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Covariance, Subspace, and
Intrinsic Cramér–Rao Bounds

Steven Thomas Smith, Senior Member, IEEE

Abstract—Cramér–Rao bounds on estimation accuracy are es-
tablished for estimation problems on arbitrary manifolds in which
no set of intrinsic coordinates exists. The frequently encountered
examples of estimating either an unknown subspace or a covari-
ance matrix are examined in detail. The set of subspaces, called the
Grassmann manifold, and the set of covariance (positive-definite
Hermitian) matrices have no fixed coordinate system associated
with them and do not possess a vector space structure, both of
which are required for deriving classical Cramér–Rao bounds.
Intrinsic versions of the Cramér–Rao bound on manifolds uti-
lizing an arbitrary affine connection with arbitrary geodesics are
derived for both biased and unbiased estimators. In the example
of covariance matrix estimation, closed-form expressions for both
the intrinsic and flat bounds are derived and compared with the
root-mean-square error (RMSE) of the sample covariance matrix
(SCM) estimator for varying sample support . The accuracy
bound on unbiased covariance matrix estimators is shown to be
about (10 log 10)

1 2 dB, where is the matrix order. Re-
markably, it is shown that from an intrinsic perspective, the SCM is
a biased and inefficient estimator and that the bias term reveals the
dependency of estimation accuracy on sample support observed
in theory and practice. The RMSE of the standard method of esti-
mating subspaces using the singular value decomposition (SVD) is
compared with the intrinsic subspace Cramér–Rao bound derived
in closed form by varying both the signal-to-noise ratio (SNR) of
the unknown -dimensional subspace and the sample support. In
the simplest case, the Cramér–Rao bound on subspace estimation
accuracy is shown to be about ( ( ))1 2 1 2SNR 1 2

rad for -dimensional subspaces. It is seen that the SVD-based
method yields accuracies very close to the Cramér–Rao bound,
establishing that the principal invariant subspace of a random
sample provides an excellent estimator of an unknown subspace.
The analysis approach developed is directly applicable to many
other estimation problems on manifolds encountered in signal
processing and elsewhere, such as estimating rotation matrices in
computer vision and estimating subspace basis vectors in blind
source separation.

Index Terms—Adaptive arrays, adaptive estimation, adaptive
signal processing, covariance matrices, differential geometry,
error analysis, estimation, estimation bias, estimation efficiency,
Fisher information, Grassmann manifold, homogeneous space,
matrix decomposition, maximum likelihood estimaiton, natural
gradient, nonlinear estimation, parameter estimation, parameter
space methods, positive definitive matrices, Riemannian curva-
ture, Riemannian manifold, singular value decomposition..

I. INTRODUCTION

E STIMATION problems are typically posed and analyzed
for a set of fixed parameters, such as angle and Doppler.

In contrast, estimation problems on manifolds, where no such
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set of intrinsic coordinates exists, are frequently encountered
in signal processing applications and elsewhere. Two common
examples are estimating either an unknown covariance matrix
or a subspace. Because neither the set of covariance (positive
definite Hermitian) matrices nor the set of subspaces (the
Grassmann manifold) are equipped with an intrinsic coordinate
system or a vector space structure, classical Cramér–Rao bound
(CRB) analysis [17], [55] is not directly applicable. To address
this class of problems, an intrinsic treatment of Cramér–Rao
analysis specific to signal processing problems is established
here. Intrinsic versions of the CRB have also been developed
for Riemannian manifolds [34], [43], [44], [46], [51], [52],
[68], [79], [80], statistical manifolds [5], and for the application
of quantum inference [11], [53].

The original contributions of this paper are 1) a derivation of
biased and unbiased intrinsic CRBs for signal processing and
related fields; 2) a new proof of the CRB (Theorem 2) that con-
nects the inverse of the Fisher information matrix with its ap-
pearance in the (natural) gradient of the log-likelihood function;
3) several results [Theorem 4, Corollary 5, (143)] that bound the
estimation accuracy of an unknown covariance matrix or sub-
space; 4) the noteworthy discovery that from an intrinsic per-
spective, the sample covariance matrix (SCM) is a biased and
inefficient estimator (Theorem 7), and the fact that the bias cor-
responds to the SCMs poor estimation quality at low sample
support (Corollary 5)—this contradicts the well-known fact that

because the linear expectation operator implicitly
treats the covariance matrices as a convex cone included in the
vector space , compared to the intrinsic treatment of the co-
variance matrices in this paper; 5) a generalization of the ex-
pression for Fisher information (Theorem 1) that employs the
Hessian of the log-likelihood function for arbitrary affine con-
nections—a useful tool because in the great majority of appli-
cations the second-order terms are much easier to compute; 6) a
geometric treatment of covariance matrices as the quotient space

(i.e., the Hermitian part of the matrix
polar decomposition), including a natural distance between co-
variance matrices that has not appeared previously in the signal
processing literature; and 7) a comparison between the accu-
racy of the standard subspace estimation method employing the
singular value decomposition (SVD) and the CRB for subspace
estimation.

In contrast to previous literature on intrinsic Cramér–Rao
analysis, it is shown explicitly how to compute practical esti-
mation bounds on a parameter space defined by a manifold,
independently of any particular metric or affine structure. As
elsewhere, the standard approach is used to generalize classical
bounds to Riemannian manifolds via the exponential map, i.e.,
geodesics emanating from the estimate to points in the param-
eter space. Just as with classical bounds, the unbiased intrinsic
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CRBs depend asymptotically only on the Fisher information and
do not depend in any nontrivial way on the choice of measure-
ment units, e.g., feet versus meters. Though the mathematical
concepts used throughout the paper are well known to the dif-
ferential geometry community, a brief informal background of
the key ideas is provided in footnotes for readers unfamiliar with
some of the technicalities, as is a table at the end of the paper,
comparing the general concepts to their more familiar counter-
parts in .

The results developed in this paper are general enough to
be applied to the numerous estimation problems on manifolds
that appear in the literature. Zheng and Tse [82], in a geometric
approach to the analysis of Hochwald and Marzetta [35],
compute channel capacities for communications problems
with an unknown propagation gain matrix represented by an
element on the Grassmann manifold. Grenander et al. [30]
derive Hilbert–Schmidt lower bounds for estimating points on
a Lie group for automatic target recognition. Srivastava [70]
applies Bayesian estimation theory to subspace estimation, and
Srivastava and Klassen [71], [72] develop an extrinsic approach
to the problem of estimating points on a manifold, specifically
Lie groups and their quotient spaces (including the Grassmann
manifold), and apply their method to estimating target pose.
Bhattacharya and Patrangenaru [9] treat the general problem of
estimation on Riemannian manifolds. Estimating points on the
rotation group, or the finite product space of the rotation group,
occurs in several diverse applications. Ma et al. [41] describe
a solution to the motion recovery problem in computer vision,
and Adler et al. [2] use a set of rotations to describe a model
for the human spine. Douglas et al. [20], Smith [66], and many
others [21]–[23], develop gradient-based adaptive algorithms
using the natural metric structure of a constrained space. For
global estimation bounds rather than the local ones developed
in this paper, Rendas and Moura [59] define a general ambiguity
function for parameters in a statistical manifold. In the area
of blind signal processing, Cichocki et al. [14], [15], Douglas
[19], and Rahbar and Reilly [54] solve estimation problems
on the Stiefel manifold to accomplish blind source separation,
and Xavier [79] analyzes blind MIMO system identification
problems using an intrinsic approach. Lo and Willsky [39]
analyze optimal estimation problems on Abelian Lie groups.
Readers may also be interested in the central role played by ge-
ometrical statistical analysis in establishing Wegener’s theory
of continental drift [18], [27], [43].

A. Model Estimation Problem

Consider the problem [68] of estimating the unknown by
matrix , , given the statistical model

(1)

where is a -dimensional normal random
vector with zero mean and unknown covariance matrix , and

is an -dimensional normal random vector in-
dependent of with zero mean and known covariance matrix

. The normal random vector has zero mean
and covariance matrix

(2)

Such problems arise, for example, when there is an in-
terference term with fewer degrees of freedom than

the number of available sensors [16], [66]. CRBs for es-
timation problems in this form are well known [7], [60].
The Fisher information matrix for the unknown param-
eters is given by the simple expression

, and
provides the so-called stochastic CRB. What differs in the esti-
mation problem of (1) from the standard case is an explanation
of the derivative terms when the parameters lie on a manifold.
The analysis of this problem may be viewed in the context of
previous analysis of subspace estimation and superresolution
methods [30], [70], [72]–[74], [76], [77]. This paper addresses
both the real-valued and (proper [49]) complex-valued cases,
which are also referred to as the real symmetric and Her-
mitian cases, respectively. All real-valued examples may be
extended to (proper) in-phase plus quadrature data by replacing
transposition with conjugate transposition and using the real
representation of the unitary group.

B. Invariance of the Model Estimation Problem

The estimation problem of (1) is invariant to the transforma-
tions

(3)

for any by invertible matrix in , which is the gen-
eral linear group of real by invertible matrices. That is,
substituting and into (1) leaves
the measurement unchanged. The only invariant of the trans-
formation is the column span of the matrix ,
and the positive-definite symmetric (Hermitian) structure of co-
variance matrices is, of course, invariant to the transformation

. Therefore, only the column span of and the
covariance matrix of may be measured, and we ask how ac-
curately we are able to estimate this subspace, i.e., the column
span of , in the presence of the unknown covariance matrix

.
The parameter space for this estimation problem is the set of

all -dimensional subspaces in , which is known as the Grass-
mann manifold , and the set of all by positive-definite
symmetric (Hermitian) matrices , which is the so-called nui-
sance parameter space. Both and may be represented
by sets of equivalence classes, which are known mathemati-
cally as quotient or homogeneous spaces. Although this rep-
resentation is more abstract, it turns out to be very useful for
obtaining closed-form expressions of the necessary geometric
objects used in this paper. In fact, both the set of subspaces and
the set of covariance matrices are what is known as reductive
homogeneous spaces and, therefore, possess natural invariant
connections and metrics [10], [12], [25], [32], [38], [50]. Quo-
tient spaces are also the “proper” mathematical description of
these manifolds.

A Lie group is a manifold with differentiable group oper-
ations. For a (closed) subgroup, the quotient “ ”

denotes the set of equivalence classes

, where is the equivalence class
for all , . For example, any positive-definitive sym-
metric matrix has the Cholesky decomposition ,
where (the general linear group) is an invertible
matrix with the unique polar decomposition [28] ,
where is a positive-definite symmetric matrix, and
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(the orthogonal Lie group) is an orthogonal matrix.
Clearly, and the orthogonal part of
the polar decomposition is arbitrary in the specification of .
Therefore, for any covariance matrix , there is a cor-
responding equivalence class in the quotient
space , where is the unique positive-definitive
symmetric square root of . Thus, this set of covarience ma-
trices may be equated with the quotient space ,
allowing application of this space’s intrinsic geometric struc-
ture to problems involving covariace matrices. In the Hermi-
tian covariance matrix case, the correct identification is

, where is the Lie group of unitary ma-
trices.

Another way of viewing the identification of
is by the transitive group action [10], [32],

[38] seen in (3) of the group acting on via the map
. This action is almost effective (the matrices

are the only ones that fix all , )
and has the isotropy (invariance) subgroup of at
because for all orthogonal matrices . The
only part of this group action that matters is the positive-definite
symmetric part because . Thus,
the set of positive-definite symmetric (Hermitian) matrices
may be viewed as the equivalence class of invertible matrices
multiplied on the right by an arbitrary orthogonal (unitary)
matrix.

Although covariance matrices obviously have a unique matrix
representation, this is not true of subspaces, because for sub-
spaces, it is only the image (column span) of the matrix that
matters. Hence, quotient space methods are essential in the de-
scription of problems involving subspaces. Edelman et al. [23]
provide a convenient computational framework for the Grass-
mann manifold involving its quotient space structure. Sub-
spaces are represented by a single (nonunique) by matrix
with orthonormal columns that itself represents the entire equiv-
alence class of matrices with the same column span. Thus, for
the unknown matrix , , may be multiplied on the
right by any by orthogonal matrix, i.e., for ,
without affecting the results. The Grassmann manifold is repre-
sented by the quotient because the
set of by orthonormal matrices is the
same equivalence class as the set of by orthogonal matrices

where is an arbitrary by matrix such that
and . Many other signal pro-

cessing applications also involve the Stiefel manifold
of subspace basis vectors or, equiv-

alently, the set of by matrices with orthonormal columns
[23]. Another representation of the Grassmann manifold
is the set of equivalence classes . Although the
approach of this paper immediately applies to the Stiefel mani-
fold, it will not be considered here.

The reductive homogeneous space structure of both and
is exploited extensively in this paper, as are the corre-

sponding invariant affine connections and invariant metrics [viz.
(65), (66), (119), and (122)]. Reductive homogeneous spaces
and their corresponding natural Riemannian metrics appear fre-
quently in signal processing and other applications [1], [33],

[43], [65], e.g., the Stiefel manifold in the singular value and
QR-decompositions, but their presence is not widely acknowl-
edged. A homogeneous space is said to be reductive [12],
[32], [38] if there exists a decomposition (direct sum)
such that Ad , where

and are the Lie algebras of and , respectively. Given
a bilinear form (metric) on (e.g., the trace of , ,
for symmetric matrices), there corresponds a -invariant metric
and a corresponding -invariant affine connection on .
This is said to be the natural metric on , which essen-
tially corresponds to a restriction of the Killing form on in
most applications. For the example of the covariance matrices,

, which is the Lie algebra of by matrices [or
], , which is the sub-Lie algebra of skew-

symmetric matrices [or the skew-Hermitian matrices ], and
symmetric Hermitian matrices , so that

(direct sum). That is, any by matrix may be ex-
pressed as the sum of its symmetric part and
its skew-symmetric part . The symmetric ma-
trices are Ad -invariant because for any symmetric matrix

and orthogonal matrix , Ad ,
which is also symmetric. Therefore, admits
a -invariant metric and connection corresponding to the
bilinear form at , specifically (up to an arbitrary
scale factor)

(4)

at arbitrary . See Edelman et al. [23] for the details of
the Grassmann manifold for
the subspace example.

Furthermore, the Grassmann manifold and the posi-
tive-definite symmetric matrices with their natural metrics
are both Riemannian globally symmetric spaces [10], [25],
[31], [38], although, except for closed-form expressions for
geodesics, parallel translation, and sectional curvature, the
rich geometric properties arising from this symmetric space
structure are not used in this paper. As an aside for com-
pleteness, is a compact irreducible symmetric space of
type BD I, and
is a decomposable symmetric space, where the irreducible
noncompact component is of type A I [31, ch.
10, secs. 2.3 and 2.6; ch. 5, prop. 4.2; p. 238]. Elements of
decompose naturally into the product of the determinant of the
covariance matrix multiplied by a covariance matrix with unity
determinant, i.e., .

C. Plan of the Paper

The paper’s body is organized into three major sections,
addressing intrinsic estimation theory, covariance matrix esti-
mation, and subspace and covariance estimation. In Section II,
the intrinsic CRB and several of its properties are derived
and explained using coordinate-free methods. In Section III,
the well-known problem of covariance matrix estimation is
analyzed using these intrinsic methods. A closed-form expres-
sion for the covariance matrix CRB is derived, and the bias
and efficiency of the sample covariance matrix estimator is
considered. It is shown that the SCM viewed intrinsically is a
biased and inefficient estimator and that the bias term reveals
the degraded estimation accuracy that is known to occur at low
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sample support. Intrinsic CRBs for the subspace plus unknown
covariance matrix estimation problem of (1) are computed in
closed-form in Section IV and compared with a Monte Carlo
simulation. The asymptotic efficiency of the standard subspace
estimation approach utilizing the SVD is also analyzed.

II. INTRINSIC CRB

An intrinsic version of the CRB is developed in this section.
There are abundant treatments of the CRB in its classical form
[60], [78], its geometry [61], the case of a constrained parameter
space [29], [75], [80], and several generalizations of the CRB
to arbitrary Riemannian manifolds [11], [34], [43], [52], [53],
[68], [79] and statistical manifolds [5]. It is necessary and de-
sirable for the results in this paper to express the CRB using
differential geometric language that is independent of any arbi-
trary coordinate system and a formula for Fisher information
[26], [60], [78] that readily yields CRB results for problems
found in signal processing. Other intrinsic derivations of the
CRB use different mathematical frameworks (comparison theo-
rems of Riemannian geometry, quantum mechanics) that are not
immediately applicable to signal processing and specifically to
subspace and covariance estimation theory.

Eight concepts from differential geometry are necessary to
define and efficiently compute the CRB: a manifold, its tangent
space, the differential of a function, covariant differentiation,
Riemannian metrics, geodesic curves, sectional/Riemannian
curvature, and the gradient of a function. Working definitions
of each of these concepts are provided in footnotes; for com-
plete, technical definitions, see Boothby [10], Helgason [31],
Kobayashi and Nomizu [38], or Spivak [69]. In addition, Amari
[3]–[6] has significantly extended Rao’s [55], [56] original geo-
metric treatment of statistics, and Murray and Rice [48] provide
a coordinate-free treatment of these ideas. See Table II in Sec-
tion IV-F of the paper for a list of differential geometric objects
and their more familiar counterparts in Euclidean -space

. Higher order terms containing the manifold’s sectional
[the higher dimensional generalization of the two-dimensional
(2-D) Gaussian curvature] and Riemannian curvature [10], [12],
[31], [34], [38], [52], [79], [80] also make their appearance in
the intrinsic CRB; however, because the CRB is an asymptotic
bound for small errors (high SNR and sample support), these
terms are negligible for small errors.

A. Fisher Information Metric

Let be the probability density function (pdf) of a
vector-valued random variable in the sample space , given
the parameter in the -dimensional manifold1 ( not
necessarily equal to ). The CRB is a consequence of a natural
metric structure defined on a statistical model, defined by the
parameterized set of probability densities .
Let

(5)

1A manifold is a space that “looks” like locally, i.e., M may be parame-
terized by n coordinate functions � ; � ; . . . ; � that may be arbitrarily chosen
up to obvious consistency conditions. (For example, positions on the globe are
mapped by a variety of 2-D coordinate systems: latitude-longitude, Mercator,
and so forth.)

be the log-likelihood function, and let and be two tangent
vectors2 on the parameter space. Define the Fisher information
metric3 (FIM) as

(6)

where is the differential4 of the log-likelihood function. We
may retrench the dependence on explicit tangent vectors and
express the FIM as

(9)

where “ ” denotes the tensor product. The FIM is defined
with respect to a particular set of coordinate functions or pa-
rameters on :

(10)

Refer to footnote 4 and the “Rosetta Stone” table for an expla-
nation of the notation “ ” for tangent vectors.

Of course, the Fisher information metric is invariant to the
change of coordinates , i.e.,

, because the FIM transforms contravariantly

(11)

where and are the FIMs with respect to the coordinates
specified by their subscripts, and is the Jaco-

2The tangent space of a manifold at a point is, nonrigorously, the set of vectors
tangent to that point; rigorously, it is necessary to define manifolds and their
tangent vectors independently of their embedding in a higher dimension [e.g.,
as we typically view the 2-sphere embedded in three-dimensional (3-D) space].
The tangent space is a vector space of the same dimension as M . This vector
space at 2 M is typically denoted by T M . The dual space of linear maps
from T M to , called the cotangent space, is denoted T M . We imagine
tangent vectors to be column vectors and cotangent vectors to be row vectors. If
we have a mapping : M ! P from one manifold to another, then there exists
a natural linear mapping :T M ! T P from the tangent space at to the
tangent space at ( ). If coordinates are fixed, = @ =@ , i.e., simply the
Jacobian transformation. This linear map is called the push-forward: a notion
that generalizes Taylor’s theorem ( + � ) = ( ) + (@ =@ )� +
h.o.t. = + � .

3A Riemannian metric g is defined by a nondegenerate inner product on the
manifold’s tangent space, i.e., g:T M � T M ! is a definite quadratic
form at each point on the manifold. If 
 is a tangent vector, then the square
length of 
 is given by k
k = h
;
i = g(
;
). Note that this inner
product depends on the location of the tangent vector. For the example of the
sphere embedded in Euclidean space, S = f 2 : = 1 g,
g(
;
) = 
 (I � )
 for tangent vectors
 to the sphere at 2 .
For covariance matrices, the natural Riemannian metric is provided in (4); for
subspaces, the natural metric is given in (118).

4The differential of a real-valued function `:M ! on a manifold, called
d`, simply represents the standard directional derivative. If c(t) (t 2 ) is a
curve on the manifold, then 
 = (d=dt)j c(t) is a tangent vector at c(0),
and the directional derivative of ` in direction
 is given by

d`(
) =
d

dt
` (c(t)) : (7)

Examining this definition with respect to a particular coordinate system,
` may be viewed as a function `(� ; � ; . . . ; � ), the curve c(t) is
viewed as (c (t); c (t); . . . ; c (t)) , the tangent vector is given by

 = (
 ;
 ; . . . ;
 ) = (dc =dt; dc =dt; . . . ; dc =dt) , and the direc-
tional derivative is given by the equation

d`(
) =
@`

@�

 : (8)

If we view 
 as an n by 1 column vector, then d` = (@`=@� ;
@`=@� ; . . . ; @`=@� ) is a 1 by n row vector. Furthermore, the basis
vectors induced by these coordinates for the tangent space T M are called
(@=@� ); (@=@� ); . . . ; (@=@� ) because d`(@=@� ) = @`=@� . The dual
basis vectors for the cotangent space T M are called d� ; d� ; . . . ; d� be-
cause d� (@=@� ) = � (Kronecker delta). Using the push-forward concept
for tangent spaces described in footnote 2, `:M ! , and ` :T M ! ,
i.e., d` = ` , which is consistent with the interpretation of d` as a cotangent
(row) vector.
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bian of the change of variables. Because the Jacobian deter-
mines how coordinate transformations affect accuracy bounds,
it is sometimes called a sensitivity matrix [45], [61].

Although the definition of the FIM employing first derivatives
given by (9) is sufficient for computing this metric, in many ap-
plications (such as the ones considered in this paper), compli-
cated derivations involving cross terms are oftentimes encoun-
tered. (It can be helpful to apply multivariate analysis to the re-
sulting expressions. See, for example, Exercise 2.5 of Fang and
Zhang [24]). Derivations of CRBs are typically much simpler if
the Fisher information is expressed using the second derivatives5

of the log-likelihood function. The following theorem provides
this convenience for an arbitrary choice of affine connection ,
which allows a great deal of flexibility ( is not the gradient op-
erator; see footnotes 5 and 8). The FIM is independent of the ar-
bitrary metric (and its induced Levi–Civita connection) chosen

5Differentiating real-valued functions defined on manifolds is straightforward
because we may subtract the value of the function at one point on the man-
ifold from its value at a different point. Differentiating first derivatives again
or tangent vectors, however, is not well defined (without specifying additional
information) because a vector tangent at one point is not (necessarily) tangent
at another: Subtraction between two different vector spaces is not intrinsically
defined. The additional structure required to differentiate vectors is called the
affine connection r, so-called because it allows one to “connect” different tan-
gent spaces and compare objects defined separately at each point. [This is not
the gradient operator; see (47) in footnote 8.] The covariant differential of a
function ` along tangent vector
, writtenr`(
) orr `, is simply d`(
). In
a particular coordinate system, the ith component of r` is (@`=@� ). The ijth
component of the second covariant differentialr `, which is the generalization
of the Hessian, is given by

(r `) =
@ `

@� @�
� �

@`

@�
(12)

where

� =
1

2
g

@g

@x
+

@g

@x
�

@g

@x
(13)

are the Christoffel symbols (of the second kind) of the connection defined by
r (@=@� ) = � (@=@� ) or defined by the equation for geodesics
�� + � _� _� = 0 in footnote 6. It is sometimes more convenient to
work with Christoffel symbols of the first kind, which are denoted � , where
� = g � , i.e., the � are given by the expression in (13) without
the g term. For torsion-free connections (the typical case for applications), the
Christoffel symbols possess the symmetries � = � and � +� = 0.

It is oftentimes preferable to use matrix notation �( _ ; _) to express the
quadratic terms in the geodesic equation [23]. For a sphere embedded in
Euclidean space, the Christoffel symbols are given by the coefficients of the
quadratic form �(
 ;
 ) = � (
 
 ) for tangent vectors
 and
 to
the sphere at in [23] [cf. (122)]. The ijth component of the covariant
differential of a vector field 
( ) 2 T M is

(r
) =
@


@�
+ � 
 : (14)

Classical index notation is used here and throughout the paper (see, for example,
Spivak [69] or McCullagh [44] for a description). A useful way to compute
the covariant derivative is r 
 = _
(0) + �(
(0);�) for the vector field

(t) = 
(exp t�) (the “exp ” notation for geodesics is explained in foot-
note 6).
In general, the covariant derivative of an arbitrary tensor on M along the
tangent vector � is given by the limit

r = lim
� (t)� (0)

t
(15)

where (t) denotes the tensor at the point exp (t�), and � denotes parallel
translation from to (t) = exp (t�) [10], [31], [38], [69]. Covariant differ-
entiation generalizes the concept of the directional derivative of along� and
encodes all intrinsic notions of curvature on the manifold [69, vol. 2, ch. 4–8].
The parallel translation of a tensor field (t) = � satisfies the differential
equation r = 0.

to define the root-mean-square error (RMSE) on the parameter
space.

Theorem 1: Let be a family of pdfs parameterized
by , be the log-likelihood function, and

be the Fisher information metric. For any affine
connection defined on

(16)

Proof: The proof is a straightforward application of
the lemma: , which follows immediately from
differentiating the identity with respect
to and observing that . Applying this lemma
to , which is expressed in arbitrary coordinates as in
(12), it is seen that

, the
last equality following from integration by parts, as in classical
Cramér–Rao analysis.

Theorem 1 allows us to compute the Fisher information on
an arbitrary manifold using precisely the same approach as is
done in classical Cramér–Rao analysis. To see why this is so,
consider the following expression for the Hessian of the log-
likelihood function defined on an arbitrary manifold endowed
with the affine structure :

(17)

where is a geodesic6 emanating from in the direction .
Evaluating for small [12], [69, vol. 2, ch. 4, props. 1 and
6] yields

(19)

This equation should be interpreted to hold for normal coordi-
nates (in the sense of footnote 6)
on . Applying (17) and (19) to compute the Fisher informa-
tion metric, it is immediately seen that for normal coordinates

(20)

where the second derivatives of the right-hand side of (20) rep-
resent the ordinary Hessian matrix of , interpreted to be a
scalar function defined on . As with any bilinear form, the

6A geodesic curve (t) on a manifold is any curve that satisfies the differen-
tial equation

r _ = �� + � _� _� = 0; (0) = ; _(0) = 
: (18)

If r is a Riemannian connection, i.e., rg � 0 for the arbitrary Rie-
mannian metric g, (18) yields length minimizing curves. The map

 7! (t) = exp (
t) is called the exponential map and provides a
natural diffeomorphism between the tangent space at and a neighborhood
of on the manifold. Looking ahead, the notation “exp” explains the
appearance of matrix exponentials in the equations for geodesics on the space
of covariance matrices P and the Grassmann manifold G given in (67)
and (120). The geodesic (t) is said to emanate from in the 
 direction.
By the exponential map, any arbitrary choice of basis of the tangent space at

yields a set of coordinates on M near ; the coordinates are called normal
[31], [38], [69]. One important fact that will be used in Sections III and IV to
determine covariance and subspace estimation accuracies is that the length of
the geodesic curve from to (t) is jtj�k
k. For the sphere embedded in
Euclidean space, geodesics are great circles, as can be seen by verifying that
the paths (t) = cos�t + 
 sin �t [ 
 = 0, = 
 
 = 1;
cf. (120)] satisfy the differential equation � + �( _ ; _ ) = 0, where the
Christoffel symbol � for the sphere is given in footnote 5.
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off-diagonal terms of the FIM may be computed using the stan-
dard process of polarization:

(21)

Compare this FIM approach to other intrinsic treatments of
CRBs that employ the exponential map explicitly [34], [43],
[51], [52].

Thus, Fisher information does not depend on the choice of
any particular coordinates or any underlying Riemannian metric
(or affine connection). We should expect nothing less than this
result, as it is true of classical estimation bounds. For example,
discounting a scaling factor, measurements in feet versus meters
do not affect range estimation bounds.

B. Intrinsic Estimation Theory

Let be a parameterized pdf, where takes on values
in the manifold . An estimator of is a mapping from
the space of random variables to . Oftentimes, this space of
random variables is a product space comprising many snapshots
taken from some underlying distribution. Because addition and
subtraction are not defined between points on arbitrary mani-
folds, an affine connection on (see footnotes 5 and 6)
must be assumed to make sense of the concept of the mean
value of on [51]. Associated with this connection is the
exponential map from the tangent space
at any point to points on (i.e., geodesics) and its inverse

. Looking ahead, the notation “ ” and
“ ” is explained by the form of distances and geodesics on
the space of covariance matrices and the Grassmann man-
ifold provided in (65), (67), (69), (119), and (120). If
is connected and complete, the function is onto [31], but
its inverse may have multiple values (e.g., multiple wind-
ings for great-circle geodesics on the sphere). Typically, the tan-
gent vector of shortest length may be chosen. In the case of
conjugate points to [12], [31], [38] (where is singular,
e.g., antipodes on the sphere), an arbitrary tangent vector may be
specified; however, this case is of little practical concern because
the set of such points has measure zero, and the CRB itself is an
asymptotic bound used for small errors. The manifold has
nonpositive curvature [see (28) in footnote 7]; therefore, it has
no conjugate points [38, vol. 2, ch. 8, sec. 8], and in fact,
is uniquely defined by the unique logarithm of positive-definite
matrices in this case. For the Grassmann manifold ,
is uniquely defined by the principal value of the arccosine func-
tion.

Definition 1: Given an estimator of , the expec-
tation of the estimator with respect to , which is denoted

, and the bias vector field of are
defined as

(22)

(23)

Fig. 1 illustrates these definitions. Note that unlike the stan-
dard expectation operator , is not (necessarily) linear
as it does not operate on linear spaces. These definitions are in-
dependent of arbitrary coordinates on but do

Fig. 1. Intrinsic estimation on a manifold. The estimator ^(z) of the
parameter is shown, where z is taken from the family of pdfs f(zj ) whose
parameter set is the manifold M . The exponential map “exp ” equates points
on the manifold with points in the tangent space T M at via geodesics (see
footnotes 5 and 6). This structure is necessary to define the expected value
of ^ because addition and subtraction are not well defined between arbitrary
points on a manifold [see (22)]. The bias vector field [see (23)] is defined
by ( ) = exp E [ ^] = E[exp ^] and, therefore, depends on the
geodesics chosen on M .

depend on the specific choice of affine connection , just as the
bias vector in depends on vector addition. In fact, because
for every connection there is a unique torsion-free connection

with the same geodesics [69, vol. 2, ch. 6, cor. 17], the bias
vector really depends on the choice of geodesics on .

Definition 2: The estimator is said to be unbiased if
(the zero vector field) so that . If , the bias

is said to be parallel.

In the ordinary case of Euclidean -space (i.e., ), the
exponential map and its inverse are simply vector addition, i.e.,

and . Parallel bias vec-
tors are constant in Euclidean space because .
The proof of the CRB in Euclidean spaces relies on that fact that

. However, for arbitrary Riemannian man-
ifolds, plus second-order and higher terms in-
volving the manifolds’s sectional and Riemannian curvatures.7

The following lemma quantifies these nonlinear terms, which
are negligible for small errors (small distances be-
tween and ) and small biases (small vector norm ),
although these higher order terms do appear in the intrinsic
CRB.

7The sectional curvature is Riemann’s higher dimensional generalization of
the Gaussian curvature encountered in the study of 2-D surfaces. Given a circle
of radius r in a 2-D subspace H of the tangent space T M , let A (r) = �r
be the area of this circle, and let A(r) be the area of the corresponding “circle”
in the manifold mapped using the function exp . Then, the sectional curvature
of H is defined [31] to be

K(H) = lim 12
A (r)�A(r)

r A (r)
: (24)

We will also write K to specify the manifold. For the example of the unit
sphere S , A(r) = 2�(1� cos r), and K � 1, i.e., the unit sphere
is a space of constant curvature unity. Equation (24) implies that the area in the
manifold is smaller for planes with positive sectional curvature, i.e., geodesics
tend to coalesce, and conversely that the area in the manifold is larger for planes
with negative sectional curvature, i.e., geodesics tend to diverge from each other.
Given tangent vectors and and the vector field , the Riemannian curva-
ture tensor is defined to be

( ; ) = r r �r r �r (25)

where [ ; ] = � 2 T M is the Lie bracket. The Riemannian cur-
vature ( ; ) measures the amount by which the vector is altered as it is
parallel translated around the “parallelogram” in the manifold defined by and

[31, ch. 1, ex. E.2]: ( ; ) = lim ( � (t))=t , where (t) is
the parallel translation of . Remarkably, sectional curvature and Riemannian
curvature are equivalent: Then(n�1)=2 sectional curvatures completely deter-
mine the Riemannian curvature tensor and vice-versa. The relationship between
the two is

K( ^ ) =
h ( ; ) ; i

k ^ k
(26)
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where K( ^ ) is the sectional curvature of the subspace spanned by and
, k ^ k = k k k k sin � is the square area of the parallelogram

formed by and , and � is the angle between these vectors. Fig. 2 illustrates
how curvature causes simple vector addition to fail.

There are relatively simple formulas [12], [13], [31] for the Riemannian cur-
vature tensor in the case of homogeneous spaces encountered in signal pro-
cessing applications. Specifically, the Lie groupG = (n; ) is noncompact,
and its Lie algebra = (n; ) admits a decomposition = + [direct
sum, = Hermitian matrices, = (n)], such that

[ ; ] � ; [ ; ] � ; [ ; ] � : (27)

The sectional curvature of the symmetric homogeneous space P �=
(n; )= (n) is given by [13, prop. 3.39], [31, ch. 5, sec. 3]

K ( ^ ) = �
1

2
;
1

2
= �

1

4
k[ ; ]k =

1

4
tr ([ ; ])

(28)
where and are orthonormal Hermitian matrices, and [ ; ] = �

2 (n) is the Lie bracket. (The scalings and arise from the fact

that the matrixR 2 P corresponds to the eqivalence classR �H in G=H).
Note that P has nonpositive curvature everywhere. Similarly for the Grass-
mann manifold, the Lie group (n) ( (n) in the complex case) is compact,
and its Lie algebra admits a comparable decomposition (see Edelman et al. [23,
sec. 2.3.2] for application-specific details). The sectional curvature of the Grass-
mann manifold G �= (n)=( (n� p)� (p)) equals

K ( ^ ) = k[ ; ]k = �
1

2
tr ([ ; ]) (29)

where and are skew-symmetric matrices of the form
0 �

0
, and

is an (n�p) by p matrix. [The signs in (28) and (29) are correct because for
an arbitrary skew-symmetric matrix 
, k
k = tr 
 
 = � tr 
 .] The
sectional curvature of G is non-negative everywhere. For the cases p = 1 or
p = n� 1, check that (29) is equivalent to the constant curvature K � 1
for the sphere S given above. To bound the terms in the covariance and
subspace CRBs corresponding with these curvatures, we note that

max jK j =
1

4
and maxK = 1: (30)

Lemma 1: Let be a family of pdfs parameterized by
, be the log-likelihood function, be an ar-

bitrary Riemannian metric (not necessarily the FIM), be an
affine connection on corresponding to , and, for any esti-
mator of with bias vector field , let the matrix denote
the covariance of , , all with respect
to the arbitrary coordinates near and corre-
sponding tangent vectors , .

1) Then

(31)
where the term is
defined by the expression

(32)

2) For sufficiently small bias norm , the th element
of is

if

if
(33)

Fig. 2. Failure of vector addition in Riemannian manifolds. Sectional and
Riemannian curvature terms (see footnote 7) appearing in the CRB arise
from the expression r exp ^, which contains a quadratic form Q( ) in

= exp ^. This quadratic form is directly expressible in terms of the
Riemannian curvature tensor and the manifold’s sectional curvatures [69, vol.
2, ch. 4]. These terms are negligible for the small errors and biases, which are
the domain of interest for CRBs, i.e., d( ^; ) � (max jK j) , where
K is the manifold’s sectional curvature.

where denotes the sectional curvature of the 2-D
subspace , and , , and are the
angles between the tangent vector and , ,
and , respectively.

3) For sufficiently small covariance norm , the
matrix is given by the quadratic form

(34)

where is the Riemannian curvature tensor.
Furthermore, the matrices and are sym-
metric, and depends linearly on .

Proof: First take the covariant derivative of the identity
(the zero vector field). To dif-

ferentiate the argument inside the integral, recall that for an ar-
bitrary vector field , . The inte-
gral of the first part of this sum is simply the left-hand side of
(31); therefore,

. This establishes part 1). The remainder
of the proof is a straightforward computation using normal co-
ordinates (see footnote 6) and is illustrated in Fig. 2. We will
compute , , using (15) from footnote
5. Define the tangent vectors and

by the equations

(35)

Assume that the are an orthonormal basis of . Ex-
pressing all of the quantities in terms of the normal coordinates

, the geodesic from to is simply the
curve , where . The geodesic
curve from to satisfies (18) in footnote 6 subject to
the boundary condition specified in (35). Using Riemann’s orig-
inal local analysis of curvature, the metric is expressed as the
Taylor series [69, vol. 2, ch. 4]

(36)

where , which possess the sym-
metries , and

. Applying (13) in footnote 5 gives the Christoffel
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symbols (of the first kind) . Solving the
geodesic equation for to second order in yields

(37)

where denotes the quadratic form in
(36). The parallel translation of along the geodesic
equals . Therefore

(38)

(also see Karcher [37, app. C3]). Riemann’s quadratic form

simply equals
, where is the

sectional curvature of the subspace spanned by , and ,
is the square area of the

parallelogram formed by and , is the angle between
these vectors, and is the Riemannian curvature
tensor (see footnote 7). Taking the inner product of (38) with

(39)

where is the angle between and . Ignoring the higher order
terms , the expectation of (39) equals

(40)

Applying polarization [(21)] to (40) using the orthonormal
basis vectors establishes parts 2) and 3) and shows
that and are symmetric. Using normal coordi-
nates, the th element of the matrix is seen to be

(41)

which depends linearly on the covariance matrix .
As with Gaussian curvature, the units of the sectional and

Riemannian curvatures and are the reciprocal

of square distance; therefore, the sectional curvature terms in
Lemma 1 are negligible for small errors and bias
norm much less than , i.e., errors and biases
less than the reciprocal square root of the maximal sectional
curvature. For example, the unit sphere has constant sectional
curvature of unity; therefore, the matrices and
may be neglected in this case for errors and biases much smaller
than 1 rad.

The intrinsic generalization of the Cramér–Rao lower bound
is as follows.

Theorem 2 (Cramér–Rao): Let be a family of pdfs
parameterized by , let be the log-likelihood
function, be the Fisher information metric, and

be an affine connection on . 1) For any estimator of
with bias vector field , the covariance matrix of ,

satisfies the matrix inequality

(42)

where Cov is the
covariance matrix

(43)

is the FIM, is the identity matrix,
is the covariant differential

of , are the Christoffel symbols, and the matrices
and representing sectional and Riemannian curvature
terms are defined in Lemma 1, all with respect to the arbitrary
coordinates near . 2) For
sufficiently small relative to , satisfies the ma-
trix inequality

(44)

3) Neglecting the sectional and Riemannian curvature terms
and at small errors and biases, satisfies

(45)

We may substitute “ ” for the expression “ ,”
interpreting it as the component by component difference for
some set of coordinates. In the trivial case , the proof
of Theorem 2 below is equivalent to asserting that the covariance
matrix of the zero-mean random vector

grad (46)
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is positive semi-definite, where grad is the gradient8 of with
respect to the FIM . Readers unfamiliar with technicalities
in the proof below are encouraged to prove the theorem in Eu-
clidean space using the fact that . As usual, the
matrix inequality is said to hold for positive semi-def-
inite matrices and if , i.e., is positive
semi-definite, or for all vectors .

Proof: The proof is a direct application of Lemma 1 to the
computation of the covariance of the random tangent vector

grad (51)

where grad is the gradient of with respect to the FIM
(see footnote 8). Denoting by , the covariance of
is given by

Cov

8The gradient of a function ` is defined to be the unique tangent vector
grad ` 2 T M such that g(grad `;
) = d`(
) for all tangent vectors 
.
With respect to particular coordinates

grad ` =G d` (47)

i.e., the ith element of grad ` is (grad `) = g (@`=@� ), where g is the
ijth element of the matrixG . Multiplication of any tensor by g (summation
implied) is called “raising an index,” e.g., if A = @`=@� are the coefficients
of the differential d`, then A = g A are the coefficients of grad `. The
presence ofG in the gradient accounts for its appearance in the CRB.
The process of inverting a Riemannian metric is clearly important for computing
the CRB. Given the metric g:T M � T M ! , there is a corresponding
tensor g :T M � T M ! naturally defined by the equation

g ( ; ) = g(
;
) (48)

for all tangent vectors 
, where the cotangent vector 2 T M is defined
by the equation g(
; X) = (X) for all X 2 T M (see footnotes 2 and 4
for the definition of the cotangent space T M ). The coefficients of the metric
g and the inverse metric g with respect to a specific basis are computed
as follows. Given an arbitrary basis (@=@� ); (@=@� ); . . . ; (@=@� ) of the
tangent space T M and the corresponding dual basis d� ; d� ; . . . ; d� of the
cotangent spaceT M such that d� (@=@� ) = � (Kronecker delta), we have

g = g
@

@�
;

@

@�
(49)

g = g (d� ; d� ): (50)

Then, g g g = g (tautologically, raising both indices of g ), and
the coefficients g of the inverse metric express the CRB with respect to this
basis.

(52)

The mean of vanishes, , and the covariance of ,
is positive semi-definite, which establishes the first part

of the theorem. Expanding
into a Taylor series about the zero matrix and computing
the first-order term

establishes the second part. The
third part is trivial.

For applications, the intrinsic FIM and CRB are computed as
described in Table I. The significance of the sectional and Rie-
mannian curvature terms is an open question that depends upon
the specific application; however, as noted earlier, these terms
become negligible for small errors and biases. Assuming that
the inverse FIM has units of beamwidth SNR for some
beamwidth, as is typical, dimensional analysis of (44) shows
that the Riemannian curvature appears in the SNR term of
the CRB.

Several corollaries follow immediately from Theorem 2. Note
that the tensor product of a tangent vector with itself is
equivalent to the outer product given a particular choice of
coordinates [cf. (9) and (10) for cotangent vectors].

Corollary 1: The second-order moment of , which
is given by

Cov
(53)

(viewed as a matrix with respect to given coordinates), satisfies
the matrix inequality

(54)

for sufficiently small and relative to
. Neglecting the sectional and Riemannian cur-

vature terms and at small errors and biases

(55)
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TABLE I

Corollary 2: Assume that is an unbiased estimator, i.e.,
(the zero vector field). Then, the covariance of the

estimation error satisfies the inequality

Cov
(56)

Neglecting the Riemannian curvature terms at small
errors, the estimation error satisfies

Cov (57)

Corollary 3 (Efficiency): The estimator achieves the
Cramér–Rao bound if and only if

grad

(58)

If is unbiased, then it achieves the CRB if and only if

grad (59)

Thus the concept of estimator efficiency [26], [60], [78] de-
pends upon the choice of affine connection, or, equivalently, the
choice of geodesics on , as evidenced by the appearance of
the operator and curvature terms in (58).

Corollary 4: The variance of the estimate of the th coor-
dinate is given by the th diagonal element of the matrix

[plus the first-order term in (44) for larger errors].
If is unbiased, then the variance of the estimate of the th co-
ordinate is given by the th diagonal element of the inverse of
the FIM (plus the first order term in (44) for larger errors).

Many applications require bounds not on some underlying pa-
rameter space but on a mapping of that space to another
manifold. The following theorem provides the generalization of
the classical result. The notation from footnote 2
is used to designate the push-forward of a tangent vector (e.g.,
the Jacobian matrix of in ).

Theorem 3 (Differentiable Mappings): Let , , ,
and be as in Theorem 2, and let be a differ-
entiable mapping from to the -dimensional manifold .
Given arbitrary bases , and

of the tangent spaces
and , respectively (or, equivalently, arbitrary coordinates),
for any unbiased estimator and its mapping

(60)

is the FIM, and the push-forward
is the by Jacobian matrix with respect to

these basis vectors.

Equation (60) in Theorem 3 may be equated with the change-of-
variables formula of (11) (after taking a matrix inverse) only
when is one-to-one and onto. In general, neither the inverse
function nor its Jacobian exist.

III. SAMPLE COVARIANCE MATRIX ESTIMATION

In this section, the well-known problem of covariance ma-
trix estimation is considered, utilizing insights from the previous
section. The intrinsic geometry of the set of covariance matrices
is used to determine the bias and efficiency of the SCM.

Let be an by matrix whose
columns are independent and identically distributed (iid) zero-
mean complex Gaussian random vectors with covariance ma-
trix (also see Diaconis [18, p.
110, ch. 6D and 6E]; the technical details of this identifica-
tion in the Hermitian case involve the third isomorphism the-
orem for the normal subgroup of matrices of the form ).

The pdf of is , where
is the SCM. The log-likelihood of this function

is (ignoring constants)

(61)
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We wish to compute the CRBs on the covariance matrix and
examine in which sense the SCM (the maximum likelihood
estimate) achieves these bounds. By Theorem 1, we may extract
the second-order terms of in to compute the FIM.
These terms follow immediately from the Taylor series

(62)

(63)

where and are arbitrary Hermitian matrices. It follows that
the FIM for is given by

(64)

that is, the Fisher information metric for Gaussian covariance
matrix estimation is simply the natural Riemannian metric
on given in (4) (scaled by , i.e., ); this
also corresponds to the natural metric on the symmetric cone

[25]. Given the central limit theorem and the
invariance of this metric, this result is not too surprising.

A. Natural Covariance Metric CRB

The formula for distances using the natural metric on of
(4) is given by the 2-norm of the vector of logarithms of the
generalized eigenvalues between two positive-definite matrices,
i.e.,

(65)

where are the generalized eigenvalues of the pencil
or, equivalently, . If multiplied

by , this distance between two covariance ma-
trices is measured in decibels, i.e.,

dB ; using Matlab notation, it
is expressed as . This distance
corresponds to the formula for the Fisher information metric for
the multivariate normal distribution [57], [64]. The manifold

with its natural invariant metric is not flat simply because,
inter alia, it is not a vector space, its Riemannian metric is
not constant, its geodesics are not straight lines [(67)], and its
Christoffel symbols are nonzero [see (66)].

Geodesics on the covariance matrices
corresponding to its natural metric of (4) satisfy the geodesic
equation , where the Christoffel symbols
are given by the quadratic form

(66)

(see footnote 6). A geodesic emanating from in the direction
has the form

(67)

where is the unique positive-definite symmetric (Hermi-
tian) square root of , and “exp” without a subscript denotes

the matrix exponential . This is
equivalent to the representation , where

is a tangent vector at [ for unit vectors] cor-
responding to [ for unit vectors] by the
coloring transformation

(68)

The appearance of the matrix exponential in (67), and in (120)
of Section IV-C for subspace geodesics, explains the “exp” no-
tation for geodesics described in footnote 6 [see also (69)]. From
the expression for geodesics in (67), the inverse exponential map
is

(69)

(unique matrix square root and logarithm of positive-definite
Hermitian matrices). Because Cramér–Rao analysis provides
tight estimation bounds at high SNRs, the explicit use of these
geodesic formulas is not typically required; however, the metric
of (65) corresponding to this formula is useful to measure dis-
tances between covariance matrices.

In the simple case of covariance matrices, the FIM and its
inverse may be expressed in closed form. To compute CRBs for
covariance matrices, the following orthonormal basis vectors
for the tangent space of (Hermitian matrices in this section)
at are necessary:

an by symmetric matrix whose th

diagonal element is unity, zeros elsewhere (70)

an by symmetric matrix whose th

and th elements are both

zeros elsewhere (71)

an by Hermitian matrix whose th

element is and th element

is zeros elsewhere (72)

There are real parameters along the diagonal of plus
real parameters in the off-diagonals, for a

total of parameters. For example, the 2 by 2 Hermitian ma-

trix is decomposed using four orthonormal

basis vectors as

(73)

and is therefore represented by the real 4-vector
. To obtain an orthonormal basis for

the tangent space of at , color the basis vectors by pre-
and post-multiplying by as in (68), i.e.,

(74)

where the superscript “ ” denotes a flag for using either the
Hermitian basis vectors or the symmetric basis vectors

; for notational convenience, is implied.
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With respect to this basis, (64) yields metric coefficients

(75)
(Kronecker delta), that is, .

A closed-form inversion formula for the covariance FIM is
easily obtained via (48) in footnote 8. The fact that the Hermitian
matrices are self-dual is used, i.e., if is a linear mapping from
the Hermitian matrices to , then may also be represented as
a Hermitian matrix itself via the definition

(76)

for all Hermitian matrices . The inverse of the Fisher informa-
tion metric (see footnote 8) is defined by

(77)

for all , where and are related by the equation
for all . Clearly, from (64)

(78)

(79)

Applying (77) and (79) to (64) yields the formula

(80)

To compute the coefficients of the inverse FIM with respect to
the basis vectors of (74), the dual basis vectors

(81)

are used; note that
.

We now have sufficient machinery to prove the following the-
orem.

Theorem 4: The CRB on the natural distance [see (65)] be-
tween and any unbiased covariance matrix estimator of
is

Hermitian case (82)

real symmetric case (83)

where is the root mean square error,
and the Riemannian curvature term has been neglected.
To convert this distance to decibels, multiply by .

Proof: The square error of the covariance measured using
the natural distance of (65) is

(84)

where each of the are the coefficients of the basis vectors
in (74), and are the coefficients of the

orthonormal basis vectors in the vector decomposition

(85)

Equation (84) follows from the consequence of (65) and
(67): The natural distance between covariance matrices along
geodesics is given by

(86)

which is simply the Frobenius norm of the whitened matrix
(see also see footnote 6). Therefore, the CRB

of the natural distance is given by

(87)

where is computed with respect to the coefficients and
. Either by (75) or by (80) and (81)

(88)

for , which establishes the theorem. The real symmetric
case follows because [ real pa-
rameters along the diagonal of plus real pa-
rameters in the off-diagonals; the additional factor of 2 comes
from the real Gaussian pdf of (110)].

B. Flat Covariance Metric CRB

The flat metric on the space covariance matrices expressed
using the Frobenius norm is oftentimes encountered:

(89)

Theorem 5: The CRB on the flat distance [see (89)] between
any unbiased covariance matrix estimator and is

(90)

(Hermitian case), where is the root

mean square error (flat distance), and denotes the th el-
ement of . In the real symmetric case, the scale factor in the
numerator of (90) is . The flat
and natural CRBs of Theorem 4 coincide when .

Proof: The proof recapitulates that of Theorem 4. For the
flat metric of (89), bounds are required on the individual coeffi-
cients of the covariance matrix itself, i.e., for the diagonals
of and for the real and imaginary off-diagonals.
Using these parameters

(91)

where the covariance is decomposed as the linear sum

(92)
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With respect to the orthonormal basis vectors and of
(70)–(72), the coefficients of the inverse FIM are

(93)

The CRB on the flat distance is

(94)

A straightforward computation shows that

(95)

(96)

(97)

establishing the theorem upon summing over .

C. Efficiency and Bias of the Sample Covariance Matrix

We now have established the tools with which to examine
the intrinsic bias and efficiency of the sample covariance matrix

in the sense of (23) and Corollary 3. Obviously,
, but this linear expectation operation means the inte-

gral , which treats the covariance matrices as a
convex cone [25] included in the vector space (
for the real, symmetric case; a convex cone is a subset of a vector
space that is closed under addition and multiplication by posi-
tive real numbers). Instead of standard linear expectation valid
for vector spaces, the expectation of is interpreted intrinsi-
cally as for various
choices of geodesics on , as in (22).

First, observe from the first-order terms of (62) and (63) that

(98)

establishing that maximizes the likelihood. Because the SCM
is the maximum likelihood estimate, it is asymptotically effi-

cient [17], [78] and independent of the geodesics chosen for .
From the definition of the gradient (see footnote 8),

grad for all ; therefore, with respect to
the FIM

grad (99)

The well-known case of the flat metric/connection on is
examined first. Flat distances between and are given by the
Frobenius norm as in (89), and the geodesic between
these covariance matrices is , .
Obviously for the flat connection, .

Theorem 6: The sample covariance matrix is an unbiased
and efficient estimator of the covariance with respect to the
flat metric on the space of covariance matrices .

Proof: Trivially, for the flat
metric; therefore, is unbiased with respect to this metric. By

Corollary 3, an unbiased estimator is efficient if
grad , which, by (99), is true for the flat metric.

The flat metric on has several undesirable practical prop-
erties. It is well known that the SCM is not a very good esti-
mate of for small sample sizes (which leads to ad hoc
techniques such as diagonal loading [67] and reference prior
methods [81]), but this dependence of estimation quality on
sample support is not fully revealed in Theorem 6, which en-
sures that the SCM always achieves the best accuracy possible.
In addition, in many applications treating the space of covari-
ance matrices as a vector space may lead to degraded algorithm
performance, especially when a projection onto submanifolds
of (structured covariance matrices) is desired [8]. The flat
metric has undesirable geometric properties as well. Because
the positive-definite Hermitian matrices are convex, every point
on straight-line geodesics is also a positive-definite Hermitian
matrix. Nevertheless, these paths may not be extended indefi-
nitely to all . Therefore, the space endowed with the
flat metric is not geodesically complete, i.e., it is not a complete
metric space. Furthermore, and much more significantly for ap-
plications, the flat connection is not invariant to the group ac-
tion of on the positive-definite Hermi-
tian matrices, i.e., .
Therefore, the CRB depends on the underlying covariance ma-
trix , as seen in Theorem 5.

In contrast, the natural metric on in (65) has none of these
defects and reveals some remarkable properties about the SCM,
as well as yielding root mean square errors that are consistent
with the dependence on sample size observed in theory and
practice (see Fig. 3). The natural distance RMSE varies with
the sample size relative to the CRB, unlike the flat distance
RMSE, whose corresponding estimator is efficient and, there-
fore, equals its Cramér–Rao lower bound at all sample sizes.
Furthermore, the natural metric is invariant to the group action
of ; therefore, it yields bounds that are independent of
the underlying covariance matrix . In addition, endowed
with this metric is a geodesically complete space. Because the
natural Riemannian metric on [see (65)] has the properties
of accounting for the change in estimation quality of the SCM
as the sample size varies, being invariant to the group action of

and therefore independent of , and yielding a com-
plete metric space for , it is recommended for the analysis of
covariance matrix estimation problems.

Theorem 7: The sample covariance matrix estimator with
respect to the natural metric on is biased and not efficient.
The bias vector field and expectation of with respect to are

(100)

(101)

where

(102)

(Hermitian case), and is the digamma func-
tion. In the real symmetric case,
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Fig. 3. CRB and RMSE of the distance on P (in decibels, Hermitian case) of
the SCM ^R fromR versus sample support. A Monte Carlo simulation is used
with 1000 trials and Wishart distributed SCMs. R itself is chosen randomly
from a Wishart distribution. The unbiased natural CRB [see (82), dotted cyan]
is shown below the biased natural CRB [see (105), solid red], which is itself
below the unbiased flat CRB [see (90), solid magenta]. The RMSEs of the
natural and flat (Frobenius) distances of (65) and (89) are the dashed (blue
below green) curves (respectively). Because the SCM w.r.t. the flat metric is
an efficient estimator, the RMSE lies on top of its CRB; however, unlike the
(inefficient) natural distance, the (efficient) flat distance does not accurately
reflect the varying quality of the covariance matrix estimates as the sample
size varies, as does the natural distance [Theorem 7 and Corollary 5]. The
SCM w.r.t. the natural metric is biased and inefficient and, therefore, does not
achieve the biased natural CRB. Nevertheless, the maximum likelihood SCM
is always asymptotically efficient. The SCM’s Riemannian curvature terms,
which become significant for covariance errors on the order of 8.7 dB, have
been neglected.

. Furthermore, this bias is par-
allel, and the matrix of sectional curvature terms vanishes, i.e.,

and (103)

Proof: From the definition of the bias vector in
(23) and the inverse exponential in (69),

,
where is the whitened SCM.
Therefore, the bias of the SCM is given by the col-
ored expectation of . The whitened SCM
has the complex Wishart distribution CW .
Using the eigenvalue decomposition of ,

,
where is an arbitrary column of : the last equality
following from the independence of eigenvalues and
eigenvectors [47]. For the eigenvector part,
because for a complex normal vector

(zero mean, unit variance). For the eigenvalue part,
, and the

distribution of is the same as :
the product of independent complex chi-squared random
variables [ ; Muirhead’s The-
orem 3.2.15 [47] contains the real case]. Therefore,

, where is the digamma
function. Applying standard identities for evaluated

at the integers yields
of (102). Therefore, , and thus,

, establishing the first part of the theorem.
The proof of the real case is left as an exercise.

To prove that the SCM is not efficient, must be com-
puted. Using the description of the covariant derivative in
footnote 5,
for any vector field along the
geodesic . For the bias vector field,

, and
. Applying the Christoffel symbols

of (66),
. This is true for

arbitrary ; therefore, , and the bias of the SCM is
parallel. This fact can also be shown using the explicit formula
for parallel translation on and (15):

(104)
The proof that the SCM is not efficient is completed by ob-
serving that (58) in Corollary 3 does not hold for of
(69), of (100), and grad of (99). Finally, computing
the matrix defined in (33) at gives

, because the formula for the sectional cur-
vature of , [see (28) of
footnote 7] vanishes trivially for . By invari-
ance, for all .

It is interesting to note that both and vanish (con-
veniently) because the SCMs bias vector is tangent to the 1-D
Euclidean part of the symmetric space decomposition [31, ch. 5,
sec. 4] , where the

part represents the determinant of the covariance matrix. That
is, the SCMs determinant is biased, but it is otherwise unbiased.

Theorem 7 is of central importance because it quantifies the
estimation quality of the sample covariance matrix, especially
at low sample support.

Corollary 5: The CRB of the natural distance of the SCM
estimate from is

(105)

(Hermitian case), where is the mean
square error, is defined in (102), and the Riemannian
curvature term has been neglected.

Proof: The proof is an application of (54) of Corollary
1. Because is parallel, the bound on is
given by , where the tensor product
is interpreted to be the outer product over the -dimensional
vector space and not the Kronecker product of matrices.
The first part of this sum is established in (82) of Theorem 4 and
the second part by the fact that the trace of the outer product of
two vectors equals their inner product:

.
An expression for the Riemannian curvature term

for the SCM, which becomes significant for errors of order
dB, is

possible using the sectional curvature of given in (28) of
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footnote 7. At , let ,
and let be a Hermitian matrix. Then

(106)

where is the Lie bracket. It can be shown
that if and

if .
A connection can also be made with asymptotic results for

the eigenvalue spectrum of the SCM. The largest and smallest
eigenvalues and of the whitened SCM are ap-
proximated by

(107)

( large, ) [36], [62]. For , the extreme spec-
tral values of differ considerably from unity, even though

for all , and this estimator is efficient with respect
to the flat connection. Indeed, by the deformed quarter-circle
law [36], [42], [63] for the asymptotic distribution of the spec-
trum of (large ), the mean square of the natural distance of

from is

(108)

, where . For large and large sample
support (i.e., small ), the SCMs (biased) CRB in (105) has the
asymptotic expansion

(109)

whose linear term in coincides exactly with that of (108)
because the SCM is asymptotically efficient. The SCM
is not efficient for (finite sample support), and
the quadratic terms of (108) and (109) differ, with the
CRB’s quadratic term being strictly less than
the mean square error’s quadratic term ; adding
the SCM’s Riemannian curvature terms from (108) adds
a term of , resulting in

. We note in passing the similarity
between the first-order term in of this CRB and
the well-known Reed–Mallett–Brennan estimation loss for
adaptive detectors [58], [67].

IV. SUBSPACE AND COVARIANCE ESTIMATION ACCURACY

We now return to the analysis of estimating an unknown sub-
space with an underlying unknown covariance matrix given in
(1). The parameter space is the product manifold

, with the covariance matrix being an unknown nuisance
parameter. The dimension of this product manifold is the sum
of the dimensions of and , which equals

in the real case and in the proper
complex case. We will focus on the real case in this section; the
proper complex case is a trivial extension.

A. Subspace and Covariance Probability Model

Let be a real by matrix whose
columns are iid random vectors defined by (1). The joint pdf of
this data matrix is

(110)

(111)

where is the sample covariance matrix, and
the by and by matrices and represent the un-
known subspace and covariance, respectively. The log-likeli-
hood of this function is (ignoring constants)

(112)

The maximum likelihood estimate of the subspace is simply
the -dimensional principal invariant subspace of the whitened
SCM . Indeed, a straightforward compu-
tation involving the first-order terms of (62) and (63) establishes
that solving the equation results in the invariant
subspace equation [23]

for , such that . Choosing to be the invariant
subspace corresponding to the largest eigenvalues of maxi-
mizes the log-likelihood.

B. Natural Geometry of Subspaces

Closed-form expressions for CRBs on the parameters and
are obtained if points on the Grassmann manifold are repre-

sented by by matrices such that

(113)

and post-multiplication of any such matrix by an orthogonal
by matrix represents the same point in the equivalence class.
This constraint is a colored version of the convenient represen-
tation of points on by matrices with orthonormal columns
[1], [23] and simply amounts to the whitening transformation

(114)

where . Given such a matrix with orthonormal
columns or, equivalently, satisfying (113), tangent
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vectors to the Grassmann manifold are represented by by
matrices or (colored case) of the
form

whitened case (115)

colored case (116)

such that and or, equivalently,
that is an arbitrary by matrix with orthonormal
columns such that and ,

, and is an arbitrary by matrix [23]. Cotan-
gent vectors in (whitened case) are also represented by

by matrices with the identification

(117)

for all such that . In the colored case,
; therefore,

, and . As usual, dual
vectors are whitened contravariantly.

The CRB for the unknown subspace will be computed using
the natural metric on given by [23]

(118)

Distances corresponding to this metric are give by the 2-norm
of the vector of principal angles between two subspaces, i.e.,

(119)

, where are the singular values of
the matrix . This distance between two subspaces is
measured in radians; in Matlab notation, it is expressed as

. There are several
other subspace distances that are defined by embeddings of the
Grassmann manifold in higher dimensional manifolds [23, p.
337]. Both the arccosine implicit in (119) and the logarithm for
the natural metric on in (65) correspond to the inverse of the
exponential map “ ” discussed in Section II-B.

Applying (115) to (118) shows that the natural distance be-
tween two nearby subspaces is given by the Frobenius norm of
the matrix . Therefore, the CRB of the
natural subspace distance is given by the FIM with respect to
the elements of . This fact is made rigorous by the following
observations. Geodesics on the Grassmann manifold cor-
responding to its natural metric are given by the formula [23]

(120)

where is the compact SVD of the tangent vector
at ( , ). For the proper complex

case, the transpositions in (120) may be replaced with conjugate
transpositions. Furthermore, it may be verified that for the case
of geodesics provided in (120)

(121)

[see also (86) for covariance matrices and footnote 6 for the
general case]. Geodesics for subspaces satisfy the differential

equation , where the Christoffel symbols
for the Grassmann manifold are given by the quadratic
form [23]

(122)

The inverse exponential map is given by ,
where these matrices are computed with the compact SVDs

(singular values in ascending order)
and (singular values
in descending order), and the formulas ,

(principal values), and . Then,
; note that

and that .

C. Subspace and Covariance FIM and CRB

Theorem 1 ensures that we may extract the second-order
terms of in and to compute the
FIM. The Fisher information metric for the subspace plus
covariance estimation problem of (1) is obtained by using the
second-order terms of the Taylor series given in (62) and (63),
along with (16) and the perturbation

(123)

where the first- and second-order terms are

(124)

(125)

The resulting FIM is given by the quadratic form

(126)

Only the first-order terms of (123) appear, and (126) is con-
sistent with the well-known case of stochastic CRBs [60]:

for the param-
eters . Applying the Woodbury formula

(127)

to (126) and the constraint of (113) yields the simplified FIM
for the covariance and subspace estimation problem:

(128)

In the proper complex case, (128) may be modified by removing
the factor of 1/2 that appears in the front and replacing the trans-
pose operator with the Hermitian (conjugate transpose) oper-
ator. There are no cross terms between the covariance and sub-
space components of the joint FIM; therefore, there is no esti-
mation loss on the subspace in this example.

CRBs on the covariance and subspace parameters are ob-
tained by computing the inverse metric (as described in
footnote 8). This inverse is given by the equation

(129)
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where the cotangent vectors and
(colored) are defined by the equation

for all tangent vectors
and (colored). Using (76), (117), and (128) to
solve for and as functions of and yields

(130)

(131)

Finally, these expressions for and may be inserted into
(129) to obtain the inverse Fisher information metric

(132)

D. Computation of the Subspace CRB

The inverse Fisher information metric of (132) provides the
CRB on the natural subspace distance between the true subspace
and any unbiased estimate of it. Because this distance corre-
sponds to the Frobenius norm of the elements of the matrix in
(115), the FIM and inverse FIM will be computed with respect to
the basis of the tangent space of using these elements and
the corresponding dual basis of the cotangent space. Using clas-
sical Cramér–Rao terminology, we will compute a lower bound
on the root mean square subspace error

(133)

between an estimate of , where are the elements of .
The orthonormal basis vectors (whitened case) of are

(134)

an arbitrary by matrix

such that (135)

an by matrix whose th

element is unity zeros elsewhere (136)

For convenience, we will also use the orthonormal basis vectors
for the tangent space of defined in (74), although the in-

variance of the subspace accuracy to this choice of basis ensures
that this choice is arbitrary.

The full FIM for the subspace and nuisance covariance pa-
rameters is written conveniently in block form as

(137)

where is a square matrix of order representing the
covariance block, is a square matrix of order rep-
resenting the subspace block, and is a by

matrix that represents the cross terms, which vanish in this ex-
ample. Using the Fisher information metric of (128), the
coefficients of these blocks are

(138)

(139)

(140)

Note that a basis for the tangent space of the product manifold
must be used, analogous to standard Cramér–Rao

analysis with a nuisance parameter. The CRB for the subspace
accuracy is given by the lower right subspace block of ,
which is expressed using the inverse of the Schur complement
of as

(141)

The bound on the subspace estimation accuracy is then given by
the formula

(142)

where is the RMSE defined in (133), and the sectional and
Riemannian curvature terms and have been ne-
glected. The invariance of this result to any particular basis for
the tangent space of the covariance matrices may be seen by
substituting and into (141) for an ar-
bitrary invertible matrix , as in standard Cramér–Rao analysis.
For problems in which the cross terms of (137) are nonzero,

in (141) quantifies the loss in measurement accuracy asso-
ciated with the necessity of estimating the nuisance parameters.

Alternatively, the formula for the inverse FIM of (132) may
be used to compute :

(143)

where is the (colored) dual basis vector

of in (134).
In the specific case SNR (but unknown), where SNR

is the signal-to-noise ratio, the blocks of the FIM in (137) with
respect to the basis vectors above simplify to

SNR
SNR
SNR
SNR

(144)

As a result

SNR

SNR
rad (145)

where the sectional and Riemannian curvature terms and
have been neglected. For large SNR, this expression is

well approximated by SNR rad .
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Fig. 4. RMSEs of the whitened and unwhitened SVD-based subspace
estimator (Section IV-E) and the CRB of (143) versus SNR for the estimation
problem of (1) on G . R and R are chosen randomly from a Wishart
distribution, and ~Y is chosen randomly from the uniform distribution on G
[orth(randn(n; p)) in Matlab notation]. The RMSE of the unwhitened SVD
estimate is the dashed (green) curve, which exceeds the RMSE of the whitened
SVD estimate (dashed blue curve) because of the bias induced by R . Below
these curves is the CRB in the solid (red) curve. A constant sample support
of 10 = 5p snapshots and 1000 Monte Carlo trials are used. The RMSEs of
the SVD-based subspace estimators are a small constant fraction above the
Cramér–Rao lower bound over all SNRs shown.

E. SVD-Based Subspace Estimation

Given an by data matrix whose columns are iid random
vectors, the standard method [16], [28], [40] of estimating the

-dimensional principal invariant subspace of is to compute
the (compact) SVD

(146)

where is an by orthogonal matrix, is an by ordered
diagonal matrix, and is a by matrix with orthonormal
columns. The -dimensional principal invariant subspace of
is taken to be the span of the first columns of .

Furthermore, if an estimate is desired of the subspace rep-
resented by the matrix in (1) and the background noise co-
variance is nonwhite and known, the simple SVD-based es-
timator using the data vectors is biased by the principal in-
variant subspace of . In this case, a whitened SVD-based ap-
proach is used, whereby the SVD of the
whitened data matrix is computed, then is taken to be the
first columns of , and . As noted, this is the
maximum likelihood estimate and is therefore asymptotically
efficient as [17], [78].

F. Simulation Results

A Monte Carlo simulation was implemented to compare the
subspace estimation accuracy achieved by the SVD-based esti-
mation methods described in Section IV-E with the CRB pre-
dicted in Section IV-C. A 2-D subspace in (chosen ran-
domly from the uniform distribution on ) is estimated given
a known 5 by 5 noise covariance and an unknown 2 by 2
covariance matrix (chosen randomly from a Wishart distri-
bution, SNR , where SNR is a signal-to-noise ratio

Fig. 5. RMSEs of the whitened and unwhitened subspace estimators
(Section IV-E) and the CRB of (143) versus sample support (divided by p)
for the estimation problem of (1) on G . The RMSE of the unwhitened
SVD estimate is the dashed (green) curve, which exceeds the RMSE of the
whitened SVD estimate (dashed blue curve) because of the bias induced byR ,
especially at large sample support. Below these curves is the CRB in the solid
(red) curve. A constant SNR of 21 dB and 1000 Monte Carlo trials are used.
Note that, as expected, the RMSE of the whitened SVD estimate approaches
the Cramér–Rao lower bound as the sample support becomes large, i.e., this
maximum likelihood estimator is asymptotically efficient.

that may be varied). Once , , , and the number of inde-
pendent snapshots are specified, the CRB is computed from
these values as described in Section IV-C. One thousand (1000)
Monte Carlo trials are then performed, each of which consists
of computing a normal by data matrix whose covari-
ance is , estimating from the -dimensional principal in-
variant subspace of and the whitened data matrix
and then computing the natural subspace distance between these
estimates and (using the 2-norm of the vector of principal
angles, in radians). The results comparing the accuracy of the
whitened and unwhitened SVD estimators to the CRB are shown
in Figs. 4 and 5 as both the SNR and the sample support vary.
As the SNR is varied, the SVD-based method achieves an ac-
curacy that is a small constant fraction above the Cramér–Rao
lower bound. Because the unwhitened SVD estimator is biased
by , its RMSE error is higher than the whitened SVD esti-
mator, especially at higher sample support. As the sample sup-
port is varied, the accuracy of the SVD-based method asymp-
totically approaches the lower bound, i.e., the SVD method is
asymptotically efficient. We are reminded that Table II lists dif-
ferential geometric objects and their more familiar counterparts
in Euclidean -space .

V. CONCLUSIONS

Covariance matrix and subspace estimation are but two ex-
amples of estimation problems on manifolds where no set of in-
trinsic coordinates exists. In this paper, biased and unbiased in-
trinsic CRBs are derived, along with several of their properties,
with a view toward signal processing and related applications.
Of specific applicability is an expression for the Fisher informa-
tion metric that involves the second covariant differential of the
log-likelihood function given an arbitrary affine connection, or,
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TABLE II

equivalently, arbitrary geodesics. These general results are then
applied to the specific examples of estimating a covariance ma-
trix in the manifold of positive-definite
matrices and estimating a subspace in the Grassmann manifold

in the presence of an un-
known covariance matrix in . The CRB of an unbiased covari-
ance matrix estimator using both the natural and flat (Frobenius)
covariance metrics is derived and shown for the natural metric to
be dB ( by Hermitian case with sample
support ). It is well known that with respect to the flat metric,
the sample covariance matrix is an unbiased and efficient esti-
mator, but this metric does not quantify the extra loss in esti-
mation accuracy observed at low sample support. Remarkably,
the sample covariance matrix is biased and not efficient with
respect to the natural invariant metric on , and the SCM’s
bias reveals the extra loss of estimation accuracy at low sample
support observed in theory and practice. For this and other geo-
metric reasons (completeness, invariance), the natural invariant
metric for the covariance matrices is recommended over the flat
metric for analysis of covariance matrix estimation.

The CRB of the subspace estimation problem is computed
in closed form and compared with the SVD-based method of
computing the principal invariant subspace of a data matrix.
In the simplest case, the CRB on subspace estimation accu-
racy is shown to be about SNR rad
for -dimensional subspaces. By varying the SNR of the un-
known subspace, the RMSE of the SVD-based subspace estima-
tion method is seen to exceed the CRB by a small constant frac-
tion. Furthermore, the SVD-based subspace estimator is con-
firmed to be asymptotically efficient, consistent with the fact
that it is the maximum likelihood estimate. From these obser-
vations, we conclude that the principal invariant subspace can
provide an excellent estimate of an unknown subspace. In ad-
dition to the examples of covariance matrices and subspaces,
the theory and methods described in this paper are directly ap-
plicable to many other estimation problems on manifolds en-
countered in signal processing and other applications, such as
computing accuracy bounds on rotation matrices, i.e., the or-
thogonal or unitary groups, and subspace basis vectors, i.e., the
Stiefel manifold.
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Finally, several intriguing open questions are suggested by the
results: What is the geometric significance of the fact that only
the SCM’s determinant is biased? Does this fact, along with the
numerical results in Section III-C, suggest improved covariance
estimation techniques at low sample support? Would any such
technique be preferable to the ad hoc but effective method of
“diagonal loading”? Is the whitened SVD a biased subspace es-
timator? Does the geometry of the Grassmann manifold, akin
to the SCM’s biased determinant, have any bearing on sub-
space bias? Are there important applications where the curva-
ture terms appearing in the CRB are significant? Such questions
illustrate the principle that admitting a problem’s geometry into
its analysis not only offers a path to the problem’s solution but
also opens new areas of study.
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