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Abstract—Induction motors are widely used in industrial 
plants for critical operations. Stator faults, bearing faults or 
rotor faults can lead to unplanned downtime with 
associated cost and safety implications. Different sensors 
may be used to monitor the health state of induction motors 
with each sensor typically being better suited to diagnosing 
different faults. Condition monitoring approaches which 
fuse data from multiple sensors have the potential to 
diagnose a greater number of faults.  A sensor fusion 
approach based on the combination of a two-stage 
Bayesian method and Principal Component Analysis is 
proposed for diagnosing both electrical and mechanical 
faults in induction motors. Acoustic, electric and vibration 
signals are gathered from motors operating under different 
loading conditions and health states. The inclusion of the 
PCA step ensures robustness to varying loading 
conditions. The obtained results highlight that the 
proposed method performs better than equivalent single 
stage or feature-based Bayesian methods.  

 
Index Terms—Condition monitoring, Fault detection, 

Sensor fusion, Induction motors, Bayes methods, Principal 
component analysis. 

I. INTRODUCTION 

NDUCTION motors are widely used in industrial plants for 

critical operations, where a failure could result in a partial or 

complete shutdown of the production process. Unplanned 

maintenance, downtime or replacements can result in high costs 

and, furthermore, critical failures can have serious safety 

implications. Induction motor faults may be categorized as 

electrical-related, mechanical-related or environmental-related 

[1]. The range of possible faults is numerous, with stator, 

bearing and rotor faults being the most prevalent [2], [3], [4]. 

These faults will impact the mechanical, magnetic and electrical  
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characteristics of the induction motor in different ways. As a 

result, the optimal sensor type for diagnosing one type of fault 

mode may not be the same as the optimal sensor to diagnose 

another fault mode. It has previously been shown that specific 

induction motor faults can be diagnosed using different sensors 

[5], [6], [7], [8]. Vibration, acoustic and electric signals are 

among the most commonly used sensor types for rotor and 

stator fault detection, however some sensors are more suitable 

for detecting specific faults than others [7], [8]. Nandi [5] 

observed that acoustic and vibration signals are the most 

sensitive for bearing fault detection, while electric signals are 

more sensitive to broken rotor bar faults. It has recently been 

shown that acoustic signals are suitable for bearing, stator and 

rotor fault diagnostics of single-phase and three-phase 

induction motors [9], [10]. Additionally, sensors which are 

responsive to a specific fault can also provide information about 

other faults [6]. Hence, a condition monitoring system that fuses 

information obtained from multiple sensor types can ensure that 

a comprehensive range of fault modes may potentially be 

detected quickly and accurately.  

Various condition monitoring methods which aim to increase 

the accuracy and robustness of fault detection via sensor fusion 

have been reported. In [11], Neural Networks were used to fuse 

vibration and current signals in order to diagnose mechanical 

and electrical faults. It was shown that these signal types are 

complementary to one another and that their fusion using 

Dempster-Shafer theory at the decision-level increases the 

accuracy of the classification. A K-Nearest Neighbor (KNN) 

classifier was applied in [12] using accelerometer and load 

signals in order to diagnose bearing faults, showing that, whilst 

load signals are more useful in distinguishing healthy bearings 

from faulty ones and accelerometer signals are better at 

detecting the location of the fault, the best performance was 

achieved when the two signals were fused together. In [13], 

vibration and acoustic signals were fused using Dempster-

Shafer theory at the decision-level to diagnose faults in 

planetary gearboxes, with the fusion resulting in more precise 

diagnostics along with reduced false and missed alarm rates. In 

[14], vibration, acoustic and oil-debris signals were fused at the 

feature-level to diagnose faults in gears with Principal 

Component Analysis (PCA) and Independent Component 

Analysis (ICA). In each aforementioned case, the sensor fusion 

proved to increase the accuracy, robustness and missed or false 

alarm rate of the system. Sensor fusion can be implemented at 
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the data-level, the feature-level and at the decision level. The 

decision on the abstraction level depends on the information 

carried by the different signals. If the signal types are 

significantly different and carry complementary information it 

is advised to use decision level-fusion [11], [15].  

A typical challenge encountered when creating decision-

level fusion algorithms is that there are often a large number of 

features relative to the number of observations. These features 

can be highly correlated, which ultimately can bias the results 

of the fault detection algorithm. A common method to reduce 

the correlation and the dimensionality of the features is 

Principal Component Analysis [16], [17]. For example in [18] 

the dimensionality of features extracted from vibration and 

current signals was reduced by PCA before applying genetic 

algorithms and an artificial neural network for classifying faults 

in an induction motor. It was found that the performance of the 

fault classifier was improved by adding PCA as a feature pre-

processing step. In [19], several feature reduction and 

transformation methods including neighborhood component 

analysis, linear discriminant analysis (LDA), locally linear 

coordination and PCA were compared with maximally 

collapsing metric learning for multiple bearing fault diagnosis 

in induction motors with particular focus given to the 

dimensionality reduction aspect. Feature reduction is also found 

in multi-stage frameworks for induction motor diagnosis, for 

example a recent work [20] applied PCA, LDA, a genetic 

algorithm and the Fisher score in a hybrid strategy to obtain a 

reduced and optimized feature set from vibration signals. 

Another regularly observed fault detection problem is the 

varying operating conditions of the machines, which can 

originate from a change in the load or environmental 

conditions. In [21] it was concluded that the prediction 

performance of a Support Vector Machine-based fault detection 

algorithm for mechanical and electrical fault detection in 

induction motors is load dependent.  Different severities of 

stator faults were monitored in induction motors under 

changing load torque and supply voltage unbalances in [22], 

finding that the performance of a multi-agent system and neural 

estimator depends on the severity of the fault. Diagnostics and 

prognostics methods of rotating machinery were reviewed in 

[23], highlighting the operating condition dependency of 

algorithms as an existing but understudied area. 

Bayesian inference has been described as a suitable method 

for fault detection and fault classification in condition 

monitoring systems [23], [24]. Recently, Jaramillo et al. [25] 

proposed a two-stage Bayesian inference approach to monitor 

the condition of a system composed of several subsystems. The 

first stage of the sensor fusion takes place at the subsystem 

level, while the second stage fuses the result of the first stage at 

the decision level in order to determine the health state of the 

whole system. The method was efficient in diagnosing faults in 

complex systems composed of interacting components. 

Existing two-stage Bayesian sensor fusion frameworks 

described in the literature [25], [26] typically set alarm 

thresholds according to the probability distributions of features 

and control limits. Properly tuning alarm thresholds can be 

challenging, particularly when there a large number of features 

in the data set, or when the thresholds themselves might 

optimally be described as a function of other parameters (e.g. 

operating conditions). 

This paper is an extension of a previous work in which a two-

stage Bayesian sensor fusion method was applied to the 

diagnosis of mechanical faults in induction motors [26]. It was 

shown that, by fusing independent diagnoses of different sensor 

types at the decision level, the false and missed alarm rates of a 

fault classification algorithm could be significantly reduced. In  

[26] simple linear models of expected feature values relative to 

load values were applied to account for the load dependency of 

features. Such an approach limits the generality of the solution 

as the loading of the system is also required as an input to the 

algorithm during training and testing. It was also observed that 

the features used for training the naïve Bayes classifier were 

highly correlated. As previously noted, such correlations 

between features can potentially bias the fault detection 

algorithm towards certain diagnoses. 

In this paper a two-stage (local and global) Bayesian method 

combined with PCA is proposed as a method for diagnosing not 

only mechanical, but also electrical faults in induction motors 

operating under varying load and environmental conditions. 

Stator, rotor and bearing faults are all considered. Features are 

extracted from acoustic, electric and vibration signals recorded 

from an experimental system. PCA is used to remove the 

correlations that are present in the extracted features and reduce 

the influence of load conditions. At the local Bayesian stage, 

principal components of the features are fused with a Gaussian 

Naïve Bayes (GNB) classifier. At the global Bayesian stage, the 

results of the local stages are fused in order to create a final 

diagnosis. The generality of the algorithm is investigated by 

omitting data recorded at selected operating and environmental 

conditions from the training set and subsequently testing the 

trained model using the omitted data.  

The novelties of the paper are as follows: 

• A two-stage Bayesian sensor fusion approach is extended 

by integrating PCA and GNB classifiers into the framework.   

• It is known that many fault indicators are dependent on 

loading conditions. By incorporating a multivariate statistical 

approach into the analysis, the correlations between operating 

conditions and feature level are accounted for. It is shown that 

the resulting method is able to accurately diagnose faults even 

for loading conditions not present in the training set.  

• In this paper, additional data addressing stator faults with 

varying severity are included into the analysis. This data is used 

to illustrate how, by fusing the different signals, it is possible to 

achieve a holistic monitoring solution which both provides 

greater coverage and greater monitoring accuracy compared to 

considering each sensor independently. 

• Through the addition of PCA and the GNB classifier, the 

approach introduced in this paper does not require monitoring 

thresholds to be defined, as the posterior fault class probabilities 

are directly calculated. 

The paper is organized as follows: in Section 2 the methods 

are introduced. In Section 3 the experimental data are described, 

which were used for the validation of the methods. Section 4 

describes the implementation of the methods using the 
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experimental data. The results of the proposed fault diagnosis 

method are presented in Section 5 with a discussion in Section 

6. Finally, in Section 7 conclusions are drawn, pointing out the 

advantages, limitations of the method and possible future work. 

II. METHODS 

A. Principal Component Analysis 

Principal Component Analysis (PCA) is a well-established 

method for feature extraction, dimensionality reduction, data 

compression and data visualization [27]. It is a common 

problem in data analysis that the features or attributes of the 

observation data are highly correlated. PCA transforms the 

correlated features to a linear space where the transformed 

features are uncorrelated and are ordered in a way that the first 

features retain most of the variation in the data. Singular Value 

Decomposition (SVD) or Eigenvalue Decomposition (EIG) are 

popular algorithms for performing PCA. Here SVD is 

considered, as it is numerically more robust when matrices are 

either singular or numerically very close to singular. 

Furthermore, SVD directly provides the required scores and 

loadings. If X is an n×m matrix with rank r, with n observations 

and m features, SVD is defined as: 
TX ULA   (1) 

where U is an n×r orthonormal matrix, L is an r×r diagonal 

matrix and A is a m×r
 
orthonormal matrix. UL is an n×r matrix, 

containing the transformed uncorrelated features in the 

principal component space, usually referenced as scores. A 

contains the principal components, sometimes called loadings. 

For further information on PCA and SVD, readers are guided 

to [27]. 

B. Gaussian Naïve Bayes classifiers 

A Gaussian Naïve Bayes (GNB) classifier is a probabilistic 

classifier, which assumes conditional independence between 

data which are distributed according to a Gaussian distribution. 

The classifier uses the Bayes theorem to calculate the posterior 

probabilities that an observation xt={x1, x2,…, xm} belongs to 

class ci out of classes C={c1, c2,…, cp}in the following way: 

1

1 1

( ) ( | )

( | )

( ) ( | )

m

i j i
j

i t mn

k j k
k j

P c P x c

P c

P c P x c



 









 

x   (2) 

P(ci) is the prior probability of an observation belonging to 

class ci. The classifier learns the P(xj|ci) conditional 

probabilities that a given feature value xj belongs to class ci from 

a training dataset. By assuming a Gaussian distribution of the 

features, the conditional probabilities may be obtained using the 

values of mean and standard deviation of the labeled training 

data for each class: 
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Once the posterior probabilities are calculated for all of the 

classes, the observation xt will be classified into the class which 

has the highest posterior probability. Equation (2) can be 

simplified by omitting the normalization factor in the 

denominator, as only the index of the maximum a posteriori 

(MAP) class is important for the classification.  
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 predicted arg max ( | )tc P C x   (5) 

For further reference regarding GNB classifiers, readers are 

guided to, for example [28][29][30]. 

C. PCA - Two Stage Bayesian Sensor Fusion 

The proposed two-stage Bayesian sensor fusion method 

combined with PCA is an extension of a previous work [26]. In 

this paper, the algorithm is updated to include a pre-processing 

PCA step. PCA was selected as it is able to mitigate feature 

correlation which can bias the likelihood calculations. It is a 

linear method which yields a reduced and uncorrelated feature 

set. Instead of the original features, uncorrelated principal 

components are fused using a GNB classifier. The number of 

principal components considered for each signal type are 

calculated using the validation set in a way that the performance 

of the algorithm is maximized whilst the false and missed alarm 

rates are reduced, using the detection accuracy as an 

optimization parameter. The method retains the structure of the 

global fusion stage on the decision-level as described in [26]. 

The advantage of applying the GNB classifier at the local stage 

is that there is no need to determine alarm thresholds and 

confidence intervals, as the GNB classifier calculates the fault 

class probabilities directly. 

D. Description of the local stage 

The proposed algorithm is suited for condition monitoring 

problems where N different sensors provide measurement data 

for the determination of the health state of the system. For 

training, the algorithm requires data that has been labelled with 

M fault conditions. If there is a test set available, the data has to 

be split into two separate data sets for training: the training set 

and the validation set. The training set will be used for the 

training of the GNB classifiers at the local stage, while the 

validation set will produce the confusion matrices for the 

different sensor types at the global fusion stage. 

Once the data are cleaned and selected features are extracted, 

the features are split by sensor type. At this stage the training 

set takes the form of an n×m matrix, where n is the number of 

observations and m is the number of features. The µAi,Sj means 

and σAi,Sj standard deviations are calculated for each Ai feature 

and Sj sensor type. A normalization step transforms the features 

such that the means are zero and the standard deviations are one. 

PCA calculates the SCSj scores and LOSj loadings for each 

sensor type. The scores, which might also be considered as the 

new “features”, are uncorrelated. The LOSj loadings are 

calculated using the whole training set containing both healthy 

and faulty data. To calculate the conditional probabilities of the 

GNB according to (3), the µAi,Sj,Ck means and σAi,Sj,Ck standard 

deviations of the principal components are calculated for each 

Ck fault type in the labeled data.  

Next the validation set is used both to find the optimal 

number of principal components and to calculate the confusion 

matrices using the µAi,Sj, σAi,Sj, µAi,Sj,Ck, σAi,Sj,Ck and the LOSj from 
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the training data. The features in the validation set are 

normalized using µAi,Sj and σAi,Sj. The normalized features are 

transformed to the principal components space using the LOSj 

loadings. To find the number of principal components for each 

Sj sensor type an iterative step is considered:   

1. The first i principal components are used as features, 

calculating the posterior probabilities and class 

predictions for each observation in the validation set 

using Equation (3-5). 

2. Count the correct predictions and save it for i. 

Once the iteration has finished the value of i resulting in the 

highest number of correct predictions is chosen for the number 

of principal components used to calculate the predictions for 

each observation in the validation set.  

E. Description of the global stage 

The prediction counts for each fault type are organized in an 

M×M global confusion matrix GSi for each sensor type Si where 

the rows represent the actual condition, the columns represent 

the diagnosed condition and the prediction counts by rows are 

divided by the total number of actual conditions for the fault 

type. The matrix elements can be interpreted as P(Fi|Fj) 

conditional probabilities; given that the algorithm predicted Fj 

what is the probability that the actual fault condition is Fi? The 

P(Fi|Fi) probabilities, located along the diagonal of the 

confusion matrix for each sensor type, represent the probability 

that the sensor diagnosed the corresponding fault correctly:  
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The test set is separate from the training set and is divided by 

sensor type into N sets, with observations in rows, and features 

in columns. The test set is normalized and the GNB classifier is 

calculated with the optimized number of principal components.  

The fault class predictions of the GNB classifier for an 

observation are fused by (7-8) using the appropriate columns 

from the global confusion matrices for each sensor type. P(ci) 

represents a priori knowledge; if no prior distribution is 

 

Fig. 1.  Structure of the PCA-two stage Bayesian algorithm 

available a uniform distribution is supposed. If the fault class 

predicted by S1 is Fi and fault class predicted by SM is Fj, then 

columns have to be selected in the following way from the 

corresponding confusion matrices: 
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For each fault class, the output of the global fusion step is a 

posterior probability giving the likelihood of that fault class 

being present in the system. For the purposes of evaluating the 

performance of the algorithm, we consider the final prediction 

as being the fault class which has the highest posterior 

probability after the global fusion step (8). 

F. Testing an observation 

The overall flow diagram of the proposed two-stage Bayesian 

sensor fusion method for testing an observation is shown in 

Figure 1. At the local stage each type of sensor is handled 

separately. For a given sensor type, features are fused in order 

to obtain a prediction of the most likely health state of the 

system, given the data recorded by that sensor type. At the 

global stage the predictions of the most likely health state for 

each sensor type are fused using the global confusion matrix to 

create the global diagnosis result.   

III. EXPERIMENTAL DATA 

The measurement set up for the experiment is shown in Figure 

2. Experimental data were collected from three identical 

induction motors, differing only in terms of health state: one 

motor was healthy, one had two broken rotor bars and one had 

an outer raceway fault in a bearing. It was also possible to seed 

stator faults into the nominally healthy motor, as described in 

[31]. The test motors were 0.8 kW, 4-pole SZJKe 14a induction 

motors manufactured by TAMEL with a nominal rotor speed of 

1400 rpm. The nominal values of voltage, current, rated torque 

and power factor for these motors were 380 V, 2.2 A, 5.45 Nm 

and 0.74 respectively. The motor had a Y winding configuration 

with 4 coils per phase, 22 rotor bars and 24 stator slots. The 

rotor inertia was 0.0025 kgm2 and the motor bearings were SKF 

type 6304 ZZ CXSQ. An eddy current brake was used to load 

the motor. The measurements were conducted at steady-state 

operation under different loading conditions. For each fault case 

between 3 and 5 loading conditions were tested, resulting in  

Fig. 2.  Schematic of the experimental system 
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stator currents of 68%, 81%, 90%, 100% and 113% of nominal 

values. Measurements were recorded both with and without 

background noise generated by a separate shaker. Datasets for 

eight different health conditions were recorded, denoted as F0- 

F7: 

• F0 – Healthy motor 

• F1 – Stator fault: Phase one bypassed in the first phase 

• F2 – Stator fault: Phase one bypassed in half of the first 

phase 

• F3 – Stator fault: Phase-phase short-circuit  

• F4 – Stator fault: Phase-phase short-circuit with offset 

point 

• F5 – Stator fault: Break of half of the phase one 

• F6 – Rotor fault: Two broken rotor bars 

• F7 – Bearing fault: Outer raceway defect 

The tested motor was rewound in such a way that instead of 

coils for a given phase being directly connected to one another, 

the individual coils were connected to a switchboard allowing 

the winding configuration to be quickly changed. Furthermore, 

in six coils, special taps were created in order to allow different 

short circuits to be seeded. Such a configuration allows various 

stator faults to be seeded, as was investigated in [29] for the 

same SZJKe 14a induction motor. For F1 and F2 the first phase 

was bypassed by a 15 Ω resistance causing a short circuit in the 

first phase winding. For F3 and F4 a short circuit of two stator 

phases in the taps connected in the middle of the first coils was 

seeded by adding a 115 Ω resistance. In the case of F5, part of 

the coil was not connected causing asymmetry in the winding, 

so that the current did not flow through a part of the winding. 

The two broken rotor bars (F6) were located next to one another. 

The bearing fault (F7) was caused by an incision through the 

outer ring of the bearing.  

Acoustic, electric and vibration signals were collected using 

5 different sensor types. Three G.R.A.S. 46AE microphones 

were used to measure the sound pressure levels. A Model USP 

regular 3D Sound Intensity Micro flown probe was also used to 

collect acoustic signals from the motors. The probe provided 

four measurement signals, three particle velocity signals in  

three orthogonal directions and a sound pressure signal. The 

vibration signals were measured by a 3-axis PCB ICP 

accelerometer Model No. 356B18 and a 1-axis PCB ICP 

accelerometer Model No. 353B32, providing 4 signals in total 

in unit g. The three phase voltages were measured by LV 25-P 

voltage transducers providing signals directly for analysis of 

voltage characteristics. The motor currents were measured by 

LTS-6NP and LEM  HY 5-P current transducers. The following 

signals were collected using a 16 channel LMS Scada Mobile 

System: 4 micro flown signals, 3 microphone signals, 2 current 

signals, 4 vibration signals and 3 voltage signals. Data were 

collected with a 51.2 kHz sampling rate to capture all 

frequencies of interest with 30 seconds of data being recorded 

for each configuration to capture a sufficiently long steady state 

periods for analysis. 58 datasets were obtained: one for each 

tested loading condition, both with and without additional 

background noise. The same background noise was applied 

over the tests. The microflown axis X probe has measured an 

average 47.26 m/s particle velocity with no noise, while it has 

measured an average 88.69 m/s particle velocity with noise for 

the healthy motor under nominal load.  

Fig. 3.  Relative RMS values of 5 different signal types extracted from 
0.5 second measurement windows, for all observations through the 58 
datasets 

IV. IMPLEMENTATION OF THE METHOD 

The 58 datasets were split into 0.5 second observations 

resulting in 60 observation for one dataset and 3480 

observations in total. For each signal, and for each 0.5 second 

observation the following time domain features were extracted: 

Root Mean Square (RMS), skewness, kurtosis, maximum Peak, 

Peak-to-Peak, and Crest Factor (CF).  

Features were also extracted from both the amplitude spectrum 

and the envelope spectrum of the signal: the frequency center, 

spectrum area, the amplitude of the components at the first two 

harmonics of the supply frequency (50, 100), the first three 

harmonics of the rotation speed (1X, 2X, 3X), the amplitude 

ratios (2X/1X, 3X/1X), and the amplitude at the sidebands of 

the supply frequency (50Hz ± 2 x slip, 50Hz ± rotation speed). 

The 0.5 second window length provided a 2 Hz spectral 

resolution. Whilst no windowing functions were applied in the 

calculation of the spectra, edge effects were found to be 

minimal. In total 30 features were extracted for the 16 signals, 

resulting in 480 features in total. These time and frequency 

domain features are standard metrics, commonly used for the 

condition monitoring of induction motors [11], [21], [32]. It 

should be noted that for all signal types, all of the above 

mentioned feature types were extracted. No additional feature 

selection approaches were applied.   

Figure 3 shows the relative RMS values of 5 different signal 

types extracted from 0.5 second measurement windows, for all 

observations through the 58 datasets. It may be observed that 

the sensors reacted to the fault modes and loading conditions in 

different ways. For example the RMS current is increased for 

stator fault modes F3 and F4, whilst the RMS vibration did not 

significantly react. Conversely, in the case of the rotor fault F6 

the vibration signal exhibited increased RMS values, whilst the 

RMS current did not show significant increases. This further 

illustrates that different faults are more easily diagnosed by 

different sensors. The 480 features of the 3480 observations 

were grouped by signal types into five groups, namely vibration 

features, current features, micro flown features, microphone 

features and voltage features. The data was then split into a 

training set, a validation set and a test set, in the same way for 

the 5 signal types. The division is described in the next section. 

The training sets were used to train the local stage, the 

validation sets were used to calculate the global confusion 

matrices for the global fusion stage and finally the test sets were 

used to test the performance of the algorithm. All analyses were 

conducted in Matlab®. 



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2019.2891453, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

V. RESULTS 

In order to illustrate the performance of the described 

algorithm with respect to different loading and environmental 

noise conditions, the experimental data was divided into 

different training, validation and test sets. In Test Case A a 

random split was applied. In Test Cases B and C eight entire 

datasets (one from each fault case) were included in the test set 

with no datasets from experiments conducted at this loading 

condition being considered in the training or validation sets.  In 

Test Case B the lowest load datasets with no background noise 

are the test set. In Test Case D the highest load datasets with 

background noise are the test set. The aim of testing different 

divisions for testing, validation and training is to observe the 

performance of the algorithm under different operating 

conditions, particularly under loading conditions that were not 

considered during model training. 

A. Test Case A: random split 

Test Case A was used to evaluate the overall performance of 

the algorithm. The total 3480 observations were randomly split 

into training set, validation set and test set with a respective 

ratio of 60-20-20%. The random split was applied 100 times 

and the averaged results are shown in Table I. The columns 

represent the conditions diagnosed by the algorithm while the 

rows represent the actual fault conditions of the motors. The 

healthy motor was correctly diagnosed in 94% of the cases with 

a 6% false alarm rate in case of F2 stator fault. Missed alarms 

are present for F2, however it is only 2%. F2 is the least severe 

fault among the 7 seeded faults, which explains this behavior. 

The successful detection rate is above 98% for all fault cases, 

with 100% success rate for F1, F5, F6 and F7. Among the stator 

faults the following scenario can be observed: F3 and F4 are 

sometimes misdiagnosed as one another, as they are the 

variations of the same fault: F3 is phase-phase short-circuit, 

while F4 is phase-phase short-circuit with an offset point. To 

give an overall measure of the test accuracy, the F1-score is 

calculated to be 99.32%.  
TABLE I 

TEST CASE A: RANDOM SPLIT 

Diagnosed condition 

  F0 F1 F2 F3 F4 F5 F6 F7 

A
ct

u
al

 c
o

n
d

it
io

n
 

F0 0.94 0.00 0.06 0.00 0.00 0.00 0.00 0.00 

F1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

F2 0.02 0.00 0.98 0.00 0.00 0.00 0.00 0.00 

F3 0.00 0.00 0.00 0.98 0.02 0.00 0.00 0.00 

F4 0.00 0.00 0.00 0.02 0.98 0.00 0.00 0.00 

F5 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

F6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

F7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

B. Test Case B: Lowest load, no noise 

In Test Case B, the test set was formed of data taken from the 

lowest loading conditions, with no datasets from experiments 

conducted at this loading condition being considered in the 

training or validation sets. The aim was to test the performance 

of the algorithm under load conditions which are lower than 

those contained within the training and validation sets. The 

results are shown in Table II. The accuracy of the algorithm was 

100% when diagnosing the healthy condition (F0); there were 

no false alarms. When diagnosing broken rotor bars and bearing 

faults (F6 and F7) the algorithm performed with 100% accuracy. 

However the performance for the stator faults needs further 

analysis: whilst fault F1 and F3 are diagnosed with a success rate 

of 97% and 100%, faults F2, F4 and F5 were identified less 

reliably. The algorithm was able to diagnose the F2 stator fault 

in only 57% of the cases. In 43% of the cases the algorithm 

misdiagnosed F2, either as healthy or as the other similar stator 

faults F1 and F5. This was because F2, as the least severe fault, 

was the most difficult to diagnose. The algorithm was also 

unable to distinguish between fault modes F4 and F5, in 20% 

and 13% of the cases respectively. F5 was also mistakenly 

diagnosed as other stator faults phase one bypassed in 10% of 

the cases. This result indicates that in the case of loading 

conditions lower than those seen in the training datasets the 

algorithm can accurately determine the type of fault, however it 

is unable to accurately ascertain the severity of the fault. 
TABLE II 

TEST CASE B: LOWEST LOAD, NO NOISE 

Diagnosed condition 

  F0 F1 F2 F3 F4 F5 F6 F7 

A
ct

u
al

 c
o

n
d

it
io

n
 

F0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F1 0.02 0.97 0.00 0.00 0.00 0.01 0.00 0.00 

F2 0.22 0.07 0.57 0.00 0.00 0.14 0.00 0.00 

F3 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

F4 0.00 0.00 0.00 0.00 0.80 0.20 0.00 0.00 

F5 0.02 0.07 0.03 0.00 0.13 0.75 0.00 0.00 

F6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

F7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

C. Test Case C: Highest load with noise 

Test Case C used datasets recorded for the highest loading 

conditions with background noise as the test set, with no data 

from this loading condition being considered in the training. 

This test case investigates the performance of the algorithm for 

loading conditions exceeding those considered in the training 

set and for unique environmental conditions, specifically when 

the background noise is at increased levels. The results are 

shown in Table III. The correct diagnosis of the healthy motor 

was 100%, as well as the diagnosis for F1, F4, F5, F6 and F7. In 

case of stator fault F2, there is a 2% missed alarm rate. In case 

of stator fault F3, the algorithm misdiagnoses F3 as F4 in 8% of 

the cases. These phenomena are similar to those observed in 

Test Case A: the stator faults are less severe and less easy to 

diagnose. Due to fault similarities the algorithm can sometimes 

misdiagnose stator fault severities or confuse them with the 

healthy motor. The F1-score is 99.88%, which is even higher 

than the random split test case. 
TABLE III 

TEST CASE C: HIGHEST LOAD WITH NOISE 

Diagnosed condition 

  F0 F1 F2 F3 F4 F5 F6 F7 

A
ct

u
al

 c
o

n
d

it
io

n
 

F0 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

F2 0.02 0.00 0.98 0.00 0.00 0.00 0.00 0.00 

F3 0.00 0.00 0.00 0.92 0.08 0.00 0.00 0.00 

F4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

F5 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

F6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

F7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

D. Principal Components 

The number of principal components are shown in Table IV for 

each signal type together with the variance explained to 

compliment the results in the above presented test cases. In case 
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of the random split in Test Case A the variance explained by the 

chosen principal components is always above 90%. In case of 

Test Case B and C, the number of chosen principal components 

are less than for Test Case A. This is due to the specific loading 

and noise conditions chosen for the test sets. 

 
TABLE IV 

NUMBER OF PRINCIPAL COMPONENTS AND VARIANCE EXPLAINED  

  Vibration Current 
Micro- 

flown 

Micro- 

phone 
Voltage 

Test 
A 

PC 30 18 20 30 28 

σ expl. 92% 95% 90% 95% 91% 

Test 

B 

PC 22 12 14 25 15 

σ expl. 89% 91% 86% 94% 82% 

Test 

C 

PC 23 16 14 27 29 

σ expl. 88% 94% 84% 94% 92% 

 

The first few principal components have been analyzed for all 

signal types to determine if there is any feature which 

dominates the principal component coefficients in the loading 

matrix. It was found that there was no single feature which 

would stand out for any signal type, therefore the importance of 

PCA for correlation reduction is further confirmed.  

Figure 4 shows the first principal components of the five 

signal types, for all observations through the 58 datasets. The 

principal component values were obtained from the normalized 

feature values as described in Section II.D. In comparison to 

Figure 3, where the RMS of the five signal types are shown, it 

may be observed that the load dependency of the signals is less 

evident in the principal components. This further justifies the 

application of PCA for problems where the analyzed problem 

contains data from several loading conditions.  

 

 
 
Fig. 4.  First principal components of the five different signal types, for 
all observations through the 58 datasets, the RMS of the current is 
given as reference for the loading conditions 
 

 
Fig. 5.  The histograms and underlying normal distributions of the first 
principal component of the vibration signal by fault conditions  

Figure 5 presents the histograms and underlying Gaussian 

distributions of the first principal component of the vibration 

signal by fault conditions. The distributions for each fault types 

have distinct mean and variance values and are not significantly 

different from Gaussian distributions. It can be observed that F6 

and F7 are the most distinguishable from F0, while the other 

stator faults have overlaps with F0. It should be noted that F0 

shows evidence of multimodal behavior. This is due to the 

additional background noise incorporated to investigate the 

influence of different environmental conditions on the accuracy 

of diagnosis. However, as shown in Sections V. A-C, this noise 

did not significantly influence the resulting likelihood 

calculations. 

E. Single stage data fusion 

A comparison of the performance of the two-stage approach 

relative to a more standard single-stage approach, where 

sensors are not separated according to type, but instead all fused 

in a single stage, was performed. The total 3480 observations 

were randomly split according to the conventional 70-30% 

partition to training set and test set. The random split was 

applied 100 times to a single stage approach and the averaged 

results are shown in Table V. The results show that the 

performance of the single-stage algorithm significantly drops 

compared to the results of the two-stage method shown in Table 

I. The most significant difference appears in the reduced 

successful detection of the healthy motor, with the single stage 

approach yielding false alarms in 91% of test cases. The F1-

score is 92%. 
TABLE V 

SINGLE STAGE DATA FUSION 

Diagnosed condition 

  F0 F1 F2 F3 F4 F5 F6 F7 

A
ct

u
al

 c
o

n
d

it
io

n
 

F0 0.09 0.10 0.32 0.05 0.11 0.32 0.01 0.00 

F1 0.02 0.94 0.01 0.01 0.00 0.01 0.01 0.00 

F2 0.03 0.01 0.90 0.02 0.01 0.03 0.00 0.00 

F3 0.02 0.00 0.00 0.93 0.05 0.00 0.00 0.00 

F4 0.02 0.00 0.01 0.16 0.77 0.03 0.01 0.00 

F5 0.01 0.01 0.01 0.01 0.01 0.94 0.01 0.00 

F6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

F7 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.98 

F. Comparison of results with Support Vector Machine 

To provide a quantitative comparison with another classifier, 

the proposed PCA - Two Stage Bayesian method is compared 

with the well-known Support Vector Machine (SVM). Test 

Case A, B and C are repeated using the default fitcecoc Matlab® 

implementation of SVM for multiclass problems with one 

against one classification strategy and a linear kernel function. 

The F1-scores are compared. Similarly to the investigation 

described in the previous section, the SVM was applied in a 

single stage. A 70-30% data split was applied and repeated 100 

times resulting in a 99.96% F1-score for Test Case A. This 

result is 0.64% better than the proposed method. For Test Case 

B the F1-score for SVM was 96.15%, which is 1.84% below 

what was achieved with the newly proposed method.  For Test 

Case C the F1-score for SVM was 97.8%, which is 2.08% 

below what was achieved with the newly proposed method.  

Whilst the performance of the two approaches is comparable, 

an advantage of PCA - Two Stage Bayesian method lies in its 

transparency and modularity. Furthermore, the method also 

provided a marginally improved performance in the case of 
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environmental and loading conditions not contained in the 

training set, as shown in Test Case B and C. 

G. Signal types separately versus two-stage fusion 

Table VI shows the performance of only considering a single-

stage fusion of features from a single signal type, for the random 

split Test Case A. For comparison the equivalent performance 

from the two-stage approach, which fuses the data from all 

sensors types in the global fusion stage, is also given. Results 

are given in terms of proportion of correct diagnoses, which are 

equivalent to the values on the diagonal of the previously 

presented results Tables I-III. It is evident that the two-stage 

data fusion of multiple signal types outperforms the equivalent 

results when only considering a single signal type. This is due 

to the fact that the different sensor-types have different 

strengths and weaknesses. For example, it may be observed that 

the analysis based only on vibration signals accurately 

diagnosed the mechanical bearing fault F7 in 100% of test cases, 

but was only able to diagnose an electrical stator fault such as 

F1 in 92% of cases. In contrast, when only current signals were 

considered, stator fault F1 was diagnosed correctly in 98% of 

cases, but bearing fault F7 was only diagnosed correctly in 96% 

of cases. When the two signals are fused, the conditional 

probabilities in the global confusion matrix effectively gives 

greater weight to vibration signals and less weight to current 

signals when diagnosing mechanical faults and vice-versa in the 

case of diagnosing electrical faults. This leverages the strengths 

of each sensor type for fault monitoring and minimizes the 

impact of the weaknesses. 
TABLE VI 

PROPORTION OF CORRECT DIAGNOSES FOR EACH FAULT TYPE WHEN 

CONSIDERING EACH SIGNAL INDIVIDUALLY AND AFTER TWO-STAGE FUSION 

 Single-Stage Fusion by Signal Type Two- 

Stage 

Fusion 

 
Vibration Current 

Micro-

flown 

Micro-

phone 
Voltage 

F0  0.75 0.88 0.91 0.73 0.66 0.94 

F1 0.92 0.98 0.90 0.90 0.83 1.00 

F2 0.87 0.62 0.84 0.82 0.85 0.98 

F3 0.86 0.82 0.91 0.90 0.86 0.98 

F4 0.87 0.72 0.87 0.88 0.88 0.98 

F5 0.90 0.92 0.94 0.92 0.90 1.00 

F6 1.00 0.89 0.98 0.97 0.99 1.00 

F7 1.00 0.96 0.91 0.99 1.00 1.00 

VI. DISCUSSION 

In this section the results and the structure of the algorithm is 

discussed further, highlighting the observed strengths and 

weaknesses of the algorithm.  

A. Implementation and constraints 

The training of the method takes place offline using historical 

datasets containing healthy and faulty data. Once the model is 

trained, diagnosis can be performed either online or offline. By 

applying a sliding window of the same size as used for training, 

the new sensor measurements can be fed into the two-stage 

Bayesian classifier online after the feature extraction and PCA 

steps have been performed. The width of the window could be 

different based on the nature of the monitored system, the 

extracted features and the data available. The computational 

complexity of the classifier is proportional to the number of 

principal components retained and the number of fault modes 

monitored. The computational complexity of the feature 

extraction and PCA step depends on the number of features 

extracted and the size of the sliding window. For a better 

representation of the original feature space non-linear 

multivariate methods, like kernel PCA [33] could be explored 

in the future instead of the currently used linear PCA. Whilst it 

falls out of the scope of this paper, it should also be noted that 

the features used as inputs to the method may also be refined 

according to state of the art signal processing and feature 

extraction methods so that they may better discriminate 

between different health states. Thus, the accuracy and 

reliability of the approach would likely be improved further. In 

Equations 4 and 8, the likelihoods might results in very small 

values if the number of features m, the number of sensors N or 

the number of fault cases M is large. To avoid numerical 

problems, a logarithmic formulation might be considered.  

B. Algorithm validation 

In Section V, three different algorithm validation test cases 

were presented by splitting the data into different training sets, 

test sets and validation sets. It has been shown that for small 

data sets the simple split-sample estimates can be biased and 

cross-validation is more suitable for the prediction assessment 

of the classifiers [34]. In the case of a two-stage method, cross-

validation is unfeasible due to the increase in the number of 

computational steps associated with the addition of the global 

fusion stage and the use of a validation set. Specifically, relative 

to a simple single stage fusion, when implementing cross-

validation on a two-stage approach, the method becomes n2 

more computationally expensive, where n is the number of the 

observations, as both the local and the global stage have to be 

trained using separate training sets. In this paper a pragmatic 

split-sample method was considered. It is also foreseen that 

such an approach would be applicable for applications of the 

method with larger volumes of data sets available. In the future, 

increases in computing power might also allow the cross-

validation approach to be feasibly applied. 

C. Naïve Bayes classifier using kernel density estimate 

The Gaussian Naïve Bayes classifier is a parametric method 

which assumes a normal distribution of the observation 

variables. The more the distribution of the observation variables 

differs from the normal distribution, the less accurate the 

method is. One possible way to eliminate this Gaussian 

assumption is to use a naïve Bayes classifier with kernel density 

estimate (KDE), where the probability density function of the 

features are estimated using a nonparametric kernel 

distribution. Such an approach can be used when there is no 

prior knowledge regarding the distribution of the data, no 

assumptions are made or a parametric distribution cannot 

describe the data. Tests conducted using such a naïve Bayes 

classifier with KDE, with the same random split as described in 

Test Case A, yielded comparable results to the Gaussian Naïve 

Bayes classifier. The naïve Bayes classifier with KDE resulted 

in correct classification rates in the ±2% range compared to the 

results in Table I, while the F1-score is 99.64% which is 0.32% 

better compared to the results in Table I. However, when 

applying KDE, the computation time was two magnitudes 

greater for the local stage than for the case of the Gaussian 

Naïve Bayes classifier. It took 4.277s for the original method to 
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train the local stage and obtain the confusion matrixes for the 

vibration signals while the same computation took 351.78s with 

KDE. The processing hardware was an Intel® Core™ i5-4300U, 

1.9 GHz. 

D. Two-stage data fusion without PCA 

Whilst not the primary focus of this paper, it is worth noting 

that an investigation into the importance of incorporating the 

PCA step into the algorithm was also performed. It was 

observed that when the PCA step was omitted from the 

algorithm, all test cases, including fault cases, were 

subsequently diagnosed as being healthy (F0). This was due to 

the load dependency of the features. This observation indicates 

that a PCA step, or similar, ensures that the algorithm is robust 

against changing loading and environmental conditions. 

E. Advantages of the Method 

The preceding sections provide quantifiable comparisons of 

the performance of the algorithm when including the novel 

steps of applying a Gaussian Naïve Bayes classifier and 

splitting the approach into two stages, relative to the cases when 

the steps are omitted. Due to the multitude of ways of properly 

designing and tuning various algorithms, it is unfeasible to 

perform similarly rigorous quantitative comparisons to 

benchmark the method relative to other data driven fault 

detection methods. However, qualitative comparisons, which 

can guide design decisions at an early stage of the analytics 

development process, can be made. The main advantages of the 

proposed method are its transparency and modularity. In 

contrast to many other data-driven fault diagnosis methods such 

as Support Vector Machines or Neural Networks, the decision 

making process of the algorithm is easily back traceable from 

the global predictions to the inputs of the local stage to identify 

how the different sensors reacted to a fault. Such transparency 

is important for cases where the algorithm will be used to 

support maintenance decisions. Whilst in this paper only 

maximum a posteriori probabilities were considered, in practice 

the Bayesian sensor fusion approach allows the results to be 

presented in the form of likelihoods, showing the probability of 

each fault condition being present. Again this additional insight 

can support maintenance decisions. 

The modularity of the approach, achieved by splitting the 

data fusion into two stages, also offers further advantages when 

considering practical implementation. In the case of a sensor 

being removed from a system, there is no need to retrain the 

whole model, as the removed sensor type can easily be omitted 

from the decision level fusion. This is not possible for other 

fault diagnosis methods which only consider feature-level data 

fusion. Similarly, additional sensor types may be readily 

incorporated into the analysis with limited requirements for 

retraining. Recently, a trend of monitoring the health of 

components via signals recorded from connected elements, for 

example monitoring gearboxes and bearings via electrical 

signals recorded from connected electrical motors, has emerged 

[35] [36]. Such emerging methods could also easily be 

incorporated into the algorithm, serving as an additional source 

of information for further improving the accuracy of diagnosis. 

VII. CONCLUSION 

In this paper, the performance of a newly proposed PCA-two 

stage Bayesian sensor fusion method has been evaluated under 

various test scenarios. The algorithm was shown to be able to 

diagnose stator faults, broken rotor bar faults and bearing faults 

in induction motors, with low false and missed alarm rates. The 

algorithm also proved its ability to diagnose faults under 

different loading and environmental conditions. In addition to 

discussing the several advantages of the presented method, the 

limitations of the method were also highlighted. For example, 

it was shown that the method is capable of correctly 

distinguishing different types of fault, however to consistently 

distinguish between different fault severities, adequate training 

sets are required at comparable loading conditions. 

In the future the algorithm can potentially be extended so that 

it may be used not only with steady-state signals. Additionally 

the performance of the method may be refined by further 

tailoring the extracted features to the monitored system. It was 

shown that by fusing data recorded from different sensor types, 

the proposed method is capable of diagnosing both mechanical 

and electrical faults. In the future the algorithm should also be 

tested for other fault detection and condition monitoring 

scenarios, for example in process monitoring applications. 
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