
An Agent-based System for Robotic Musical
Performance

Arne Eigenfeldt
School of Contemporary Arts

Simon Fraser University
Burnaby, BC

Canada

arne_e@sfu.ca

Ajay Kapur
School of Music

California Institute of the Arts
Valencia, CA

USA

akapur@calarts.edu

ABSTRACT
This paper presents an agent-based architecture for robotic
musical instruments that generate polyphonic rhythmic patterns
that continuously evolve and develop in a musically
“intelligent” manner. Agent-based software offers a new
method for real-time composition that allows for complex
interactions between individual voices while requiring very
little user interaction or supervision. The system described,
Kinetic Engine, is an environment in which individual software
agents, emulate drummers improvising within a percussion
ensemble. Player agents assume roles and personalities within
the ensemble, and communicate with one another to create
complex rhythmic interactions. In this project, the ensemble is
comprised of a 12-armed musical robot, MahaDeviBot, in
which each limb has its own software agent controlling what it
performs.

Keywords
Robotic Musical Instruments, Agents, Machine Musicianship.

1. INTRODUCTION
MahaDeviBot [11, 12] is a robotic drummer comprised of
twelve arms, which performs on a number of different
instruments from India, including frame drums, shakers, bells,
and cymbals. As such, it is, in itself, an ensemble, rather than a
single instrument; to effectively create music for it –
particularly generatively in real-time performance - an
intelligent method of interaction between the various
instruments is required.

The promise of agent-based composition in musical real-time
interactive systems has already been suggested [23, 18, 16],
specifically in their potential for emulating human performer
interaction. Agents have been defined as autonomous, social,
reactive, and proactive [22], similar attributes required of
performers in improvisation ensembles.

The notion of an “agent” varies greatly: Minsky’s original
agents [15] are extremely simple abstractions that require
interaction in order to achieve complex results. Recent work by
Beyls [1] offers one example of such simple agents that
individually have limited abilities, but can co-operate to create
high levels of musical creation.

The authors’ view of agency is directly related to existing
musical paradigms: the improvising musician. Such an agent
must have a much higher level of knowledge, but, similar to
other multi-agent systems, each agent has a “limited viewpoint”
of the artistic objective, and, as such, collaboration is required
between agents to achieve (musical) success.

Kinetic Engine [6, 7], created in Max/MSP, is a real-time
generative system in which agents are used to create complex,
polyphonic rhythms that evolve over time, similar to how actual
drummers might improvise in response to one another. A
conductor agent loosely co-ordinates the player agents, and
manages high-level performance parameters, specifically
density: the number of notes played by all agents. Each agent
manages one of the percussion instruments of MahaDeviBot,
aware of its function within the ensemble, and its specific
physical limitations.

2. RELATED WORK
2.1 Multi-agent Systems
Multiple-agent architectures have been used to track beats
within acoustic signals [10, 5] in which agents operate in
parallel to explore alternative solutions. Agents have also been
used in real-time composition [21, 3]. Burtner suggests that
multi-agent interactive systems offer the possibility for new
complex behaviours in interactive musical interfaces that can
“yield complexly organic structures similar to ecological
systems”. Burtner’s research has focused upon performance,
and extending instrumental technologies, rather than interactive
composition; as such, his systems are reactive, rather than
proactive, a necessary function of agency.

Dahlstedt and McBurney [4] developed a multi-agent model
based upon Dahlstedt’s reflections on his own compositional
processes. They suggest such introspection will “yield lessons
for the computational modeling of creative processes”. Their
system produces output “that (is) not expected or predictable –
in other words, a system that exhibits what a computer scientist
would call emergent properties.”

Wulfhorst et al. [23] created a multi-agent system where
software agents employ beat-tracking algorithms to match their
pulse to that of human performers. Although of potential benefit
for real-time computer music and robotic performance, the
research’s musical goals are rather modest: “Each agent has a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME08, June 4-8, 2008, Genova, Italy
Copyright remains with the author(s).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME08, June 4-8, 2008, Genova, Italy
Copyright remains with the author(s).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME08, June 4-8, 2008, Genova, Italy
Copyright remains with the author(s).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME08, June 4-8, 2008, Genova, Italy
Copyright remains with the author(s).

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

144

defined rhythmic pattern. The goal of an agent is to play his
instrument in synchronism with the others.”

Murray-Rust and Smaill’s AgentBox [17] uses multi-agents in a
graphic environment, in which agents “listen” to those agents
physically (graphically) close to one another. A human
conductor can manipulate the agents - by moving them around -
in a “fast and intuitive manner”, allowing people to alter aspects
of music “without any need for musical experience”. The
stimulus behind AgentBox is to create a system that will “enable
a wider range of people to create music,” and facilitate “the
interaction of geographically diverse musicians”.

2.2 Rhythm Generation
Various strategies and models have been used to generate
complex rhythms within interactive systems. Brown [2]
describes the use of cellular automata (CA) to create
monophonic rhythmic passages and polyphonic textures in
“broad-brush, rather than precisely deterministic, ways.” He
suggests “CA provide a great deal of complexity and interest
from quite simple initial set-up”. However, complexity
generated by CA is no more musical than complexity generated
by constrained randomness. Brown recognises this when he
states that rhythms generated through the use of CA “often
result in a lack of pulse or metre. While this might be
intellectually fascinating it is only occasionally successful from
the perspective of a common aesthetic.”

Pachet [19] proposes an evolutionary approach for modeling
musical rhythm, noting that “in the context of music catalogues,
[rhythm] has up to now been curiously under studied.” In his
system, “rhythm is seen as a musical form, emerging from
repeated interaction between several rhythmic agents.” Pachet’s
model is that of a human improvisational ensemble: “these
agents engage into a dynamic game which simulates a group of
human players playing, in real time, percussive instruments
together, without any prior knowledge or information about the
music to play, but the goal to produce coherent music together.”

Agents are given an initial rhythm and a set of transformation
rules from a shared rule library; the resulting rhythm is “the
result of ongoing play between these co-evolving agents.” The
agents do not actually communicate, and the rules are extremely
simple: i.e. add a random note, remove a random note, move a
random note. The system is more of a proof of concept than a
performance tool; it developed into the much more powerful
Continuator [20], a real-time stylistic analyser and variation
generator.

Martins/Miranda [13] describe a system the uses a connectionist
approach to representing and learning rhythms using neural
networks. The approach allows for the computer to learn
rhythms through similarity by mapping incoming rhythms in a
three dimensional space. The research is part of a longer project
[16, 14] in which self-organising agents create emergent music
through social interactions; as such, the emphasis is not upon
the interaction of rhythms as in the emergence of new and/or
related rhythmic patterns.

Gimenes [9] explores a memetic approach that creates stylistic
learning methods for rhythm generation. As opposed to viewing
rhythmic phrases as consisting of small structural units
combined to form larger units (a more traditional method of
musical analysis), the memetic approach suggests longer blocks
that are dependent upon the listener (suggesting a more recent
cognitive method of rhythmical analysis that utilizes
“chunking”). RGeme “generates rhythm streams and serves as a
tool to observe how different rhythm styles can originate and
evolve in an artificial society of software agents.”

Kinetic Engine, in collaboration with MahaDeviBot, builds
upon such previous efforts; however, it is fundamentally
different in two respects: firstly, it is a real-time system with
performance as its primary motivation; secondly, the software
controls a physical instrument that requires mechanical
movement.

3. AGENT-GENERATED RHYTHM
It is important to recognize that rhythmic intricacy can result
not only from the evolution of individual rhythms, but also
through the interaction of quite simple parts; such interaction
can produce musical complexity within a system. The
interrelationship of such simple elements requires musical
knowledge in order to separate interesting from pedestrian
rhythm. Such interaction suggests a multi-agent system, in
which complexity results from the interaction of independent
agents.

Existing musical models for such a system can be found in the
music of African drum ensembles and Central and South
American percussion ensembles (note that Indian classical
music, which contains rhythmic constructions of great
complexity, is fundamentally solo, and therefore lacks rhythmic
interaction of multiple layers). Furthermore, models for the
relationship of parts within an improvising ensemble can be
found in jazz and certain forms of Techno. For more
information on such modeling, see [8].

4. TOOLS

4.1 MahaDeviBot

Figure 1.MahaDeviBot controlled by Kinetic Engine.

The development of the MahaDeviBot serves as a paradigm for
various types of solenoid-based robotic drumming techniques,
striking twelve different percussion instruments gathered from
around India, including frame drums, bells, finger cymbals,
wood blocks, and gongs. The machine even has a bouncing
head that can portray tempo to the human performer. The
MahaDeviBot serves as a mechanical musical instrument that
extends North Indian musical performance scenarios, which
arose out of a desire to build a pedagogical tool to keep time
and help portray complex rhythmic cycles to novice performers
in a way that no audio speakers can ever emulate. It accepts
MIDI messages to communicate with any custom software or
hardware interface.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

145

4.2 Kinetic Engine
Kinetic Engine is a real-time composition/performance system
created in Max/MSP, in which intelligent agents emulate
improvising percussionists in a drum ensemble. It arose out of a
desire to move away from constrained random choices and
utilise more musically intelligent decision-making within real-
time interactive software.

The principle human control parameter in performance is
limited to density: how many notes played by all agents. All
other decisions - when to play, what rhythms to play in
response to the global density, how to interact with other agents
– are left to the machines’ individual agents.

Agents generate specific rhythms in response to a changing
environment. Once these rhythms have been generated, agents
“listen” to one another, and potentially alter their patterns based
upon these relationships. No databases of rhythms are used:
instead, pre-determined musical rules determine both generation
and alteration of rhythmic patterns.

5. AGENTS
Agent-based systems allow for limited user interaction or
supervision, allowing for more high-level decisions to be made
within software. This models interactions between intelligent
improvising musicians, albeit with a virtual conductor shaping
and influencing the music.

There are two agent classes: a conductor and an indefinite
number of players (although in this case the agents are limited
to the twelve instruments of the robot).

5.1 Conductor Agent
The conductor agent (hereafter simply referred to as “the
conductor”) has three main functions: firstly, to handle user
interaction; secondly, to manage (some) high-level
organisation; thirdly, to send a global pulse.

Kinetic Engine is essentially a generative system, with user
interaction being limited to controlling only a few global
parameters:

• individual on/off – individual agents can be forced to “take
a rest” and not play.

• density – the relative number of notes played by all agents.
(Described in section 6.1).

• global volume – the approximate central range of an
agent’s velocity. Agents vary their velocities independently,
and will “take solos” (if they feel they are playing something
interesting) by increasing their velocity range; however, their
central velocity range can be overridden by the conductor.

• agent parameter scaling – the user can influence how the
individual agents may react. (Described in section 5.2).

• new pattern calculation – agents can be forced to “start
again” by regenerating their patterns based upon the
environment.

Metre, tempo, and subdivision are set prior to performance by
the user, and remain static for a composition. The conductor
also sends a global pulse, to which all player agents
synchronise.

5.2 Player Agents
Upon initialisation, player agents (hereafter referred to simply
as “agents”) read a file from disk that determines several
important aspects about their behaviour; namely their type and
their personality.

Type can be loosely associated with the instrument an agent
plays, and the role such an instrument would have within the
ensemble. Table 1 describes how type influences behaviour.

Table 1. Agent type and influence upon agent behaviour.

Type Low Type Mid Type High

Timbre low frequency:

• frame drums

midrange
frequency:

• gongs
• shakers

high frequency:
 • hand drum
• tambourine

Density lower than
average

average higher than
average

Variation less often average more often

The stored personality traits include Downbeat (preference
given to notes on the first beat), Offbeat (propensity for playing
off the beat), Syncopation (at the subdivision level), Confidence
(number of notes with which to enter), Responsiveness (how
responsive an agent is to global parameter changes), Social
(how willing an agent is to interact with other agents),
Commitment (how long an agent will engage in a social
interaction), and Mischievous (how willing an agent is to
disrupt a stable system). A further personality trait is Type-
scaling, which allows for agents to be less restricted to their
specific types. For example, low agents will tend to have lower
densities than other types, but a low agent with a high type-
scaling will have higher than usual densities for its type. See
Figure 2 for a display of all personality parameters.

Figure 2. Example personality parameters for a player

agent.

6. RHYTHMIC CONSTRUCTION

6.1 Density
Agents respond to the global density variable – this correlates to
the number of notes playing within a measure. Agents are
unaware of the exact global density required, and instead rely
upon the conductor to rate the requested density as “very low”,
“low”, “medium”, or “high” and broadcast this rating. Agents
know the average number of notes in a pattern based upon this
rating, which is scaled by the agent’s type and type-scaling
parameter. Agents apply a Gaussian distribution around this
average, and choose an actual density from within this curve,
thereby maintaining some unpredictability in actual density
distribution.

The conductor collects all agent densities, and determines
whether the accumulated densities are “way too low/high”, “too
low/high”, or “close enough” in comparison to the global
density, and broadcasts this success rating.

[1] if the accumulated density is “way too low”, non-
active agents can activate themselves and
generate new densities (or conversely, active
agents can deactivate if the density is “way to
high”).

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

146

[2] if the accumulated density is “too low”, active agents
can add notes (or subtract them if the density is
“too high”).

[3] if the accumulated density is judged to be “close
enough”, agent densities are considered stable.

6.2 Density Spread
An agent’s density (i.e. seven notes) is “spread” across the
available beats (i.e. four beats) using fuzzy logic to determine
probabilities, influenced by the agent’s downbeat and offbeat
parameters (see Figure 3 for an example of probability
weightings spread across four beats). Thus, an example spread
of seven notes for agent A, below, might be (3 1 2 1), in which
each beat is indicated with its assigned notes.

Figure 3. Example density spread weightings for two

agents, 4/4 time with different downbeat and offbeat

parameter values.

Agents determine the placement of the notes within the beat
using a similar technique, but influenced by the agent’s
syncopation parameter.

6.3 Pattern Checking
After an initial placement of notes within a pattern has been
accomplished, pattern checking commences. Each beat is
evaluated against its predecessor and compared to a set of rules
in order to avoid certain patterns and encourage others.

Previous beat Pattern A Pattern B

30% 90%

Figure 4. Example pattern check: given a previous beat’s

rhythm, with one note required for the current beat, two

“preferred” patterns for the current beat.

In the above example, if the current beat has one note in it, and
the previous beat contains the given rhythm, a test is made (a
random number is generated between 0 and 1). If the generated
number is less than the coefficient for pattern A (.3, or a 30%
chance), the test passes, and pattern A is substituted for the
original pattern. If the test fails, another test is made for pattern
B, using the coefficient of .9 (or 90%). If this last test fails, the
original rhythm is allowed to remain. Using such a system,
certain rhythmic patterns can be suggested through

probabilities. Probability coefficients were hand-coded by the
first author after extensive evaluation of the system’s output.

7. SOCIAL BEHAVIOUR
Once all agents have achieved a stable density and have
generated rhythmic patterns based upon this density, agents can

begin social interactions. These interactions involve potentially
endless alterations of agent patterns in relation to other agents;
these interactions continue as long as the agents have a social
bond, which is broken when testing an agent’s social
commitment parameter fails. This test is done every “once in a
while”, an example of a “fuzzy” counter.

Social interaction emulates how musicians within an
improvising ensemble listen to one another, make eye contact,
and interact by adjusting and altering their own rhythmic
pattern in various ways. In order to determine which agent with
which to interact, agents evaluate other agent’s density spread.
Evaluation methods include comparing density spread averages
and weighted means, both of which are fuzzy tests.

Table 2. Example density spreads in 4/4: comparing agent 1
with agents 2 and 3.

Agent # 1 2 3

Density spread 3 1 2 2 1 2 2 1 2 3 3 3

Similarity rating 0.53 0.48

Dissimilarity rating 0.42 0.33

An agent generates a similarity and dissimilarity rating between
its density spread and that of every other active agent. The
highest overall rating will determine the type of interaction: a
dissimilarity rating results in rhythmic polyphony
(interlocking), while a similarity rating results in rhythmic
heterophony (expansion). Note that interlocking interactions
(dissimilarities) are actually encouraged through weightings.

Once another agent has been selected for social interaction, the
agent attempts to “make eye contact” by messaging that agent.
If the other agent does not acknowledge the message (its own
social parameter may not be very high), the social bond fails,
and the agent will look for other agents with which to interact.

Figure 5. Social messaging between agents.

7.1 Interaction types: Polyphonic
In polyphonic interaction, agents attempt to “avoid” partner
notes, both at the beat and pattern level. For example, given a
density spread of (3 1 2 2) and a partner spread of (1 2 2 1),
both agents would attempt to move their notes to where their
partner’s rests occur (see Figure 6). Because both agents are
continually adjusting their patterns, stability is actually difficult
to achieve.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

147

Figure 6. Example polyphonic interaction result between

agents A and B, with density spreads of (3 1 2 2) and (1 2 2

1). Note that not all notes need to successfully avoid one

another (beats 3 and 4).

7.2 Interaction types: Heterophonic
In heterophonic interaction, agents alter their own density
spread to more closely resemble that of their partner, but no
attempt is made to match the actual note patterns (see Figure 7).

Figure 7. Example heterophonic interaction result

between agents A and B, with density spreads of (3 1 2 2)

and (2 1 2 1). Agent B had an initial spread of (1 2 2 1).

8. ADDITIONAL AGENT KNOWLEDGE
Because each agent is sending performance information, via
MIDI, to a specific percussion instrument, agents require
detailed knowledge about that instrument. Each instrument has
a discrete velocity range, below which it will not strike, and
above which it may double strike. These ranges change each
time the robot is reassembled after moving. Therefore, a
velocity range test patch was created which determines these
limits quickly and efficiently before each rehearsal or
performance. These values are stored in a global array, which
each agent directly accesses in order to appropriately choose
velocities within the range of its specific instrument.

Similarly, each instrument also has a physical limit as to how
fast it can re-strike; this limit is also determined through a test
patch used to inform the program regarding potential tempo
limitations. For example, the frame drums have limits of
approximately 108 BPM for three consecutive sixteenths (138
ms. inter-onset times) while the tambourine and hand-drum can
easily play the same three sixteenths at over 200 BPM (better
than 75 ms inter-onset times). The conductor will limit the
overall tempo and subdivisions so as not to exceed these
limitations; furthermore, individual agents will attempt to limit
consecutive notes for each drum at contentious tempi.

9. CONCLUSION
Kinetic Engine has been used previously as an independent
ensemble, both autonomously (as an installation) and under
performance control (via a network on nine computers for the
composition Drum Circle); its use as a generative environment
for the control of MahaDeviBot has been discussed here. This
“collaboration” has been used in performance, in which the first

author controlled Kinetic Engine’s conductor agent via a Lemur
control surface, and the second author performed on ESitar
[11]. In this case, the experience was very much like working
with an improvising ensemble, in that high-level control was
possible (density/volume/instrument choice), but low-level
control (specific pattern choice or individual agent control) was
not possible. At the same time, the intricacy of musical
interaction created by the intelligent agents resulted in the
perception of the robot being a complex organism, capable of
intelligent musical phrasing and creation, rather than a simple
tool to play back pre-programmed rhythms; combined, they
provided a genuinely new and powerful interface for musical
expression.

10. ACKNOWLEDGMENTS
We would like to thank Trimpin and Eric Singer for their
support in building the MahaDevibot.

11. REFERENCES
[1] Beyls, P. Interaction and Self-Organization in a Society of

Musical Agents. Proceedings of ECAL 2007 Workshop on
Music and Artificial Life (MusicAL 2007) (Lisbon,
Portugal, 2007).

[2] Brown, A. Exploring Rhythmic Automata. Applications
On Evolutionary Computing, Vol. 3449 (2005), 551-556.

[3] Burtner, M. Perturbation Techniques for Multi-Agent and
Multi-Performer Interactive Musical Interfaces.
Proceedings of the New Interfaces for Musical Expression
Conference (NIME 2006) (Paris, France, June 4-8, 2006).

[4] Dahlstedt, P., McBurney, P. Musical agents. Leonardo,
39, 5 (2006), 469-470.

[5] Dixon, S. A lightweight multi-agent musical beat tracking
system. Pacific Rim International Conference on Artificial
Intelligence (2000), 778-788.

[6] Eigenfeldt, A. Kinetic Engine: Toward an Intelligent
Improvising Instrument. Proceedings of the 2006 Sound
and Music Computing Conference (SMC 2006) (Marseille,
France, May 18-20, 2006).

[7] Eigenfeldt, A. Drum Circle: Intelligent Agents in
Max/MSP. Proceedings of the 2007 International
Computer Music Conference (ICMC 2007) (Copenhagen,
Denmark, August 27-31, 2007)

[8] Eigenfeldt, A. Multi-agent Modeling of Complex
Rhythmic Interactions in Real-time Performance, Sounds
of Artificial Life: Breeding Music with Digital Biology,
Eduardo Miranda, ed., A-R Editions (forthcoming in
2008).

[9] Gimenes, M., Miranda, E. R. and Johnson, C. A Memetic
Approach to the Evolution of Rhythms in a Society of
Software Agents. Proceedings of the 10th Brazilian
Symposium on Computer Music (Belo Horizonte, Brazil
2005).

[10] Goto, M., Muraoka, Y. Beat Tracking based on Multiple-
agent Architecture - A Real-time Beat Tracking System for
Audio Signals. Proceedings of The Second International
Conference on Multiagent Systems, (1996), 103-110.

[11] Kapur, A., Davidson, P., Cook, P.R., Driessen, P.F., and
W. A. Schloss. Evolution of Sensor-Based ETabla,
EDholak, and ESitar. Journal of ITC Sangeet Research
Academy, Vol. 18 (Kolkata, India, 2004).

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

148

[12] Kapur, A, Singer, E., Benning, M., Tzanetakis, G.,
Trimpin Integrating HyperInstruments, Musical Robots &
Machine Musicianship for North Indian Classical Music.
Proceedings of the 2007 Conference on New Interfaces for
Musical Expression (NIME 2007) (New York, New York,
June 6-10, 2007).

[13] Martins, J., Miranda, E.R. A Connectionist Architecture
for the Evolution of Rhythms. Lecture Notes In Computer
Science, Vol. 3907, (2006). Springer, Berlin, 696-706.

[14] Martins, J. and Miranda, E. R. Emergent rhythmic phrases
in an A-Life environment. Proceedings of ECAL 2007
Workshop on Music and Artificial Life (MusicAL 2007)
(Lisbon, Portugal, September 10-14, 2007).

[15] Minsky, M. The Society of Mind. Simon & Schuster, Inc
(1986).

[16] Miranda, E.R. Evolutionary music: breaking new ground.
Composing Music with Computers. Focal Press (2001).

[17] Murray-Rust, D. and Smaill, A.: The AgentBox.
http://www.mo-seph.com/main/academic/agentbox

[18] Murray-Rust, D., Smaill, A. MAMA: An architecture for
interactive musical agents. Frontiers in Artificial
Intelligence and Applications, Vol. 141 (2006).

[19] Pachet, F. Rhythms as emerging structures. Proceedings of
the 2000 International Computer Music Conference ICMC
2000) (Berlin, Germany, August 27-September 1, 2000).

[20] Pachet, F. The Continuator: Musical Interaction With
Style. Journal of New Music Research, 32, 3, (2003) 333-
341.

[21] Spicer, M. AALIVENET: An agent based distributed
interactive composition environment. Proceedings of the
International Computer Music Conference (ICMC 2004)
(Miami, Florida, November 1-6, 2004).

[22] Woolridge, M., Jennings, N. R. Intelligent agents: theory
and practice. Knowledge Engineering Review, 10, 2 (1995)
115-152.

[23] Wulfhorst, R.D., Flores, L.V., Flores, L.N., Alvares, L.O.,
Vicari, R.M. A multiagent approach for musical interactive
systems. Proceedings of the second international joint
conference on Autonomous agents and multiagent systems.
ACM Press, New York, NY, 2003, 584-591.

Proceedings of the 2008 Conference on New Interfaces for Musical Expression (NIME08), Genova, Italy

149

