.
For Fig. 21, the injected targets’ (outliers) Dopplers
is random, each chosen from a uniform distribution:
(170:9±,171:1±). Hence the injected targets/outliers’
steering vector is close to the desired signal’s. From
Fig. 21, it is seen that all of the injected target/outliers
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TABLE I
Summary of Results using RLSTAP Data Base Against Various Configurations/Scenarios

Fig. 20. APR versus range index for CBP FML and CBP
RCFML/APR algorithms. Two targets and mismatched targets
(§40± Doppler) placed every fifth range index, RLSTAP.

and the two targets located at cell indices 487 and 480
are discernable by the APR and ACE metrics.
A summary of results using the RLSTAP data

base against various configurations and interference
scenarios is given in Table I. The metric, peak target
power to range average sidelobe power (P/S), is given
in the table as a measure of processor configuration
performance. In addition the ACE metric is shown.
The higher these performance metrics, the better
that a processing configuration is performing. For
comparison, the FML P/S for a given setup is

Fig. 21. APR versus range index for CBP FML and CBP
RCFML/APR algorithms. Two targets and matched targets
(171± Doppler) placed every fifth range cell, RLSTAP.

shown. The results from this table clearly highlight
the benefits of using the algorithmic components
embodied by the FRACTA algorithm.

D. MCARM Results

In this subsection, results related to evaluating
components of the FRACTA algorithm against
the MCARM clutter data base are presented. The
MCARM airborne radar data was collected on a BAC
1-11 jet aircraft with a sidemounted planar array

940 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 40, NO. 3 JULY 2004



Fig. 22. Clutter power (dB) versus range index for MCARM
data base.

operating at L-band with a linear frequency modulated
(LFM) pulsed waveform. It provides 0:8 ¹s range
resolution (i.e., 120 m) using a 0.8 MHz receiver
bandwidth and the transmit pattern beamwidth is
7.5 deg. The array is composed of 2 rows of 11
elements each. Each vertical pair of elements is
joined by a fixed network that acts to sharpen the
elevation beamwidth providing a nominal amount
of vertical array gain and the vertical pattern is
pointed (mechanically) down (i.e., ¡5:4 deg from
level flight). The output of 11 element pairs (i.e.,
11 subarrays spaced 1/2 wavelength apart) in
azimuth are each connected to separate receivers,
balanced, superheterodyned, and sampled at a 5 MHz
sampling rate in the IF stage. The PRF is 1984 Hz
corresponding to 630 unambiguous range cells out
to 40.82 nmi. Data was taken over the Delmarva
Peninsula near the eastern shore of Maryland in
1995—1996 timeframe. The MCARM jet flew south
while the transmit beam pointed east towards the
eastern shore of Maryland and returned ground clutter
and any moving targets of opportunity. The MCARM
jet had an altitude of 7600 ft with a ground speed
of 427.7 knots. The roll, pitch, and crab angles were
¡7:5 deg, 4.13 deg, and 4.7 deg, respectively, where
the crab angle is defined to be the angle between the
velocity vector of the radar antenna array and the
antenna array axis.
The clutter power versus range profile for the

MCARM data is shown in Fig. 22. The first 150
range indices are contaminated with transmit power
leakage and are not used. Our interference model
consists solely of the MCARM data (no jamming
was injected). Targets are added to the MCARM
clutter data base. Results are shown for three cases:
two 20 dB range spread targets (each over 3 range
indices) are injected at 1) range indices 293, 300, 2)
range indices 393, 400, and 3) range indices 493, 500.

These cases put multiple targets in the middle of the
Delmarva (case 1) and either side of the Delaware
River (case 2 and 3, range indices 400—475 are
associated with the Delaware River). The latter cases
are associated with processing across the land/river
interface which results in nonhomogenous clutter
samples.
For the representative performance plots to be

shown, the snapshot length is (number of antenna
elements)£(no. pulse) = 11£ 8 = 88. It was found
via simulation (not shown) that about 120 snapshots
in the ITD was sufficient in order to obtain good
clutter and jamming rejection for the algorithms to
be compared when no outliers were present. The
simulated targets have a Doppler phase shift of 90±.
Finally, the number of sample snapshots censored
from the ITD, Kout, is set equal to 20.
Results for the three cases are shown in

Figs. 23—25. In these figures, APR is shown for the
two processing configurations: CBP FML and CBP
RCFML/APR. In addition the censoring indicator,
CENSOR, and the ACE¤10 metric is shown for the
CBP and RCFML/APR. Clearly the output residue
curves and the ACE¤10 metric indicate the presence
and range extent of the injected targets when using the
CBP RCFML/ACE processing configurations for the
three cases.

E. Results for KASSPER Modeling

In this subsection, simulation results are presented
for the KASSPER I challenge data cube when
employing the standard SWP FML algorithm and
the FRACTA algorithm. The KASSPER I data cube
is simulated high-fidelity airborne radar data for
the nonhomogeneous terrain near Olancha, CA
that consists of mountains and deserts. A plot of
the clutter power versus range index is shown in
Fig. 26 in which the peaks and troughs are most
likely a result of shadowing due to mountains. The
simulated radar was flying at 3000 m altitude at
100 m/s going due east (270± measured from true
north) with a 3± crab angle. The radar was operating
at 1240 MHz with a peak power of 15 kW. The 11
(virtual) antenna array elements were spaced slightly
less than a half-wavelength apart at 0.1092 m (0.9028
half-wavelength spacing), and the antenna boresight
was pointed at 177±. The PRF was 1984 Hz and 32
pulses per CPI were generated. There were 1000
range cells of data generated covering 35 km to 50 km.
There were 268 ground traffic targets within the

beam of the radar. The targets were classified into
two general classes: military-like target clusters and
background traffic. The background traffic were
placed randomly on the existing roads. The target
clusters were densely spaced groups of vehicles
placed on several chosen roadways. Both classes
of targets have a complex scattering amplitude
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Fig. 23. APR versus range index for CBP FML and CBP
RCFML/APR algorithms, 2 targets, targets at 293 and 300,

MCARM.

Fig. 24. APR versus range index for CBP FML and CBP
RCFML/APR algortithms, targets at 393 and 400, MCARM.

Fig. 25. APR versus range index for CBP FML and CBP
RCFML/APR algorithms, targets at 493 and 500 MCARM.

that is drawn from a zero-mean complex Gaussian
distribution with variance equal to either 5 or
15 dBsm average radar cross section. Furthermore,

the KASSPER scenario contains stationary man-made
clutter discretes such as buildings and towers
(TV/radio) that further compound the nonhomogeneity
of the clutter returns.
Each snapshot has 11 antenna elements £32

pulses= 352. We designate the size of the ITD blocks
to be K = 150 snapshots from which Kout = 20 are
censored. The resulting number of snapshots, 130,
is slightly more than twice the number of dominant
eigenvalues of the sample covariance matrix for
the KASSPER model and therefore is sufficient
to attain good interference rejection [16, 27, 28].
Detection performance is based upon the number
of correct detections for a single false alarm which
results in a estimated probability of false alarm of
1=(32£1000) = 3:125£ 10¡5.
Performance results for FRACTA when applied

to the KASSPER challenge data cube are shown in
Fig. 27 which plots the true targets (black x) and the
detections (gray bar) as a function of Doppler bin
(in m/s) and range (in km) (the width of the gray
bar is 17 m/s which is the resolution of a Doppler
filter). For a single false alarm the FRACTA algorithm
correctly detected 154 out of the 268 targets present.
This compared well with the 192 out of 268 detected
when clairvoyant knowledge of the clutter covariance
matrices are available and was considerably better
than the standard SWP FML processor which detected
11 of the 268 targets (again, one false alarm). When
the ACE detection was cascaded with the SWP FML
detector, 65 of the 268 targets were detected.

V. CONCLUSIONS

An effective method was developed for selecting
sample snapshots for the training data used
to compute the adaptive weights for an AMF;
specifically a STAP airborne radar configuration
was considered. In addition, a new systematic robust
adaptive algorithm was presented and evaluated
against interference scenarios consisting of jamming,
nonhomogeneous airborne clutter internal system
noise, and outliers (which could take the form of
targets themselves). For culling the training data,
the GIP and APR were examined. In addition two
types of data processing methods were considered and
evaluated: SWP and CBP. For SWP, a distinct adaptive
weight was calculated for each CUT in a contiguous
set of range cells. For one configuration of CBP, two
distinct weights were calculated for a contiguous set
of CUTs. For the CBP, the CUTs were in the initial
training data and there are no guard cells associated
with the CUT as there would be for SWP. Initial
studies indicated that the combination of using the
FML algorithm, reiterative censoring, the APR metric,
CBP, the two-weight method, and the ACE metric
(we call this the FRACTA algorithm) provides a basis
for effective detection of targets in nonhomogeneous
interference.
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Fig. 26. Clutter power (dB) versus range index for KASSPER I data cube.

Fig. 27. Detection performance of FRACTA, KASSPER I.

The FRACTA algorithm arose from empirical
studies of several performance metrics and processing
configurations. The clutter was generated using three
mutually exclusive data bases: RLSTAP, MCARM,
and KASSPER. The RLSTAP and MCARM data
were employed in different scenarios to evaluate
the different performance metrics and processing
configurations and thereby validate the combination of
methods denoted as the FRACTA algorithm. The total
FRACTA algorithm was used on the KASSPER I data
cube to evaluate detection performance. For this data,
it was found that FRACTA detected 154 out of 268
targets with one false alarm (PF ¼ 3£ 10¡5) whereas
the FML algorithm with SWP detected 11 for the
same PF . The clarvoyant processor (where each range

cell’s covariance matrix is assumed known) detected
192 targets with one false alarm.
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