
Fast and Efficient Network Service Embedding
Method with Adaptive Offloading to the Edge

Balázs Németh1, Márk Szalay1, János Dóka1, Matthias Rost4, Stefan Schmid5, László Toka1,3, Balázs Sonkoly1,2
1Budapest University of Technology and Economics, 2MTA-BME Network Softwarization Research Group,
3MTA-BME Information Systems Research Group, 4Technische Universität Berlin, 5University of Vienna

e-mails: {nemethb,szalay,doka.janos,toka,sonkoly}@tmit.bme.hu, mrost@inet.tu-berlin.de, stefan schmid@univie.ac.at

Abstract—Next generation networks and applications have
recently drawn the attention of many researchers in both
academia and industry. The plethora of service orchestration,
embedding and scheduling solutions being developed indicates
that efficient resource utilization in the cloud and edge/fog
architecture is of crucial importance in order to exploit the
great economic potential of this infrastructure. In this paper
we propose a novel service orchestration approach that aims for
speed and quality in terms of service provisioning: our embedding
algorithm instantly deploys end-to-end delay-constrained service
graphs while regularly offloads the most burdened parts of the
infrastructure applying a cost-aware VNF migration strategy. In
this sense we propose a hybrid orchestration approach, which
unites the advantages of online heuristic and offline optimizing
service orchestration methods, with the goal of obtaining a
system design that provides fast service placement decisions
and efficient long-term operation. By an exhaustive evaluation
of our orchestration system on core, cloud and edge network
topologies, we show its benefits in efficiency and the collateral
cost of migrations.

I. INTRODUCTION

Clouds and cloud computing were the enablers of several
novel applications and network services during the last decade.
However, the “networking revolution” mainly driven by 5G
and emerging applications with extreme requirements have
posed new challenges on clouds and networked systems. On
the one hand, strict latency bounds cannot be guaranteed be-
tween end devices and cloud resources in all scenarios due to
geographic distribution. On the other hand, a number of novel
services, such as IoT applications, require mass machine-to-
machine communication transmitting a large amount of data
between edge devices and the cloud. Fog computing is a
promising solution recently proposed to address these issues.
The key concept is to add compute resources to the edge of
the network being closer to the customers or end devices in
terms of latency. By these means, end devices can offload
computational tasks to edge servers instead of using resources
of data centers or their own. In addition, service elements
traditionally running in the cloud can also be moved to the
fog resulting in lower delays and in reduced network load.

In order to exploit the fog (cloud and edge) infrastructure
efficiently, a novel resource orchestration design is indispens-
able. The orchestrator is responsible for computing the “best”
placement of service elements meeting the given requirements,
constraints or policies. More specifically, it assigns the Virtual
Network Functions (VNFs) composing the service to compute
resources (from the cloud or from available edge domains)
and also allocates paths between connected VNFs. As future

systems should cope with a large number of incoming requests
and the underlying infrastructure topologies can be complex,
the performance characteristics of the mapping (or embedding)
process is crucial with respect to runtime properties and the
quality of embeddings it calculates. Furthermore, the requests
arrive and are deployed one after another which can result in
a sub-optimal global system state after a long time of opera-
tion without further considerations. To mitigate this problem,
periodical re-optimization is needed. More precisely, the or-
chestrator recalculates the placement of each (or only selected)
service components whenever certain conditions are met, thus
triggering a partial redeployment. In fact, the corresponding
reconfigurations require the migration of certain VNFs and
updating routes of network paths, hence posing challenges
when intending to avoid service disruptions. The cost of
the migrations highly depends on the service characteristics
(stateless or stateful VNF) and the underlying technologies.

In this paper, we propose a novel resource orchestration
mechanism which can efficiently use compute and network
resources in emerging fog computing environments. The core
of the orchestrator is our hybrid embedding algorithm that
combines the benefits of an online heuristic method and an
offline, ILP-based optimization approach. We evaluate our
algorithm in several network scenarios and topologies from
different aspects, including the impact of offloading, i.e., VNF
migrations. Our analysis reveals significant advantages of our
design in certain scenarios and a behavior similar to the online
approach in other special cases.

The rest of the paper is organized as follows. In Sec. II,
a brief summary on the related work is given. We present
our service and resource models and the service embedding
problem in Sec. III. Sec. IV is devoted to our orchestration
algorithms. A detailed numerical evaluation of the proposed
methods is presented in Sec. V. Sec. VI draws the conclusion.

II. RELATED WORK

Placing services in the cloud and in the fog or edge
is analogous with the Virtual Network Embedding (VNE)
problem that has been studied intensively in the last decade.
As it is known to be NP-hard [1], finding the optimal solution
within reasonable time is not feasible in case of realistically
sized infrastructure topologies and complex service requests.
The body of research around VNE is vast: many papers present
solutions either with exact optimum for limited scale scenarios,



or close-to-optimal results achieved by heuristic algorithms. A
summary of solutions to the VNE problem is given in [2].

Selected research works that belong to the first group are
[3] and [4]: in the former the authors use Integer Linear
Programming (ILP) to solve the VNE problem for minimizing
the cost of embedding in terms of edge costs while maximizing
the acceptance ratio; in the latter the authors propose a MIP
(Mixed ILP) formulation for reconfiguring existing mapping
by enabling migrations. The second group, i.e., approaches
that solve the VNE problem with heuristic algorithms, also
shows a colorful palette of ideas. The authors of [5] propose a
hybrid algorithm, which first solves the LP problem that is a
relaxed version of the original ILP, then use deterministic and
randomized rounding techniques on the solution to approxi-
mate the results of the original MIP. Other works perform the
mapping in two steps: a node and an edge mapping stage.
A decomposing mapping algorithm proposed in [6] aims to
minimize the mapping cost by making a selection of the
available decompositions during the node mapping stage.

Another dimension along which the related works can be
grouped is whether reconfigurations are considered or not.
One of the first works that applied reconfigurations in online
embedding algorithms is [7]. Every time the embedding of
a service fails, a greedy reconfiguration algorithm tries to
migrate one virtual node with its incident virtual edges to
make room for the failed request. Our work differs from this
one, because optimizations are run in the background and
considers reconfiguration of several request graphs at once.
In the realm of embedding virtual clusters in data centers,
migrations of virtual machines were also studied to enable
upgrades of already deployed services by Fuerst et al. [8]:
given the specific star-shape structure of the virtual cluster
requests, the authors gave an algorithm that finds the minimal
resource embedding under any number of allowed migrations.

Authors of [4] argue that re-embeddings can be useful if
the deployment of services were requested at short notice
and initially placed heuristically. However, the authors only
present super polynomial-time algorithms: they describe a
MIP to compute optimal embeddings for different objective
functions with cost-aware migrations. A more focused work
[9] tackles the embedding of virtual data centers into physical
data centers, also allowing for migrations, and specifically
maximizing the total revenue, while minimizing the total
energy consumption. In our design we aim for a more flexible
algorithm that can be widely customized.

Standardization organizations provide reference architec-
tures and their respective implementations, which provide
frameworks for real life deployments of such orchestration
systems, one example is ETSI’s Open Source MANO [10].

To the best of our knowledge, we are the first to propose
and evaluate an orchestration system which composes self-
contained algorithms of different approaches on a service and
resource model that allows for delay-constrained specification
in contrast to the general VNE model.

Fig. 1. An example for the Service Graph Embedding problem.

III. MODEL AND PROBLEM DEFINITION

A. Service and Resource Model

We use the “Big Switch with Big Software” (BiSBiS)
model to represent the physical network, which was originally
introduced by the EU-funded FP7 UNIFY project(http://fp7-
unify.eu). Formally, the network is represented by the resource
graph R = (VR, ER). A single node in this network may
represent a single physical server or a whole data center. We
denote all network function (NF) types by T , e.g. firewall,
deep packet inspector, general purpose server are depicted
by T = {FW,DPI, x86-server} respectively. Additionally, we
assume that T includes type identifiers for Service Access
Points (SAPs), i.e., resource nodes at which flow may enter
or leave the network, such that only the node SAPk ∈ VR
supports the type SAPk ∈ T .

Furthermore, considering an arbitrary set of node resources
R, e.g. R = {CPU,RAM,Disk}, each node u ∈ VR offers
a specific capacity cR(u, r) of each resource r ∈ R. Each
abstract link (u, v) ∈ ER is attributed with its bandwidth
cR(u, v) and its latency lR(u, v) (cf. Fig. 1).

Services are similarly described by a graph abstraction,
namely the service graph S = (VS , ES). Each node i ∈ VS
is attributed a specific function type τS(i) ∈ T with specific
resource demands. Mapping the function i on a resource node
u requires dS(i, u, r) many ‘units’ of resource r. Any edge
(i, j) ∈ ES of the service graph is attributed with a bandwidth
requirement dS(i, j). Furthermore, latency constraints can be
defined for services along chains. Each service comes with
a set CS of tuples (cp, lp), where cp denotes a path in the
service graph and lp denotes the maximal allowed latency on
this path. Notations are summarized in Tab. I.

B. The Service Embedding Problem

An illustrative example of the service graph embedding
problem is shown in Fig. 1. A possible solution of a simple

TABLE I
MATHEMATICAL NOTATIONS USED IN THIS PAPER.

Notation Description
VG, EG Vertices and edges of graph G
PG ⊆ P(EG) Simple paths of graph G
T , R Set of NF and resource types
τR : VR 7→ P(T ) Supported NF types
τS : VS 7→ T Function type of an NF

dS : VS × VR ×R∪ ES 7→ R≥0
Resource demands of the service
graph (both nodes and links)

cR : VR ×R∪ ER 7→ R≥0 Capacities of resource graph
lR : ER 7→ R≥0 Delay of links
CS ⊆ PS × R≥0 Path latency constraints of services

p : VS × VR ∪ ES 7→ R≥0
Cost (price) of mapping nodes
and of using bandwidth



service graph mapping onto the network of resource nodes is
depicted with a given path requirement between two SAPs.
Each NF must be mapped to a single resource node and
each service graph link must be mapped to a simple path
of the substrate network. A feasible embedding must respect
the semantics, capacity requirements and QoS constraints of
the service graph. A mathematically exact formulation of the
problem is explained in Sec. IV-A.

IV. OUR ORCHESTRATION ALGORITHMS

Given the informal problem statement above, we first
introduce the Mixed-Integer Programs (MIP) used for (i)
reconfiguring existing embeddings and (ii) computing optimal
offline solutions. Then we present the greedy heuristics used
for serving requests in an online fashion, third we propose the
hybrid algorithm that incorporates (optimal) reconfigurations.
The source code of the presented algorithms are available
(https://github.com/hsnlab/mapping).

A. Mixed-Integer Program for Offline Optimization

We first explain how the Mixed-Integer Programming for-
mulation computes embeddings (cf. MIP 1 and Tab. II) and
afterwards present the objective of the optimization.

As discussed above, the task is to find a mapping of the ser-
vice graph S = (VS , ES) to the resource graph R = (VR, ER).
To represent the node and link mappings, binary variables
xiu ∈ 0, 1 and yi,ju,v ∈ 0, 1 are employed: xiu = 1 indicates that
service node i is mapped on resource node u and yi,ju,v = 1
indicates that the resource link (u, v) ∈ ER is used to establish
the service link (i, j) ∈ ES .

Mixed-Integer Program 1: Service Embeddings

min


α ·
∑

(u,v)∈ER
au,v · p(u, v) +

β ·
∑
i∈VS ,u∈VR

xiu · p(i, u) +

γ · (1− Umin
VR

)

 (1)

∑
u∈VR,τS(i)∈τR(u)

xiu= 1 ∀i ∈ VS (2)∑
u∈VR,τS(i)/∈τR(u)

xiu= 0 ∀i ∈ VS (3)∑
(u,v)∈δ+u

yi,ju,v −
∑

(v,u)∈δ−u

yi,jv,u= xiu − xju ∀(i, j) ∈ ES , u ∈ VR (4)

∑
i∈VS

xiu · dS(i, u, r)= au,r ∀u ∈ VR, r ∈ R (5)∑
(i,j)∈ES

yi,ju,v · dS(i, j)= au,v ∀(u, v) ∈ ER (6)

au,r/cR(u, r)≥Umin
VR

∀u ∈ VR, r ∈ R (7)

au,r≤ cR(u, r) ∀u ∈ VR, r ∈ R (8)

au,v≤ cR(u, v) ∀(u, v) ∈ ER (9)∑
(i,j)∈cp,(u,v)∈ER

yi,ju,v · lR(u, v)≤ lp ∀(cp, lp) ∈ CS (10)

TABLE II
MATHEMATICAL NOTATIONS USED IN MIP FORMULATION.

xiu ∈ {0, 1} Variable indicating mapping of i ∈ VS on u ∈ VR
yi,ju,v ∈ {0, 1} Variable indicating the mapping of (i, j) ∈ ES on (i, j) ∈ ES

au,r ∈ R≥0 Variable equaling total node allocations for u ∈ VR and r ∈ R
au,v ∈ R≥0 Variable equaling total bandwidth allocations on (u, v) ∈ ER

Umin
VR
∈ [0, 1] Variable indicating the minimum node utilization

α, β, γ Coefficients for normalizing and weighting objective function
pi,u ∈ R≥0 Price for placing service node i ∈ VS on resource node u ∈ VR
pu,v ∈ R≥0 Price for using bandwidth along resource edge (u, v) ∈ ER

Constraints (2) and (3) enforce that each service graph node
is mapped onto a suitable resource graph node while forbid-
ding mappings to nodes that do not support the respective
function type. We note that when a service node is attributed
with the type SAPk, these constraint force this node to be
mapped on the respective resource node SAPk ∈ VR.

Constraint (4) induces a unit-flow for each service link
(i, j) ∈ ES using the flow variables yi,ju,v ∈ {0, 1} for all re-
source edges (u, v) ∈ ER. The left-hand side of Constraint (4)
states flow preservation, while the right-hand side enforces the
sending of a unit flow from the node onto which the tail node
i is mapped while the node onto which the head j is mapped
must receive a unit of flow. Note that, in the case that both i
and j are mapped to the same node u ∈ VR, then no network
path needs to be established in the resource graph.

Constraints (5) and (6) compute the allocations induced by
the node and link mapping, respectively, and Constraints (8)
and (9) enforce that these allocations are upper bounded by
the capacities of the respective resource graph elements. In
particular, considering a resource node u ∈ VR, Constraint (5)
sums up all the allocations induced by the mapping of service
nodes to u, yielding the variable au,r ≥ 0 for all resources
r ∈ R. In turn, Constraint (8) bounds this (total) allocation
by the respective capacity cR(u, r). Capacity constraints for
the link mappings are enforced in the similar fashion using
Constraints (6) and (9) while only a single resource, namely
the bandwidth, is considered.

To enforce latency constraints for the set of chains CS Con-
straint (10) is used. For each tuple (cp, lp) ∈ CS , the sum
of delays of all resource edges used by any of the service
links is computed (left-hand side) and is upper bounded by
the maximum allowed latency lp (right-hand side).

Having described how MIP 1 computes valid embeddings of
services, we now turn to its objective. The first two summands
of the objective describe costs for resource allocations on
edges and nodes respectively, while the third is used for load
balancing. Each of these summands is multiplied by a specific
scaling factor α, β, γ ≥ 0, which is used to (i) normalize
and (ii) weight the different components of the objective.
The first summand expresses costs for using bandwidth by
employing prices p(u, v) ≥ 0 which can be set by the provider
according to the importance of the respective links. The second
summand expresses costs for mapping a service node i ∈ VS
onto a resource node u ∈ VR using prices p(i, u) ≥ 0. In
particular, migration costs of functions can be modeled by
setting p(i, u) = 0, if i was previously mapped on node u,



Fig. 2. Operation of the hybrid algorithm with the strategic decision points.

and setting p(i, u) > 0 if this was not the case.
Lastly, for the load balancing summand, we use one addi-

tional variable Umin
VR
≥ 0, which shall denote the minimum

(node) resource load among all resource nodes and resource
types. Constraint (7) upper bounds this variable by the allo-
cations au,r of resource r ∈ R on node u ∈ VR divided
by the respective capacity. Hence, Umin

VR
must be less than

the (relative) load with respect to any node and resource.
Hence, by minimizing (1 − Umin

VR
), the minimum load shall

be increased, leading to distributing load more evenly.

B. Heuristic Online Embedding Algorithm

Our online heuristic algorithm is designed for embedding
service graphs with delay, bandwidth and cost requirements
efficiently. A detailed description and evaluation of the algo-
rithm can be found in [11]. The heuristic mapping algorithm
searches for possible embedding of service chains, considering
a greedy step as the combined mapping of a network function
and an adjacent service graph link. The greedy mapping
is guided by parameterizable preference metrics to identify
the locally best steps. If the greedy search fails, a bounded
backtracking procedure is responsible for exploring a subset
of the state space by trying locally less preferred steps. The
preference metrics consider load balancing on nodes, minimiz-
ing link resource usage, and they guide the mapping process
to terminate as early as possible while complying to end-to-
end delay requirements. Easily controllable preference values
enable to use the algorithm in various network environments.
For example, in [12] we adopt the algorithm to implement a
data plane orchestrator deploying service graphs directly on
low-level hardware resources.

C. The Proposed Hybrid Algorithm

The idea of our hybrid orchestration algorithm is to mix the
advantages of the heuristic and the MIP-based algorithms, so
that the response time of the orchestration system would stay
low by quickly finding a resource allocation for the service
graph, while the network resource utilization is kept efficient,
provided by the reconfigurations. Our proposed hybrid orches-
tration algorithm uses the previously explained algorithms in
parallel: (i) the heuristic algorithm explained in Sec. IV-B is
used to map the incoming service graphs in an online manner
as they arrive, (ii) the MIP-based optimization presented in
Sec. IV-A is used to occasionally reconfigure the resource
reservation of a larger set of services in an offline manner.

The hybrid operation is shown by Fig. 2. As a new service
request arrives, the state of the current resource topology
is gathered, which can be used by the online algorithm for
mapping the service graph immediately. If the orchestration
algorithm terminates with failure, the service request is re-
fused, while in case of success the active resource topology
is updated. When an offline optimization is not in progress, a
new optimization can be initiated after any successful online
embedding cycle. During any phase of the offline optimization,
the new incoming requests are handled by the online orches-
tration loop. Before starting the MIP solver, the set of already
mapped service graphs to be optimized must be selected and
a (possibly partial) view of the current resource topology
must be given to the offline orchestration algorithm. When
the optimization succeeds, its result must be merged with
the online algorithm’s current view of resource allocations,
where the new requests arrived during the offline operation are
incorporated. This is necessary for applying the optimization
result on the active resource topology. The merge may not
be possible if the reservation would exceed resource capacity
on any network element, so the optimization result must be
discarded. In case of a successful merge, the optimization
result is incorporated by applying the suggested migrations,
and the active resource topology is updated.

Strategic decision points: The emphasized boxes in Fig. 2
are customizable parts of the algorithm which can be used to
tune the hybrid orchestrator for its application environment.
Resource division strategies allow the network operator to
control how much resource is allocated to the online and
offline algorithms during an optimization cycle, respectively.
This strategy controls the prevalence of merge failures af-
ter an optimization has terminated. Running an optimization
and migrating the service graphs are expensive in terms of
computation resources and service instability, so we need to
control when to start an offline optimization procedure; this is
enabled by the optimization interval strategies. The requests
to be optimized strategy selects a set of already mapped
service graphs for the offline optimization. A more detailed
explanation of the strategies can be found in [13].

Migration costs: The offline optimization must consider
the cost of NF migration. When an offline optimization is
initiated, an allocation is available for all, already mapped
service graphs, so each NF has a single hosting resource graph
node. Based on the current reservation, the migration cost can
be defined by the function p(i, u), so the β component of the
MIP’s objective function (1) expresses the total migration cost
of the whole optimization. The migration cost may take into
account any paramter of the VNF or the affected service.

V. NUMERICAL EVALUATION

A. Methodology

Firstly, for evaluation purposes, we have defined a bench-
mark service graph sequence consisting of 1000 generated
non-branching paths of 1 to 8 NFs connecting two randomly
chosen SAPs of the resource graph R = (VR, ER). We denote
the respective sequences as ΣR shown in (11). The functional



TABLE III
GRAPH PARAMETERS USED DURING THE SIMULATIONS.

Param. Request gwin edge and core spine leaf
Nodes Unif.(1,8) 23 25 37
SAPs 2 rand. 20 20 20
Links chain 158 162 130
BW 5 102, 103, 104 102, 103, 104 104

CPU 2 6× 400
6× 267 and

6× 400
2× 400

NF types 10 6 each 6 each 6 each

type of each NF is independently chosen from a set of 10
abstract NF types. The end-to-end latency requirement of
each service graph path depends on the resource graph R’s
capabilities.

ΣR =
{(
V iS , E

i
S , C

R,i
S , Xi, Y

R
i

)}
i∈{1,...,1000} (11)

The inter-arrival times Xi of the service graphs are expo-
nentially distributed Xi

iid∼ Exp
(

1
10

)
in all cases, while the

exponentially distributed lifetimes Y Ri may be different for the
resource graphs.

For tractability reasons of the required number of simula-
tions, the other parameters (e.g. bandwidth, CPU requirement)
are not randomized, their fixed values are summarized in
Tab. III. In all of the simulation setups, the CPU is the
bottleneck among the node resources, so only this resource
is considered in the remainder of the paper.

Secondly, we have evaluated our hybrid orchestration sys-
tem on three different resource topologies, which have the
same amount of total node resources.

1) gwin: a German backbone topology taken from SNDlib
(http://sndlib.zib.de) is extended with 6 access switches, 6
computation nodes and 20 SAPs, summing up to 43 nodes and
158 links. Link bandwidths are grouped as access, aggregation
and core links with ascending values as shown in Tab. III.

2) edge and core: a modified version of gwin, where every
access switch has its own edge computing node and 2 nodes
are left connected to the core switches, summing up to 45
nodes and 162 links. The number of CPUs varies in core and
edge computation nodes as shown in Tab. III.

3) spine leaf: a cloud computing network topology with 31
switches, 6 computation nodes and 20 SAPs interconnected by
130 links in a spine-leaf network [14]. Each computation node
supports 6 NF-types, randomly chosen from the set of 10.

Furthermore, in order to provide a reasonable comparison
of the performance of our orchestration systems on different
topologies, the difficulty of embedding a service graph se-
quence should be equal on each resource network topology.

Definition 1. D(ΣR) is the ratio of the number of refused
service graphs and the number of total service graphs of
the sequence ΣR orchestrated over resource graph (VR, ER)
using the MIP-based embedding algorithm while utilizing 90%
of the CPUs of the whole network in 90% of the time.

We have defined a service graph sequence for all three
resource topologies, so that their difficulty would be approx-
imately identical with a refusal rate of 10%, i.e. D(Σgwin) =
D(Σedge and core) = D(Σspine leaf) = 0.1. The reasoning behind

choosing this definition and difficulty value are (i) on the
one hand, too low or too high resource utilization may show
no difference in algorithm performance, because they lead
to easily solvable or impossible embedding tasks, (ii) on
the other hand, we would like to avoid making capacity
measurement-like benchmarking, when only the utilization
of resources would influence algorithm performance, so the
difficulty shall be affected by service graph constraints.

The method of defining a service graph sequence ΣR
with given difficulty according to our definition using delay
constraints and service lifetimes is detailed in [13].

B. Hybrid Algorithm Settings

We have set the strategic decision points of the hybrid
algorithm identically for all test cases. For the resource divi-
sion strategy both online and offline algorithms are offered all
available capacities, realizing a bold approach. A fixed arriving
service graph counter is chosen for the optimization trigger,
which initiates the offline algorithm after 10 arriving requests.
During the offline operations, all of the service graphs present
in the system are considered for optimization. We defined a
constant migration cost function, which returns a fixed, high
value if a NF needs to be moved independently from the target
host of migration, and zero cost if the NF stays on the same
resource graph node according to the optimization result.

At last, for simulating the parallel operations of the online
orchestration cycles and the offline optimization, we have
introduced a delay of applying the optimization result on
the data structure of the hybrid orchestrator’s active resource
topology. On the one hand, this time interval simulates the
running time of the offline algorithm, on the other hand, it
can be accounted for any reconfiguration task required in a
real-life system, such as NF state migration, traffic rerouting,
etc. After the application delay of 10 arriving service graphs
expires and they are greedily mapped, the resource views are
merged, as explained earlier in Sec. IV-C.

C. Simulation Results

We evaluated our algorithms on the presented topologies
R ∈ {gwin, edge and core, spine leaf} by considering 10
generated service graph sequences ΣR for each topology
according to the parameters shown in Tab. III with equal
difficulties D(ΣR) = 0.1. All service graph sequences were
mapped by all three algorithms under the same circumstances:
each resource graph starts from an equally loaded state close
to its capacity to simulate long-term operation of the orches-
tration system. Results are shown in Fig. 3.

Firstly, the MIP-based algorithm refuses around 10% of
service graphs in each generated sequence ΣR by design of
the difficulty setting of each sequence. Fig. 3a shows how
many service graphs the other algorithms refused additionally
proportional to the MIP-based algorithm’s refusal count. The
error bars show the standard deviations of the sample. The
biggest improvement is achieved by the hybrid algorithm
on topology gwin, where it reduces the additionally refused
number of service graphs by 22% compared to the heuristic



gwin edge_and_core spine_leaf
Topologies

0

10

20

30

40
[%

]
hybrid
heuristic

(a)

gwin edge_and_core spine_leaf
Topologies

0

5

10

15

[%
]

total
max

(b)

60 70 80 90 100
Resource utilization [%]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

CD
F

edge_and_core_before
gwin_after
edge_and_core_after

gwin_before
spine_leaf_before
spine_leaf_after

(c)
Fig. 3. Simulation results: (a) Performance comparison of the different algorithms based on the number of additionally refused requests compared to the
MIP-based algorithm’s performance on different topologies. (b) Average total migrated NFs during the service graph sequences; and the average of the maximal
migrated NFs per optimization. The values are compared to the total number of NFs of a sequence and the present NFs in the resource graph respectively.
(c) Cumulative distribution functions of CPU resource utilizations before and after an optimization of the hybrid algorithm on all three topologies.

algorithm’s performance. The primary reason for the lower
gain on the other topologies is the good relative performance
of the heuristic mappings, which is only around 20% worse
than the MIP-based algorithm. This is the result of the evenly
distributed computation nodes between any two SAPs of the
edge and core and spine leaf topologies, where the heuristic
algorithm performs well.

Secondly, we have examined the number of NF migrations
required for the shown performance improvements of the
hybrid orchestrator on all resource graph topologies. Fig. 3b
shows the ratios of total NF migrations happened during the
hybrid operation proportional to the number of NFs mapped
during the whole service graph sequence, furthermore, it
shows the maximal number of NF migrations necessary in
a single reconfiguration step of an orchestration sequence
proportional to the amount of NFs currently present in the
network. According to our results, less than 1/20 of the NFs
are affected by an optimization and it is only around 15% of
the NFs which were ever mapped successfully to the resource
graph had to be moved at least once.

At last, we analyze how CPU resource utilization of com-
putation nodes change over time on all three resource graph
topologies during the hybrid orchestration. Fig. 3c shows the
cumulative distribution functions of CPU utilizations of the
resource graphs in hand-picked moments before and after ap-
plying the optimization results. For instance, the CPU utiliza-
tions are ranging from 81% to 97% before the optimization,
while this interval mitigates to 89% to 93% after the successful
migrations on the resource graph gwin. As the effect of the
offline algorithm’s objective, the least used computation node
has higher utilization while the most loaded node has lower
utilization after the optimization in all examples.

VI. CONCLUSION

Orchestration systems of next generation networks need to
consider VNF migration possibilities to mitigate the problem
of sub-optimality of sequential service graph embedding. We
formulated the service graph embedding problem as a mixed
integer program, and we introduced a novel orchestration
approach mixing the advantages of a heuristic online embed-
ding algorithm and the MIP-based optimum in form of our
hybrid orchestrator. We proposed our interpretation of service

graph sequence difficulty, which we have used to evaluate our
novel orchestration approach on various topologies. Our results
show that our hybrid orchestrator yields an improvement in
deployments of up to 20% on core networks compared to the
online approach. Furthermore, we demonstrated the robustness
of edge computing and cloud computing topologies for next
generation networks. Finally, we emphasized the importance of
having computation nodes distributed on the end-to-end paths
for an easy compliance with end-to-end delay requirements.

ACKNOWLEDGEMENT
This research was supported by H2020-ICT-2014 project 5GEx (grant

agreement no. 671636), which is partially funded by the European Commis-
sion. Project no. PD 121201 has been implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary,
financed under the PD 16 funding scheme. This work was partially supported
by the German BMBF Software Campus grant 01IS1205.

REFERENCES
[1] E. Amaldi et al., “On the computational complexity of the

virtual network embedding problem,” Electronic Notes in
Discrete Mathematics, 2016.

[2] A. Fischer et al., “Virtual network embedding: A survey,”
IEEE Communications Surveys & Tutorials, 2013.

[3] I. Houidi et al., “Virtual network provisioning across multiple
substrate networks,” ComNet, 2011.

[4] G. Schaffrath et al., “Optimizing long-lived cloudnets with
migrations,” in IEEE/ACM UCC, 2012.

[5] M. Chowdhury et al., “Vineyard: Virtual network embed-
ding algorithms with coordinated node and link mapping,”
IEEE/ACM ToN, 2012.

[6] S. Sahhaf et al., “Network service chaining with optimized
network function embedding supporting service decomposi-
tions,” ComNet, 2015.

[7] I. Fajjari et al., “VNR algorithm: A greedy approach for
virtual networks reconfigurations,” in IEEE GLOBECOM,
2011.

[8] C. Fuerst et al., “Kraken: Online and elastic resource reserva-
tions for multi-tenant datacenters,” in IEEE INFOCOM, 2016.

[9] M. F. Zhani et al., “VDC planner: Dynamic migration-aware
virtual data center embedding for clouds,” in IFIP/IEEE IM,
2013.

[10] (Oct. 2017). Osm release three – a technical overview, ETSI
OSM Community, [Online]. Available: https : / / osm . etsi .
org/images/OSM-Whitepaper-TechContent-ReleaseTHREE-
FINAL.PDF (visited on 02/2018).

[11] B. Németh et al., “Efficient Service Graph Embedding: A
Practical Approach,” in IEEE NFVSDN O4SDI, 2016.

[12] B. Sonkoly et al., “FERO: Fast and Efficient Resource Or-
chestrator for a Data Plane Built on Docker and DPDK,” in
IEEE INFOCOM, 2018.

[13] B. Németh et al., “Hybrid resource orchestration algorithms,”
BME, Tech. Rep., Jan. 2018. [Online]. Available: https://sb.
tmit.bme.hu/techrep-hybrid-2018.pdf.

[14] M. Alizadeh et al., “On the data path performance of leaf-
spine datacenter fabrics.,” in IEEE Hot Interconnects, 2013.


