Paper 2008/246
The Random Oracle Model and the Ideal Cipher Model are Equivalent
Jean-Sebastien Coron, Jacques Patarin, and Yannick Seurin
Abstract
The Random Oracle Model and the Ideal Cipher Model are two well known idealised models of computation for proving the security of cryptosystems. At Crypto 2005, Coron et al. showed that security in the random oracle model implies security in the ideal cipher model; namely they showed that a random oracle can be replaced by a block cipher-based construction, and the resulting scheme remains secure in the ideal cipher model. The other direction was left as an open problem, i.e. constructing an ideal cipher from a random oracle. In this paper we solve this open problem and show that the Feistel construction with 6 rounds is enough to obtain an ideal cipher; we also show that 5 rounds are insufficient by providing a simple attack. This contrasts with the classical Luby-Rackoff result that 4 rounds are necessary and sufficient to obtain a (strong) pseudo-random permutation from a pseudo-random function.
Metadata
- Available format(s)
- Category
- Foundations
- Publication info
- Published elsewhere. An extended abstract of this paper will appear at CRYPTO 2008. This is the full version.
- Keywords
- random oracle modelideal cipher modelindifferentiabilityFeistelLuby-Rackoff construction.
- Contact author(s)
- jscoron @ gmail com
- History
- 2008-08-16: revised
- 2008-06-03: received
- See all versions
- Short URL
- https://ia.cr/2008/246
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2008/246, author = {Jean-Sebastien Coron and Jacques Patarin and Yannick Seurin}, title = {The Random Oracle Model and the Ideal Cipher Model are Equivalent}, howpublished = {Cryptology {ePrint} Archive, Paper 2008/246}, year = {2008}, url = {https://eprint.iacr.org/2008/246} }