
On the Quality of Optimal Assignment 
for Data Association

Jean Dezert
Kaouthar Benameur

Abstract. In this paper, we present a method based on belief functions
to evaluate the quality of the optimal assignment solution of a classical
association problem encountered in multiple target tracking applications.
The purpose of this work is not to provide a new algorithm for solving
the assignment problem, but a solution to estimate the quality of the
individual associations (pairings) given in the optimal assignment solu-
tion. To the knowledge of authors, this problem has not been addressed
so far in the literature and its solution may have practical aspects for
improving the performances of multisensor-multitarget tracking systems.
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1 Introduction

Efficient algorithms for modern multisensor-multitarget tracking (MS-MTT) sys-
tems [1, 2] require to estimate and predict the states (position, velocity, etc) of the
targets evolving in the surveillance area covered by the sensors. The estimations
and the predictions are based on sensors measurements and dynamical models
assumptions. In the monosensor context, MTT requires to solve the data asso-
ciation (DA) problem to associate the available measurements at a given time
with the predicted states of the targets to update their tracks using filtering
techniques (Kalman filter, Particle filter, etc). In the multisensor MTT context,
we need to solve more difficult multi-dimensional assignment problems under
constraints. Fortunately, efficient algorithms have been developed in operational
research and tracking communities for formalizing and solving these optimal as-
signments problems. Several approaches based on different models can be used
to establish rewards matrix, either based on the probabilistic framework [1, 3],
or on the belief function (BF) framework [4–7]. In this paper, we do not focus on
the construction of the rewards matrix1, and our purpose is to provide a method
to evaluate the quality (interpreted as a confidence score) of each association
(pairing) provided in the optimal solution based on its consistency (stability)
with respect to all the second best solutions.

1 We assume that the rewards matrix is known and has been obtained by a method
chosen by the user, either in the probabilistic or in the BF framework.
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The simple DA problem under concern can be formulated as follows. We have
m > 1 targets Ti (i = 1, . . . ,m), and n > 1 measurements2 zj (j = 1, . . . , n)
at a given time k, and a m × n rewards (gain/payoff) matrix Ω = [ω(i, j)]
whose elements ω(i, j) ≥ 0 represent the payoff (usually homogeneous to the
likelihood) of the association of target Ti with measurement zj, denoted (Ti, zj).
The data association problem consists in finding the global optimal assignment
of the targets to some measurements by maximizing3 the overall gain in such a
way that no more than one target is assigned to a measurement, and reciprocally.

Without loss of generality, we can assume ω(i, j) ≥ 0 because if some elements
ω(i, j) of Ω were negative, we can always add the same maximal negative value
to all elements of Ω to work with a new payoff matrix Ω

′ = [ω′(i, j)] having all
elements ω′(i, j) ≥ 0, and we get the same optimal assignment solution with Ω

and with Ω
′. Moreover, we can also assume, without loss of generality m ≤ n,

because otherwise we can always swap the roles of targets and measurements in
the mathematical problem definition by working directly with Ω

t instead, where
the superscript t denotes the transposition of the matrix. The optimal assignment
problem consists of finding the m × n binary association matrix A = [a(i, j)]
which maximize the global rewards R(Ω,A) given by

R(Ω,A) ,
m
∑

i=1

n
∑

j=1

ω(i, j)a(i, j) (1)

Subject to











∑n

j=1 a(i, j) = 1 (i = 1, . . . ,m)
∑m

i=1 a(i, j) ≤ 1 (j = 1, . . . , n)

a(i, j) ∈ {0, 1} (i = 1, . . . ,m and j = 1, . . . , n)

(2)

The association indicator value a(i, j) = 1 means that the corresponding
target Ti and measurement zj are associated, and a(i, j) = 0 means that they
are not associated (i = 1, . . . ,m and j = 1, . . . , n).

The solution of the optimal assignment problem stated in (1)–(2) is well
reported in the literature and several efficient methods have been developed in
the operational research and tracking communities to solve it. The most well-
known algorithms are Kuhn-Munkres (a.k.as Hungarian) algorithm [8, 9] and its
extension to rectangular matrices proposed by Bourgeois and Lassalle in [10],
Jonker-Volgenant method [11], and Auction [12]. More sophisticated methods
using Murty’s method [13], and some variants [3, 14–19], are also able to provide
not only the best assignment, but also the m-best assignments. We will not
present in details all these classical methods because they have been already
well reported in the literature [20, 21], and they are quite easily accessible on the

2 In a multi-sensor context targets can be replaced by tracks provided by a given
tracker associated with a type of sensor, and measurements can be replaced by
another tracks set. In different contexts, possible equivalents are assigning personnel
to jobs or assigning delivery trucks to locations.

3 In some problems, Ω = [ω(i, j)] represents a cost matrix whose elements are the
negative log-likelihood of association hypotheses. In this case, the data association
problems consists in finding the best assignment that minimizes the overall cost.
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web. In this paper, we want to provide a confidence level (i.e. a quality indicator)
in the optimal data association solution. More precisely, we are searching an
answer to the question: how to measure the quality of the pairings a(i, j) = 1
provided in the optimal assignment solution A? The necessity to establish a
quality indicator is motivated by the following three main reasons:

1. In some practical tracking environment with the presence of clutter, some
association decisions (a(i, j) = 1) are doubtful. For these unreliable associ-
ations, it is better to wait for new information (measurements) instead of
applying the hard data association decision, and making potentially serious
association mistakes.

2. In some multisensor systems, it can be also important to save energy con-
sumption for preserving a high autonomy capacities of the system. For this
goal, only the most trustful specific associations provided in the optimal
assignment have to be selected and used instead of all of them.

3. The best optimal assignment solution is not necessarily unique. In such sit-
uation, the establishment of quality indicators may help in selecting one
particular optimal assignment solution among multiple possible choices.

Before presenting our solution in Section 2, one must recall that the best, as well
as the 2nd-best, optimal assignment solutions are unfortunately not necessarily
unique. Therefore, we must also take into account the possible multiplicity of
assignments in the analysis of the problem. The multiplicity index of the best
optimal assignment solution is denoted β1 ≥ 1, and the multiplicity index of the
2nd-best optimal assignment solution is denoted β2 ≥ 1, and we will denote the

sets of corresponding assignment matrices by A1 = {A
(k1)
1 , k1 = 1 . . . , β1} and

by A2 = {A
(k2)
2 , k2 = 1 . . . , β2}. The next simple example illustrates a case with

multiplicity of 2nd-best assignment solutions for the reward matrix Ω1.

Example: β1 = 1 and β2 = 4 (i.e. no multiplicity of A1 and multiplicity of A2)

Ω1 =

[
1 11 45 30
17 8 38 27
10 14 35 20

]

This reward matrix provides a unique best assignmentA1 providingR1(Ω1,A1) =
86, and β2 = 4 second-best assignment solutions providing R2(Ω1,A

k2

2 ) = 82
(k2 = 1, 2, 3, 4) given by

A1 =

[
0 0 1 0
0 0 0 1
0 1 0 0

]

Ak2=1
2 =

[
0 0 0 1
0 0 1 0
0 1 0 0

]

, Ak2=2
2 =

[
0 0 1 0
1 0 0 0
0 0 0 1

]

, Ak2=3
2 =

[
0 0 1 0
0 0 0 1
1 0 0 0

]

, Ak2=4
2 =

[
0 0 0 1
1 0 0 0
0 0 1 0

]
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2 Quality of the Associations of the Optimal Assignment

To establish the quality of the specific associations (pairings) (i, j) satisfying
a1(i, j) = 1 belonging to the optimal assignment matrix A1, we propose to use
both A1 and 2nd-best assignment solution A2. The basic idea is to compare the
values a1(i, j) with a2(i, j) obtained in the best and in the 2nd-best assignments
to identify the change (if any) of the optimal pairing (i, j). Our quality indicator
will depend on both the stability of the pairing and its relative impact in the
global reward. The proposed method works also when the 2nd-best assignment
solution A2 is not unique (as in our example). The proposed method will also
help to select the best (most trustful) optimal assignment in case of multiplicity
of A1 matrices.

2.1 A Simplistic Method (Method I)

Before presenting our sophisticate method based on belief functions, let’s first
present a simplistic intuitive method (called Method I). For this, let’s assume at
first that A1 and A2 are unique (no multiplicity occurs). The simplistic method
uses only the ratio of global rewards ρ , R2(Ω,A2)/R1(Ω,A1) to measure the
level of uncertainty in the change (if any) of pairing (i, j) provided in A1 and A2.
More precisely, the quality (trustfulness) of pairings in an optimal assignment
solution A1, denoted

4 qI(i, j), is simply defined as follows for i = 1, . . . ,m and
j = 2, . . . , n:

qI(i, j) ,











1, if a1(i, j) + a2(i, j) = 0

1− ρ if a1(i, j) + a2(i, j) = 1

1, if a1(i, j) + a2(i, j) = 2

(3)

By adopting such definition, one commits the full confidence to the compo-
nents (i, j) of A1 and A2 that perfectly match, and a lower confidence value (a
lower quality) of 1 − ρ to those that do not match. To take into account the
eventual multiplicities (when β2 > 1) of the 2nd-best assignment solutions Ak2

2 ,
k2 = 1, 2, . . . , β2, we need to combine the QI(A1,A

k2

2 ) values. Several methods
can be used for this, in particular we can use either:

– A weighted averaging approach: The quality indicator component qI(i, j)
is then obtained by averaging the qualities obtained from each comparison
of A1 with Ak2

2 . More precisely, one will take:

qI(i, j) ,
β2
∑

k2=1

w(Ak2

2 )qk2

I (i, j) (4)

where qk2

I (i, j) is defined as in (3) (with a2(i, j) replaced by ak2

2 (i, j) in

the formula), and where w(Ak2

2 ) is a weighting factor in [0, 1], such that
∑β2

k2=1 w(A
k2

2 ) = 1. Since all assignments Ak2

2 have the same global reward

value R2, then we suggest to take w(Ak2

2 ) = 1/β2. A more elaborate method

4 The subscript I in qI(i, j) notation refers to Method I.
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would consist to use the quality indicator of Ak2

2 based on the 3rd-best
solution, which can be itself computed from the quality of the 3rd assignment
solution based on the 4th-best solution, and so on by a similar mechanism.
We however don’t give more details on this due to space constraints.

– A belief-based approach (see [22] for basics on belief functions): A second
method would express the quality by a belief interval [qmin

I (i, j), qmax
I (i, j)]

in [0, 1] instead of single real number qI(i, j) in [0, 1]. More precisely, one
can compute the belief and plausibility bounds of the quality by taking
qmin
I (i, j) ≡ Bel(a1(i, j)) = mink2

qk2

I (i, j) and qmax
I (i, j) ≡ Pl(a1(i, j)) =

maxk2
qk2

I (i, j), with qk2

I (i, j) given by (3) and a2(i, j) replaced by ak2

2 (i, j)
in the formula. Hence for each association a1(i, j), one can define a basic
belief assignment (BBA) mij(.) on the frame of discernment Θ , {T =
trustful,¬T = not trustful}, which will characterize the quality of the pairing
(i, j) in the optimal assignment solution A1, as follows:











mij(T ) = qmin
I (i, j)

mij(¬T ) = 1− qmax
I (i, j)

mij(T ∪ ¬T ) = qmax
I (i, j) − qmin

I (i, j)

(5)

Remark: In practice, only the pairings5 (i, j) such that a1(i, j) = 1 are use-
ful in tracking algorithms to update the tracks. Therefore, we don’t need to
pay attention (compute and store) the qualities of components (i, j) such that
a1(i, j) = 0.

2.2 A More Sophisticate and Efficient Method (Method II)

The previous method can be easily applied in practice but it does not work very
well because the quality indicator depends only on the ρ factor, which means that
all mismatches between the best assignment A1 and the 2nd-best assignment
solution A2 have their quality impacted in the same manner (they are all taken
as 1 − ρ). As a simple example, if we consider the rewards matrix Ω1 given in
our example, we will have ρ = R2(Ω1,A

k2

2 )/R1(Ω1,A1) = 82/86 ≈ 0.95, and
we will get using method I with the weighting averaging approach (using same
w(Ak2

2 ) = 1/β2 = 0.25 for k2 = 1, 2, 3, 4) the following quality indicator matrix:

QI(A1,A2) =
1

β2

β2
∑

k2=1

QI(A1,A
k2

2 ) =





1.0000 1.0000 0.5233 0.5233
0.5233 1.0000 0.7616 0.2849

0.7616 0.2849 0.7616 0.7616



 (6)

We observe that optimal pairings (2,4) and (3,2) get the same quality value
0.2849 with the method I (based on averaging), even if these pairings have dif-
ferent impacts in the global reward value, which is abnormal. If we use the
method I with the belief interval measure based on (5), the situation is worst
because the three optimal pairings (1,3), (2,4) and (3,2) will get exactly same
belief interval values [0.0465,1]. To take into account, and in a better way, the

5 given in the optimal solution found for example with Murty’s algorithm.
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reward values of each specific association given in the best assignment A1 and
in the 2nd-best assignment Ak2

2 , we propose to use the following construction of
quality indicators depending on the type of matching (called Method II):

– When a1(i, j) = ak2

2 (i, j) = 0, one has full agreement on “non-association”
(Ti, zj) in A1 and in Ak2

2 and this non-association (Ti, zj) has no impact on

the global rewards values R1(Ω,A1) and R2(Ω,Ak2

2 ), and it will be useless.
Therefore, we can set its quality arbitrarily to qk2

II (i, j) = 1.

– When a1(i, j) = ak2

2 (i, j) = 1, one has a full agreement on the association
(Ti, zj) in A1 and in Ak2

2 and this association (Ti, zj) has different impacts in

the global rewards values R1(Ω,A1) and R2(Ω,Ak2

2 ). To qualify the quality
of this matching association (Ti, zj), we define the two BBA’s onX , (Ti, zj)
and X ∪ ¬X (the ignorance), for s = 1, 2:

{

ms(X) = as(i, j) · ω(i, j)/Rs(Ω,As)

ms(X ∪ ¬X) = 1−ms(X)
(7)

Applying the conjunctive rule of fusion, we get

{

m(X) = m1(X)m2(X) +m1(X)m2(X ∪ ¬X) +m1(X ∪ ¬X)m2(X)

m(X ∪ ¬X) = m1(X ∪ ¬X)m2(X ∪ ¬X)
(8)

Applying the pignistic transformation6 [24], we get finallyBetP (X) = m(X)+
1
2 ·m(X ∪ ¬X) and BetP (¬X) = 1

2 ·m(X ∪ ¬X). Therefore, we choose the

quality indicator as qk2

II (i, j) = BetP (X).

– When a1(i, j) = 1 and ak2

2 (i, j) = 0, one has a disagreement (conflict) on
the association (Ti, zj) in A1 and in (Ti, zj2) in Ak2

2 , where j2 is the mea-
surement index such that a2(i, j2) = 1. To qualify the quality of this non-
matching association (Ti, zj), we define the two following basic belief assign-

ments (BBA’s) of the propositions X , (Ti, zj) and Y , (Ti, zj2)

{

m1(X) = a1(i, j) ·
ω(i,j)

R1(Ω,A1)

m1(X ∪ Y ) = 1−m1(X)
and







m2(Y ) = a2(i, j2) ·
ω(i,j2)

R2(Ω,A
k2
2

)

m2(X ∪ Y ) = 1−m2(Y )
(9)

Applying the conjunctive rule, we get m(X ∩ Y = ∅) = m1(X)m2(Y ) and











m(X) = m1(X)m2(X ∪ Y )

m(Y ) = m1(X ∪ Y )m2(Y )

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y )

(10)

Because we need to work with a normalized combined BBA, we can choose
different rules of combination (Dempster-Shafer’s, Dubois-Prade’s,Yager’s

6 We have chosen here BetP for its simplicity and because it is widely known, but
DSmP could be used instead for expecting better performances [23].

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

244



rule [23], etc). In this work, we recommend the Proportional Conflict Redis-
tribution rule no. 6 (PCR6), proposed originally in DSmT framework [23],
because it has been proved very efficient in practice. So, we get with PCR6:











m(X) = m1(X)m2(X ∪ Y ) +m1(X) · m1(X)m2(Y )
m1(X)+m2(Y )

m(Y ) = m1(X ∪ Y )m2(Y ) +m2(X) · m1(X)m2(Y )
m1(X)+m2(Y )

m(X ∪ Y ) = m1(X ∪ Y )m2(X ∪ Y )

(11)

Applying the pignistic transformation, we get finally BetP (X) = m(X)+ 1
2 ·

m(X ∪ Y ) and BetP (Y ) = m(Y ) + 1
2 ·m(X ∪ Y ). Therefore, we choose the

quality indicators as follows: qk2

II (i, j) = BetP (X), and qk2

II (i, j2) = BetP (Y ).

The absolute quality factor Qabs(A1,A
k2

2 ) of the optimal assignment given in
A1 conditioned by Ak2

2 , for any k2 ∈ {1, 2, . . . , β2} is defined as

Qabs(A1,A
k2

2 ) ,
m
∑

i=1

n
∑

j=1

a1(i, j)q
k2

II (i, j) (12)

Example (continued): If we apply the Method II (using PCR6 fusion rule) to
the rewards matrix Ω1, then we will get the following quality matrix (using
weighted averaging approach)

QII(A1,A2) =
1

β2

β2∑

k2=1

QII(A1,A
k2

2 ) =

[
1.0000 1.0000 0.7440 0.7022
0.7200 1.0000 0.8972 0.5753

0.8695 0.4957 0.9119 0.8861

]

with the absolute quality factors Qabs(A1,A
k2=1
2 ) ≈ 1.66, Qabs(A1,A

k2=2
2 ) ≈

1.91, Qabs(A1,A
k2=3
2 ) ≈ 2.19, Qabs(A1,A

k2=4
2 ) ≈ 1.51. Naturally, we get

Qabs(A1,A
k2=3
2 ) > Qabs(A1,A

k2=2
2 ) > Qabs(A1,A

k2=1
2 ) > Qabs(A1,A

k2=4
2 )

because A1 has more matching pairings with Ak2=3
2 than with other 2nd-best

assignment Ak2

2 (k2 6= 3), and those pairings have also the strongest impacts in
the global reward value. One sees that the quality matrix QII differentiates the
qualities of each pairing in the optimal assignment A1 as expected (contrari-
wise to Method I). Clearly, with Method I we obtain the same quality indicator
value 0.2849 for the specific associations (2,4) and (3,2) which seems intuitively
not very reasonable because the specific rewards of these associations impact
differently the global rewards result. If the method II based on the belief in-
terval measure computed from (5) is preferred7, we will get respectively for the
three optimal pairings (1,3), (2,4) and (3,2) the three distinct belief interval
[0.5956,0.8924], [0.4113,0.7699] and [0.3524,0.6529]. These belief intervals show
that the ordering of quality of optimal pairings (based either on the lower bound,
or on the upper bound of belief interval) is consistent with the ordering of qual-
ity of optimal pairings in QII(A1,A2) computed with the averaging approach.
Method II provides a better effective and comprehensive solution to estimate the
quality of each specific association provided in the optimal assignment solution
A1.

7 just in case of multiplicity of second best assignments.
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3 Conclusion

In this paper we have proposed a method based on belief functions for estab-
lishing the quality of pairings belonging to the optimal data association (or as-
signment) solution provided by a chosen algorithm. Our method is independent
of the choice of the algorithm used in finding the optimal assignment solution,
and, in case of multiple optimal solutions, it provides also a way to select the
best optimal assignment solution (the one having the highest absolute quality
factor). The method developed in this paper is general in the sense that it can be
applied to different types of association problems corresponding to different sets
of constraints. This method can be extended to SD-assignment problems. The
application of this approach in a realistic multi-target tracking context is under
investigations and will be reported in a forthcoming publication if possible.
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