Dates are inconsistent

Dates are inconsistent

2592 results sorted by ID

2024/1475 (PDF) Last updated: 2024-09-20
On the Spinor Genus and the Distinguishing Lattice Isomorphism Problem
Cong Ling, Jingbo Liu, Andrew Mendelsohn
Foundations

This paper addresses the spinor genus, a previously unrecognized classification of quadratic forms in the context of cryptography, related to the lattice isomorphism problem (LIP). The spinor genus lies between the genus and equivalence class, thus refining the concept of genus. We present algorithms to determine whether two quadratic forms belong to the same spinor genus. If they do not, it provides a negative answer to the distinguishing variant of LIP. However, these algorithms have very...

2024/1470 (PDF) Last updated: 2024-09-20
Quantum Pseudorandom Scramblers
Chuhan Lu, Minglong Qin, Fang Song, Penghui Yao, Mingnan Zhao
Foundations

Quantum pseudorandom state generators (PRSGs) have stimulated exciting developments in recent years. A PRSG, on a fixed initial (e.g., all-zero) state, produces an output state that is computationally indistinguishable from a Haar random state. However, pseudorandomness of the output state is not guaranteed on other initial states. In fact, known PRSG constructions provably fail on some initial state. In this work, we propose and construct quantum Pseudorandom State Scramblers (PRSSs),...

2024/1461 (PDF) Last updated: 2024-09-18
Detecting and Correcting Computationally Bounded Errors: A Simple Construction Under Minimal Assumptions
Jad Silbak, Daniel Wichs
Foundations

We study error detection and error correction in a computationally bounded world, where errors are introduced by an arbitrary polynomial time adversarial channel. We consider codes where the encoding procedure uses random coins and define two distinct variants: (1) in randomized codes, fresh randomness is chosen during each encoding operation and is unknown a priori, while (2) in self-seeded codes, the randomness of the encoding procedure is fixed once upfront and is known to the adversary....

2024/1456 (PDF) Last updated: 2024-09-18
Crooked Indifferentiability of the Feistel Construction
Alexander Russell, Qiang Tang, Jiadong Zhu
Foundations

The Feistel construction is a fundamental technique for building pseudorandom permutations and block ciphers. This paper shows that a simple adaptation of the construction is resistant, even to algorithm substitution attacks---that is, adversarial subversion---of the component round functions. Specifically, we establish that a Feistel-based construction with more than $337n/\log(1/\epsilon)$ rounds can transform a subverted random function---which disagrees with the original one at a small...

2024/1452 (PDF) Last updated: 2024-09-17
On the Complexity of Cryptographic Groups and Generic Group Models
Cong Zhang, Keyu Ji, Taiyu Wang, Bingsheng Zhang, Hong-Sheng Zhou, Xin Wang, Kui Ren
Foundations

Ever since the seminal work of Diffie and Hellman, cryptographic (cyclic) groups have served as a fundamental building block for constructing cryptographic schemes and protocols. The security of these constructions can often be based on the hardness of (cyclic) group-based computational assumptions. Then, the generic group model (GGM) has been studied as an idealized model (Shoup, EuroCrypt 1997), which justifies the hardness of many (cyclic) group-based assumptions and shows the limits of...

2024/1448 (PDF) Last updated: 2024-09-17
Randomness in Private Sequential Stateless Protocols
Hari Krishnan P. Anilkumar, Varun Narayanan, Manoj Prabhakaran, Vinod M. Prabhakaran
Foundations

A significant body of work in information-theoretic cryptography has been devoted to the fundamental problem of understanding the power of randomness in private computation. This has included both in-depth study of the randomness complexity of specific functions (e.g., Couteau and Ros ́en, ASIACRYPT 2022, gives an upper bound of 6 for n-party $\mathsf{AND}$), and results for broad classes of functions (e.g., Kushilevitz et al. STOC 1996, gives an $O(1)$ upper bound for all functions with...

2024/1434 (PDF) Last updated: 2024-09-13
Untangling the Security of Kilian's Protocol: Upper and Lower Bounds
Alessandro Chiesa, Marcel Dall'Agnol, Ziyi Guan, Nicholas Spooner, Eylon Yogev
Foundations

Sigma protocols are elegant cryptographic proofs that have become a cornerstone of modern cryptography. A notable example is Schnorr's protocol, a zero-knowledge proof-of-knowledge of a discrete logarithm. Despite extensive research, the security of Schnorr's protocol in the standard model is not fully understood. In this paper we study Kilian's protocol, an influential public-coin interactive protocol that, while not a sigma protocol, shares striking similarities with sigma protocols....

2024/1425 (PDF) Last updated: 2024-09-11
New constructions of pseudorandom codes
Surendra Ghentiyala, Venkatesan Guruswami
Foundations

Introduced in [CG24], pseudorandom error-correcting codes (PRCs) are a new cryptographic primitive with applications in watermarking generative AI models. These are codes where a collection of polynomially many codewords is computationally indistinguishable from random, except to individuals with the decoding key. In this work, we examine the assumptions under which PRCs with robustness to a constant error rate exist. 1. We show that if both the planted hyperloop assumption...

2024/1419 (PDF) Last updated: 2024-09-11
On the Relationship between Public Key Primitives via Indifferentiability
Shuang Hu, Bingsheng Zhang, Cong Zhang, Kui Ren
Foundations

Recently, Masny and Rindal [MR19] formalized a notion called Endemic Oblivious Transfer (EOT), and they proposed a generic transformation from Non-Interactive Key Exchange (NIKE) to EOT with standalone security in the random oracle (RO) model. However, from the model level, the relationship between idealized NIKE and idealized EOT and the relationship between idealized elementary public key primitives have been rarely researched. In this work, we investigate the relationship between ideal...

2024/1413 (PDF) Last updated: 2024-09-10
The Black-Box Simulation Barrier Persists in a Fully Quantum World
Nai-Hui Chia, Kai-Min Chung, Xiao Liang, Jiahui Liu
Foundations

Zero-Knowledge (ZK) protocols have been a subject of intensive study due to their fundamental importance and versatility in modern cryptography. However, the inherently different nature of quantum information significantly alters the landscape, necessitating a re-examination of ZK designs. A crucial aspect of ZK protocols is their round complexity, intricately linked to $\textit{simulation}$, which forms the foundation of their formal definition and security proofs. In the...

2024/1412 (PDF) Last updated: 2024-09-10
The Zeros of Zeta Function Revisited
Zhengjun Cao, Lihua Liu
Foundations

Let $\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^z}$, $\psi(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^z}, z\in \mathbb{C}$. We show that $\psi(z)\not=(1-2^{1-z})\zeta(z)$, if $0<z<1$. Besides, we clarify that the known zeros are not for the original series, but very probably for the alternating series.

2024/1401 (PDF) Last updated: 2024-09-07
New Techniques for Preimage Sampling: Improved NIZKs and More from LWE
Brent Waters, Hoeteck Wee, David J. Wu
Foundations

Recent constructions of vector commitments and non-interactive zero-knowledge (NIZK) proofs from LWE implicitly solve the following /shifted multi-preimage sampling problem/: given matrices $\mathbf{A}_1, \ldots, \mathbf{A}_\ell \in \mathbb{Z}_q^{n \times m}$ and targets $\mathbf{t}_1, \ldots, \mathbf{t}_\ell \in \mathbb{Z}_q^n$, sample a shift $\mathbf{c} \in \mathbb{Z}_q^n$ and short preimages $\boldsymbol{\pi}_1, \ldots, \boldsymbol{\pi}_\ell \in \mathbb{Z}_q^m$ such that $\mathbf{A}_i...

2024/1399 (PDF) Last updated: 2024-09-06
A Note on Ligero and Logarithmic Randomness
Guillermo Angeris, Alex Evans, Gyumin Roh
Foundations

We revisit the Ligero proximity test, and its logarithmic randomness variant, in the framework of [EA23] and show a simple proof that improves the soundness error of the original logarithmic randomness construction of [DP23] by a factor of two. This note was originally given as a presentation in ZK Summit 11.

2024/1388 (PDF) Last updated: 2024-09-04
One-Way Functions and pKt Complexity
Shuichi Hirahara, Zhenjian Lu, Igor C. Oliveira
Foundations

We introduce $\mathsf{pKt}$ complexity, a new notion of time-bounded Kolmogorov complexity that can be seen as a probabilistic analogue of Levin's $\mathsf{Kt}$ complexity. Using $\mathsf{pKt}$ complexity, we upgrade two recent frameworks that characterize one-way functions ($\mathsf{OWF}$) via symmetry of information and meta-complexity, respectively. Among other contributions, we establish the following results: - $\mathsf{OWF}$ can be based on the worst-case assumption that ...

2024/1383 (PDF) Last updated: 2024-09-03
Self-Orthogonal Minimal Codes From (Vectorial) p-ary Plateaued Functions
René Rodríguez Aldama, Enes Pasalic, Fengrong Zhang, Yongzhuang Wei
Foundations

In this article, we derive the weight distribution of linear codes stemming from a subclass of (vectorial) $p$-ary plateaued functions (for a prime $p$), which includes all the explicitly known examples of weakly and non-weakly regular plateaued functions. This construction of linear codes is referred in the literature as the first generic construction. First, we partition the class of $p$-ary plateaued functions into three classes $\mathscr{C}_1, \mathscr{C}_2,$ and $\mathscr{C}_3$,...

2024/1369 (PDF) Last updated: 2024-08-30
AGATE: Augmented Global Attested Trusted Execution in the Universal Composability framework
Lorenzo Martinico, Markulf Kohlweiss
Foundations

A Trusted Execution Environment (TEE) is a new type of security technology, implemented by CPU manufacturers, which guarantees integrity and confidentiality on a restricted execution environment to any remote verifier. TEEs are deployed on various consumer and commercial hardwareplatforms, and have been widely adopted as a component in the design of cryptographic protocols both theoretical and practical. Within the provable security community, the use of TEEs as a setup assumption has...

2024/1307 (PDF) Last updated: 2024-08-21
On Algebraic Homomorphic Encryption and its Applications to Doubly-Efficient PIR
Hiroki Okada, Rachel Player, Simon Pohmann, Christian Weinert
Foundations

The Doubly-Efficient Private Information Retrieval (DEPIR) protocol of Lin, Mook, and Wichs (STOC'23) relies on a Homomorphic Encryption (HE) scheme that is algebraic, i.e., whose ciphertext space has a ring structure that matches the homomorphic operations. While early HE schemes had this property, modern schemes introduced techniques to manage noise growth. This made the resulting schemes much more efficient, but also destroyed the algebraic property. In this work, we study algebraic HE...

2024/1290 (PDF) Last updated: 2024-08-16
SoK: Computational and Distributed Differential Privacy for MPC
Fredrik Meisingseth, Christian Rechberger
Foundations

In the last fifteen years, there has been a steady stream of works combining differential privacy with various other cryptographic disciplines, particularly that of multi-party computation, yielding both practical and theoretical unification. As a part of that unification, due to the rich definitional nature of both fields, there have been many proposed definitions of differential privacy adapted to the given use cases and cryptographic tools at hand, resulting in computational and/or...

2024/1286 (PDF) Last updated: 2024-08-15
Towards a Tightly Secure Signature in Multi-User Setting with Corruptions Based on Search Assumptions
Hirofumi Yoshioka, Wakaha Ogata, Keitaro Hashimoto
Foundations

This paper is a report on how we tackled constructing a digital signature scheme whose multi-user security with corruption can be tightly reduced to search assumptions. We fail to (dis)prove the statement but obtain the following new results: - We reveal two new properties of signature schemes whose security cannot be tightly reduced to standard assumptions. - We construct a new signature scheme. Its multi-user security with corruption is reduced to the CDH assumption (in the ROM), and...

2024/1280 (PDF) Last updated: 2024-08-14
A Survey on SoC Security Verification Methods at the Pre-silicon Stage
Rasheed Kibria, Farimah Farahmandi, Mark Tehranipoor
Foundations

This paper presents a survey of the state-of-the-art pre-silicon security verification techniques for System-on-Chip (SoC) designs, focusing on ensuring that designs, implemented in hardware description languages (HDLs) and synthesized circuits, meet security requirements before fabrication in semiconductor foundries. Due to several factors, pre-silicon security verification has become an essential yet challenging aspect of the SoC hardware lifecycle. The modern SoC design process often...

2024/1276 (PDF) Last updated: 2024-08-13
A bound on the quantum value of all compiled nonlocal games
Alexander Kulpe, Giulio Malavolta, Connor Paddock, Simon Schmidt, Michael Walter
Foundations

A compiler introduced by Kalai et al. (STOC'23) converts any nonlocal game into an interactive protocol with a single computationally-bounded prover. Although the compiler is known to be sound in the case of classical provers, as well as complete in the quantum case, quantum soundness has so far only been established for special classes of games. In this work, we establish a quantum soundness result for all compiled two-player nonlocal games. In particular, we prove that the quantum...

2024/1267 (PDF) Last updated: 2024-08-09
Chrysalis Cipher Suite
Ian Malloy, Dennis Hollenbeck
Foundations

The formal verification of architectural strength in terms of computational complexity is achieved through reduction of the Non-Commutative Grothendieck problem in the form of a quadratic lattice. This multivariate form relies on equivalences derived from a k-clique problem within a multigraph. The proposed scheme reduces the k-clique problem as an input function, resulting in the generation of a quadratic used as parameters for the lattice. By Grothendieck’s inequality, the satisfiability...

2024/1252 (PDF) Last updated: 2024-08-08
Legendre Sequences are Pseudorandom under the Quadratic-Residuosity Assumption
Henry Corrigan-Gibbs, David J. Wu
Foundations

The Legendre sequence of an integer $x$ modulo a prime $p$ with respect to offsets $\vec a = (a_1, \dots, a_\ell)$ is the string of Legendre symbols $(\frac{x+a_1}{p}), \dots, (\frac{x+a_\ell}{p})$. Under the quadratic-residuosity assumption, we show that the function that maps the pair $(x,p)$ to the Legendre sequence of $x$ modulo $p$, with respect to public random offsets $\vec a$, is a pseudorandom generator. This answers an open question of Damgård (CRYPTO 1988), up to the choice of the...

2024/1224 (PDF) Last updated: 2024-07-31
Generic Construction of Secure Sketches from Groups
Axel Durbet, Koray Karabina, Kevin Thiry-Atighehchi
Foundations

Secure sketches are designed to facilitate the recovery of originally enrolled data from inputs that may vary slightly over time. This capability is important in applications where data consistency cannot be guaranteed due to natural variations, such as in biometric systems and hardware security. Traditionally, secure sketches are constructed using error-correcting codes to handle these variations effectively. Additionally, principles of information theory ensure the security of these...

2024/1217 (PDF) Last updated: 2024-07-30
A Compact and Parallel Swap-Based Shuffler based on butterfly Network and its complexity against Side Channel Analysis
Jong-Yeon Park, Wonil Lee, Bo Gyeong Kang, Il-jong Song, Jaekeun Oh, Kouichi Sakurai
Foundations

A prominent countermeasure against side channel attacks, the hiding countermeasure, typically involves shuffling operations using a permutation algorithm. Especially in the era of Post-Quantum Cryptography, the importance of the hiding coun- termeasure is emphasized due to computational characteristics like those of lattice and code-based cryptography. In this context, swiftly and securely generating permutations has a critical impact on an algorithm’s security and efficiency. The widely...

2024/1200 (PDF) Last updated: 2024-07-25
Depth-Aware Arithmetization of Common Primitives in Prime Fields
Jelle Vos, Mauro Conti, Zekeriya Erkin
Foundations

A common misconception is that the computational abilities of circuits composed of additions and multiplications are restricted to simple formulas only. Such arithmetic circuits over finite fields are actually capable of computing any function, including equality checks, comparisons, and other highly non-linear operations. While all those functions are computable, the challenge lies in computing them efficiently. We refer to this search problem as arithmetization. Arithmetization is a key...

2024/1188 (PDF) Last updated: 2024-07-23
Lightweight Dynamic Linear Components for Symmetric Cryptography
S. M. Dehnavi, M. R. Mirzaee Shamsabad
Foundations

‎In this paper‎, ‎using the concept of equivalence of mappings we characterize all of the one-XOR matrices which are used in hardware applications and propose a family of lightweight linear mappings for software-oriented applications in symmetric cryptography‎. ‎Then‎, ‎we investigate interleaved linear mappings and based upon this study‎, ‎we present generalized dynamic primitive LFSRs along with dynamic linear components for construction of diffusion layers. ‎From the mathematical...

2024/1179 (PDF) Last updated: 2024-07-22
Inner Product Ring LWE Problem, Reduction, New Trapdoor Algorithm for Inner Product Ring LWE Problem and Ring SIS Problem
Zhuang Shan, Leyou Zhang, Qing Wu, Qiqi Lai
Foundations

Lattice cryptography is currently a major research focus in public-key encryption, renowned for its ability to resist quantum attacks. The introduction of ideal lattices (ring lattices) has elevated the theoretical framework of lattice cryptography. Ideal lattice cryptography, compared to classical lattice cryptography, achieves more acceptable operational efficiency through fast Fourier transforms. However, to date, issues of impracticality or insecurity persist in ideal lattice problems....

2024/1171 (PDF) Last updated: 2024-07-19
Tight Time-Space Tradeoffs for the Decisional Diffie-Hellman Problem
Akshima, Tyler Besselman, Siyao Guo, Zhiye Xie, Yuping Ye
Foundations

In the (preprocessing) Decisional Diffie-Hellman (DDH) problem, we are given a cyclic group $G$ with a generator $g$ and a prime order $N$, and we want to prepare some advice of size $S$, such that we can efficiently distinguish $(g^{x},g^{y},g^{xy})$ from $(g^{x},g^{y},g^{z})$ in time $T$ for uniformly and independently chosen $x,y,z$ from $\mathbb{Z}_N$. This is a central cryptographic problem whose computational hardness underpins many widely deployed schemes, such as the Diffie–Hellman...

2024/1157 (PDF) Last updated: 2024-07-16
Shift-invariant functions and almost liftings
Jan Kristian Haugland, Tron Omland
Foundations

We investigate shift-invariant vectorial Boolean functions on $n$ bits that are lifted from Boolean functions on $k$ bits, for $k\leq n$. We consider vectorial functions that are not necessarily permutations, but are, in some sense, almost bijective. In this context, we define an almost lifting as a Boolean function for which there is an upper bound on the number of collisions of its lifted functions that does not depend on $n$. We show that if a Boolean function with diameter $k$ is an...

2024/1156 (PDF) Last updated: 2024-07-16
On affine forestry over integral domains and families of deep Jordan-Gauss graphs
Tymoteusz Chojecki, Grahame Erskine, James Tuite, Vasyl Ustimenko
Foundations

Let K be a commutative ring. We refer to a connected bipartite graph G = G_n(K) with partition sets P = K^n (points) and L = K^n (lines) as an affine graph over K of dimension dim(G) = n if the neighbourhood of each vertex is isomorphic to K. We refer to G as an algebraic affine graph over K if the incidence between a point (x_1, x_2, . . . , x_n) and line [y_1, y_2, . . . , y_n] is defined via a system of polynomial equations of the kind f_i = 0 where f_i ∈ K[x_1, x_2, . . . , x_n, y_1,...

2024/1140 (PDF) Last updated: 2024-07-13
Permutation Superposition Oracles for Quantum Query Lower Bounds
Christian Majenz, Giulio Malavolta, Michael Walter
Foundations

We propose a generalization of Zhandry’s compressed oracle method to random permutations, where an algorithm can query both the permutation and its inverse. We show how to use the resulting oracle simulation to bound the success probability of an algorithm for any predicate on input-output pairs, a key feature of Zhandry’s technique that had hitherto resisted attempts at generalization to random permutations. One key technical ingredient is to use strictly monotone factorizations to...

2024/1138 (PDF) Last updated: 2024-07-12
Dot-Product Proofs and Their Applications
Nir Bitansky, Prahladh Harsha, Yuval Ishai, Ron D. Rothblum, David J. Wu
Foundations

A dot-product proof (DPP) is a simple probabilistic proof system in which the input statement $\mathbf{x}$ and the proof $\boldsymbol{\pi}$ are vectors over a finite field $\mathbb{F}$, and the proof is verified by making a single dot-product query $\langle \mathbf{q},(\mathbf{x} \| \boldsymbol{\pi}) \rangle$ jointly to $\mathbf{x}$ and $\boldsymbol{\pi}$. A DPP can be viewed as a 1-query fully linear PCP. We study the feasibility and efficiency of DPPs, obtaining the following results: -...

2024/1133 (PDF) Last updated: 2024-07-12
Parameters of Algebraic Representation vs. Efficiency of Algebraic Cryptanalysis
Hossein Arabnezhad, Babak Sadeghiyan
Foundations

The aim of an algebraic attack is to find the secret key by solving a collection of relations that describe the internal structure of a cipher for observations of plaintext/cipher-text pairs. Although algebraic attacks are addressed for cryptanalysis of block and stream ciphers, there is a limited understanding of the impact of algebraic representation of the cipher on the efficiency of solving the resulting collection of equations. In this paper, we investigate on how different S-box...

2024/1126 (PDF) Last updated: 2024-08-08
Is ML-Based Cryptanalysis Inherently Limited? Simulating Cryptographic Adversaries via Gradient-Based Methods
Avital Shafran, Eran Malach, Thomas Ristenpart, Gil Segev, Stefano Tessaro
Foundations

Given the recent progress in machine learning (ML), the cryptography community has started exploring the applicability of ML methods to the design of new cryptanalytic approaches. While current empirical results show promise, the extent to which such methods may outperform classical cryptanalytic approaches is still somewhat unclear. In this work, we initiate exploration of the theory of ML-based cryptanalytic techniques, in particular providing new results towards understanding whether...

2024/1119 (PDF) Last updated: 2024-07-09
Generic Anamorphic Encryption, Revisited: New Limitations and Constructions
Dario Catalano, Emanuele Giunta, Francesco Migliaro
Foundations

The notion of Anamorphic Encryption (Persiano et al. Eurocrypt 2022) aims at establishing private communication against an adversary who can access secret decryption keys and influence the chosen messages. Persiano et al. gave a simple, black-box, rejection sampling-based technique to send anamorphic bits using any IND-CPA secure scheme as underlying PKE. In this paper however we provide evidence that their solution is not as general as claimed: indeed there exists a (contrived yet...

2024/1104 (PDF) Last updated: 2024-07-10
Structural Lower Bounds on Black-Box Constructions of Pseudorandom Functions
Amos Beimel, Tal Malkin, Noam Mazor
Foundations

We address the black-box complexity of constructing pseudorandom functions (PRF) from pseudorandom generators (PRG). The celebrated GGM construction of Goldreich, Goldwasser, and Micali (Crypto 1984) provides such a construction, which (even when combined with Levin's domain-extension trick) has super-logarithmic depth. Despite many years and much effort, this remains essentially the best construction we have to date. On the negative side, one step is provided by the work of Miles and Viola...

2024/1085 (PDF) Last updated: 2024-07-03
Randomized Distributed Function Computation with Semantic Communications: Applications to Privacy
Onur Gunlu
Foundations

Randomized distributed function computation refers to remote function computation where transmitters send data to receivers which compute function outputs that are randomized functions of the inputs. We study the applications of semantic communications in randomized distributed function computation to illustrate significant reductions in the communication load, with a particular focus on privacy. The semantic communication framework leverages generalized remote source coding methods, where...

2024/1080 (PDF) Last updated: 2024-07-03
Separating Selective Opening Security From Standard Security, Assuming IO
Justin Holmgren, Brent Waters
Foundations

Assuming the hardness of LWE and the existence of IO, we construct a public-key encryption scheme that is IND-CCA secure but fails to satisfy even a weak notion of indistinguishability security with respect to selective opening attacks. Prior to our work, such a separation was known only from stronger assumptions such as differing inputs obfuscation (Hofheinz, Rao, and Wichs, PKC 2016). Central to our separation is a new hash family, which may be of independent interest. Specifically,...

2024/1071 (PDF) Last updated: 2024-07-01
On the efficient representation of isogenies (a survey)
Damien Robert
Foundations

We survey different (efficient or not) representations of isogenies, with a particular focus on the recent "higher dimensional" isogeny representation, and algorithms to manipulate them.

2024/1062 (PDF) Last updated: 2024-06-29
Compact Key Function Secret Sharing with Non-linear Decoder
Chandan Kumar, Sikhar Patranabis, Debdeep Mukhopadhyay
Foundations

We present a variant of Function Secret Sharing (FSS) schemes tailored for point, comparison, and interval functions, featuring compact key sizes at the expense of additional comparison. While existing FSS constructions are primarily geared towards $2$-party scenarios, exceptions such as the work by Boyle et al. (Eurocrypt 2015) and Riposte (S&P 2015) have introduced FSS schemes for $p$-party scenarios ($p \geq 3$). This paper aims to achieve the most compact $p$-party FSS key size to date....

2024/1060 (PDF) Last updated: 2024-06-29
Quirky Interactive Reductions of Knowledge
Joseph Johnston
Foundations

Interactive proofs and arguments of knowledge can be generalized to the concept of interactive reductions of knowledge, where proving knowledge of a witness for one NP language is reduced to proving knowledge of a witness for another NP language. We take this generalization and specialize it to a class of reductions we refer to as `quirky interactive reductions of knowledge' (or QUIRKs). This name reflects our particular design choices within the broad and diverse world of interactive...

2024/1053 (PDF) Last updated: 2024-06-28
Stochastic Secret Sharing with $1$-Bit Shares and Applications to MPC
Benny Applebaum, Eliran Kachlon
Foundations

The problem of minimizing the share size of threshold secret-sharing schemes is a basic research question that has been extensively studied. Ideally, one strives for schemes in which the share size equals the secret size. While this is achievable for large secrets (Shamir, CACM '79), no similar solutions are known for the case of binary, single-bit secrets. Current approaches often rely on so-called ramp secret sharing that achieves a constant share size at the expense of a slight gap...

2024/1050 (PDF) Last updated: 2024-06-28
On Sequential Functions and Fine-Grained Cryptography
Jiaxin Guan, Hart Montgomery
Foundations

A sequential function is, informally speaking, a function $f$ for which a massively parallel adversary cannot compute "substantially" faster than an honest user with limited parallel computation power. Sequential functions form the backbone of many primitives that are extensively used in blockchains such as verifiable delay functions (VDFs) and time-lock puzzles. Despite this widespread practical use, there has been little work studying the complexity or theory of sequential...

2024/1043 (PDF) Last updated: 2024-06-30
Cryptography in the Common Haar State Model: Feasibility Results and Separations
Prabhanjan Ananth, Aditya Gulati, Yao-Ting Lin
Foundations

Common random string model is a popular model in classical cryptography. We study a quantum analogue of this model called the common Haar state (CHS) model. In this model, every party participating in the cryptographic system receives many copies of one or more i.i.d Haar random states. We study feasibility and limitations of cryptographic primitives in this model and its variants: - We present a construction of pseudorandom function-like states with security against computationally...

2024/1039 (PDF) Last updated: 2024-06-26
Reduction from Average-Case M-ISIS to Worst-Case CVP Over Perfect Lattices
Samuel Lavery
Foundations

This paper presents a novel reduction from the average-case hardness of the Module Inhomogeneous Short Integer Solution (M-ISIS) problem to the worst-case hardness of the Closest Vector Problem (CVP) by defining and leveraging “perfect” lattices for cryptographic purposes. Perfect lattices, previously only theoretical constructs, are characterized by their highly regular structure, optimal density, and a central void, which we term the “Origin Cell.” The simplest Origin Cell is a...

2024/1027 (PDF) Last updated: 2024-06-28
Structured-Seed Local Pseudorandom Generators and their Applications
Dung Bui, Geoffroy Couteau, Nikolas Melissaris
Foundations

In this note, we introduce structured-seed local pseudorandom generators, a relaxation of local pseudorandom generators. We provide constructions of this primitive under the sparse-LPN assumption, and explore its implications.

2024/1022 (PDF) Last updated: 2024-08-02
Competitive Policies for Online Collateral Maintenance
Ghada Almashaqbeh, Sixia Chen, Alexander Russell
Foundations

Layer-two blockchain protocols emerged to address scalability issues related to fees, storage cost, and confirmation delay of on-chain transactions. They aggregate off-chain transactions into a fewer on-chain ones, thus offering immediate settlement and reduced transaction fees. To preserve security of the underlying ledger, layer-two protocols often work in a collateralized model; resources are committed on-chain to backup off-chain activities. A fundamental challenge that arises in this...

2024/1002 (PDF) Last updated: 2024-08-08
Elementary Formulas for Greatest Common Divisors and Semiprime Factors
Joseph M. Shunia
Foundations

We present new formulas for computing greatest common divisors (GCDs) and extracting the prime factors of semiprimes using only elementary arithmetic operations: addition, subtraction, multiplication, floored division, and exponentiation. Our GCD formula simplifies a formula of Mazzanti and is derived using Kronecker substitution techniques from our earlier research. By combining this GCD formula with our recent result on an arithmetic term for $\sqrt{n}$, we derive explicit expressions for...

2024/993 (PDF) Last updated: 2024-06-19
Limits on the Power of Prime-Order Groups: Separating Q-Type from Static Assumptions
George Lu, Mark Zhandry
Foundations

Subgroup decision techniques on cryptographic groups and pairings have been critical for numerous applications. Originally conceived in the composite-order setting, there is a large body of work showing how to instantiate subgroup decision techniques in the prime-order setting as well. In this work, we demonstrate the first barrier to this research program, by demonstrating an important setting where composite-order techniques cannot be replicated in the prime-order setting. In...

2024/991 (PDF) Last updated: 2024-06-19
Leveled Homomorphic Encryption Schemes for Homomorphic Encryption Standard
Shuhong Gao, Kyle Yates
Foundations

Homomorphic encryption allows for computations on encrypted data without exposing the underlying plaintext, enabling secure and private data processing in various applications such as cloud computing and machine learning. This paper presents a comprehensive mathematical foundation for three prominent homomorphic encryption schemes: Brakerski-Gentry-Vaikuntanathan (BGV), Brakerski-Fan-Vercauteren (BFV), and Cheon-Kim-Kim-Song (CKKS), all based on the Ring Learning with Errors (RLWE) problem....

2024/970 (PDF) Last updated: 2024-06-16
Cryptography at the Crossroads: Ethical Responsibility, the Cypherpunk Movement and Institutions
Eric Blair
Foundations

This paper explores the intersection of cryptographic work with ethical responsibility and political activism, inspired by the Cypherpunk Manifesto and Phillip Rogaway's analysis of the moral character of cryptography. The discussion encompasses the historical context of cryptographic development, the philosophical underpinnings of the cypherpunk ideology, and contemporary challenges posed by mass surveillance and privacy concerns. By examining these facets, the paper calls for a renewed...

2024/964 (PDF) Last updated: 2024-06-18
Malicious Security for PIR (almost) for Free
Brett Falk, Pratyush Mishra, Matan Shtepel
Foundations

Private Information Retrieval (PIR) enables a client to retrieve a database element from a semi-honest server while hiding the element being queried from the server. Maliciously-secure PIR (mPIR) [Colombo et al., USENIX Security '23] strengthens the guarantees of plain (i.e., semi-honest) PIR by ensuring that even a misbehaving server (a) cannot compromise client privacy via selective-failure attacks, and (b) must answer every query *consistently* (i.e., with respect to the same database)....

2024/957 (PDF) Last updated: 2024-06-18
VRaaS: Verifiable Randomness as a Service on Blockchains
Jacob Gorman, Lucjan Hanzlik, Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Pratik Sarkar, Sri AravindaKrishnan Thyagarajan
Foundations

Web3 applications, such as on-chain games, NFT minting, and leader elections necessitate access to unbiased, unpredictable, and publicly verifiable randomness. Despite its broad use cases and huge demand, there is a notable absence of comprehensive treatments of on-chain verifiable randomness services. To bridge this, we offer an extensive formal analysis of on-chain verifiable randomness services. We present the $first$ formalization of on-chain verifiable randomness in the...

2024/956 (PDF) Last updated: 2024-06-14
SNARGs under LWE via Propositional Proofs
Zhengzhong Jin, Yael Tauman Kalai, Alex Lombardi, Vinod Vaikuntanathan
Foundations

We construct a succinct non-interactive argument (SNARG) system for every NP language $\mathcal{L}$ that has a propositional proof of non-membership for each $x\notin \mathcal{L}$. The soundness of our SNARG system relies on the hardness of the learning with errors (LWE) problem. The common reference string (CRS) in our construction grows with the space required to verify the propositional proof, and the size of the proof grows poly-logarithmically in the length of the propositional...

2024/954 (PDF) Last updated: 2024-06-27
Arithmetisation of computation via polynomial semantics for first-order logic
Murdoch J. Gabbay
Foundations

We propose a compositional shallow translation from a first-order logic with equality, into polynomials; that is, we arithmetise the semantics of first-order logic. Using this, we can translate specifications of mathematically structured programming into polynomials, in a form amenable to succinct cryptographic verification. We give worked example applications, and we propose a proof-of-concept succinct verification scheme based on inner product arguments. First-order logic is widely...

2024/952 (PDF) Last updated: 2024-06-13
Communication Complexity vs Randomness Complexity in Interactive Proofs
Benny Applebaum, Kaartik Bhushan, Manoj Prabhakaran
Foundations

In this note, we study the interplay between the communication from a verifier in a general private-coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case derandomization assumptions, we show that it is possible to transform any $I$-round interactive protocol that uses $\rho$ random bits into another one for the same problem with the additional property that the verifier's communication is bounded by $O(I\cdot \rho)$. Importantly, this is done with...

2024/934 (PDF) Last updated: 2024-06-11
An Explicit High-Moment Forking Lemma and its Applications to the Concrete Security of Multi-Signatures
Gil Segev, Liat Shapira
Foundations

In this work we first present an explicit forking lemma that distills the information-theoretic essence of the high-moment technique introduced by Rotem and Segev (CRYPTO '21), who analyzed the security of identification protocols and Fiat-Shamir signature schemes. Whereas the technique of Rotem and Segev was particularly geared towards two specific cryptographic primitives, we present a stand-alone probabilistic lower bound, which does not involve any underlying primitive or idealized...

2024/933 (PDF) Last updated: 2024-07-03
A Pure Indistinguishability Obfuscation Approach to Adaptively-Sound SNARGs for NP
Brent Waters, David J. Wu
Foundations

We construct an adaptively-sound succinct non-interactive argument (SNARG) for NP in the CRS model from sub-exponentially-secure indistinguishability obfuscation ($i\mathcal{O}$) and sub-exponentially-secure one-way functions. Previously, Waters and Wu (STOC 2024), and subsequently, Waters and Zhandry (CRYPTO 2024) showed how to construct adaptively-sound SNARGs for NP by relying on sub-exponentially-secure indistinguishability obfuscation, one-way functions, and an additional algebraic...

2024/927 (PDF) Last updated: 2024-06-12
MATHEMATICAL SPECULATIONS ON CRYPTOGRAPHY
Anjali C B
Foundations

The current cryptographic frameworks like RSA, ECC, and AES are potentially under quantum threat. Quantum cryptographic and post-quantum cryptography are being extensively researched for securing future information. The quantum computer and quantum algorithms are still in the early developmental stage and thus lack scalability for practical application. As a result of these challenges, most researched PQC methods are lattice-based, code-based, ECC isogeny, hash-based, and multivariate...

2024/912 (PDF) Last updated: 2024-06-07
Quantum Evolving Secret Sharing for General Access Structures
Efrat Cohen, Anat Paskin-Cherniavsky
Foundations

In the useful and well studied model of secret-sharing schemes, there are $n$ parties and a dealer, which holds a secret. The dealer applies some randomized algorithm to the secret, resulting in $n$ strings, called shares; it gives the $i$'th share to the $i$'th party. There are two requirements. (1) correctness: some predefined subsets of the parties can jointly reconstruct the secret from their shares, and (2) security: any other set gets no information on the secret. The collection of...

2024/906 (PDF) Last updated: 2024-06-06
Are Your Keys Protected? Time will Tell
Yoav Ben-Dov, Liron David, Moni Naor, Elad Tzalik
Foundations

Side channel attacks, and in particular timing attacks, are a fundamental obstacle to obtaining secure implementation of algorithms and cryptographic protocols, and have been widely researched for decades. While cryptographic definitions for the security of cryptographic systems have been well established for decades, none of these accepted definitions take into account the running time information leaked from executing the system. In this work, we give the foundation of new cryptographic...

2024/899 (PDF) Last updated: 2024-06-05
Monotone-Policy Aggregate Signatures
Maya Farber Brodsky, Arka Rai Choudhuri, Abhishek Jain, Omer Paneth
Foundations

The notion of aggregate signatures allows for combining signatures from different parties into a short certificate that attests that *all* parties signed a message. In this work, we lift this notion to capture different, more expressive signing policies. For example, we can certify that a message was signed by a (weighted) threshold of signers. We present the first constructions of aggregate signatures for monotone policies based on standard polynomial-time cryptographic assumptions. The...

2024/895 (PDF) Last updated: 2024-06-05
Fully-Succinct Multi-Key Homomorphic Signatures from Standard Assumptions
Gaspard Anthoine, David Balbás, Dario Fiore
Foundations

Multi-Key Homomorphic Signatures (MKHS) allow one to evaluate a function on data signed by distinct users while producing a succinct and publicly-verifiable certificate of the correctness of the result. All the constructions of MKHS in the state of the art achieve a weak level of succinctness where signatures are succinct in the total number of inputs but grow linearly with the number of users involved in the computation. The only exception is a SNARK-based construction which relies on a...

2024/884 (PDF) Last updated: 2024-06-03
Security of Fixed-Weight Repetitions of Special-Sound Multi-Round Proofs
Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, Giovanni Tognolini
Foundations

Interactive proofs are a cornerstone of modern cryptography and as such used in many areas, from digital signatures to multy-party computation. Often the knowledge error $\kappa$ of an interactive proof is not small enough, and thus needs to be reduced. This is usually achieved by repeating the interactive proof in parallel t times. Recently, it was shown that parallel repetition of any $(k_1, \ldots , k_\mu)$-special-sound multi-round public-coin interactive proof reduces the knowledge...

2024/880 (PDF) Last updated: 2024-06-14
Extending class group action attacks via pairings
Joseph Macula, Katherine E. Stange
Foundations

We introduce a new tool for the study of isogeny-based cryptography, namely pairings which are sesquilinear (conjugate linear) with respect to the $\mathcal{O}$-module structure of an elliptic curve with CM by an imaginary quadratic order $\mathcal{O}$. We use these pairings to study the security of problems based on the class group action on collections of oriented ordinary or supersingular elliptic curves. This extends work of of both (Castryck, Houben, Merz, Mula, Buuren, Vercauteren,...

2024/869 (PDF) Last updated: 2024-06-01
On cycles of pairing-friendly abelian varieties
Maria Corte-Real Santos, Craig Costello, Michael Naehrig
Foundations

One of the most promising avenues for realizing scalable proof systems relies on the existence of 2-cycles of pairing-friendly elliptic curves. Such a cycle consists of two elliptic curves E/GF(p) and E'/GF(q) that both have a low embedding degree and also satisfy q = #E and p = #E'. These constraints turn out to be rather restrictive; in the decade that has passed since 2-cycles were first proposed for use in proof systems, no new constructions of 2-cycles have been found. In this paper,...

2024/867 (PDF) Last updated: 2024-05-31
Optimal Traitor Tracing from Pairings
Mark Zhandry
Foundations

We use pairings over elliptic curves to give a collusion-resistant traitor tracing scheme where the sizes of public keys, secret keys, and ciphertexts are independent of the number of users. Prior constructions from pairings had size $\Omega(N^{1/3})$. Our construction is non-black box.

2024/856 (PDF) Last updated: 2024-05-31
Indistinguishability Obfuscation from Bilinear Maps and LPN Variants
Seyoon Ragavan, Neekon Vafa, Vinod Vaikuntanathan
Foundations

We construct an indistinguishability obfuscation (IO) scheme from the sub-exponential hardness of the decisional linear problem on bilinear groups together with two variants of the learning parity with noise (LPN) problem, namely large-field LPN and (binary-field) sparse LPN. This removes the need to assume the existence pseudorandom generators (PRGs) in $\mathsf{NC}^0$ with polynomial stretch from the state-of-the-art construction of IO (Jain, Lin, and Sahai, EUROCRYPT 2022). As an...

2024/847 (PDF) Last updated: 2024-05-31
More Efficient Approximate $k$-wise Independent Permutations from Random Reversible Circuits via log-Sobolev Inequalities
Lucas Gretta, William He, Angelos Pelecanos
Foundations

We prove that the permutation computed by a reversible circuit with $\widetilde{O}(nk\cdot \log(1/\epsilon))$ random $3$-bit gates is $\epsilon$-approximately $k$-wise independent. Our bound improves on currently known bounds in the regime when the approximation error $\epsilon$ is not too small. We obtain our results by analyzing the log-Sobolev constants of appropriate Markov chains rather than their spectral gaps.

2024/836 (PDF) Last updated: 2024-05-28
The Round Complexity of Proofs in the Bounded Quantum Storage Model
Alex B. Grilo, Philippe Lamontagne
Foundations

The round complexity of interactive proof systems is a key question of practical and theoretical relevance in complexity theory and cryptography. Moreover, results such as QIP = QIP(3) (STOC'00) show that quantum resources significantly help in such a task. In this work, we initiate the study of round compression of protocols in the bounded quantum storage model (BQSM). In this model, the malicious parties have a bounded quantum memory and they cannot store the all the qubits that are...

2024/832 (PDF) Last updated: 2024-05-28
Hamming Weight Proofs of Proximity with One-Sided Error
Gal Arnon, Shany Ben-David, Eylon Yogev
Foundations

We provide a wide systematic study of proximity proofs with one-sided error for the Hamming weight problem $\mathsf{Ham}_{\alpha}$ (the language of bit vectors with Hamming weight at least $\alpha$), surpassing previously known results for this problem. We demonstrate the usefulness of the one-sided error property in applications: no malicious party can frame an honest prover as cheating by presenting verifier randomness that leads to a rejection. We show proofs of proximity for...

2024/831 (PDF) Last updated: 2024-05-28
Tight Characterizations for Preprocessing against Cryptographic Salting
Fangqi Dong, Qipeng Liu, Kewen Wu
Foundations

Cryptography often considers the strongest yet plausible attacks in the real world. Preprocessing (a.k.a. non-uniform attack) plays an important role in both theory and practice: an efficient online attacker can take advantage of advice prepared by a time-consuming preprocessing stage. Salting is a heuristic strategy to counter preprocessing attacks by feeding a small amount of randomness to the cryptographic primitive. We present general and tight characterizations of preprocessing...

2024/830 (PDF) Last updated: 2024-05-28
How (not) to Build Quantum PKE in Minicrypt
Longcheng Li, Qian Li, Xingjian Li, Qipeng Liu
Foundations

The seminal work by Impagliazzo and Rudich (STOC'89) demonstrated the impossibility of constructing classical public key encryption (PKE) from one-way functions (OWF) in a black-box manner. However, the question remains: can quantum PKE (QPKE) be constructed from quantumly secure OWF? A recent line of work has shown that it is indeed possible to build QPKE from OWF, but with one caveat --- they rely on quantum public keys, which cannot be authenticated and reused. In this work, we...

2024/816 (PDF) Last updated: 2024-05-26
Zero-knowledge IOPs Approaching Witness Length
Noga Ron-Zewi, Mor Weiss
Foundations

Interactive Oracle Proofs (IOPs) allow a probabilistic verifier interacting with a prover to verify the validity of an NP statement while reading only few bits from the prover messages. IOPs generalize standard Probabilistically-Checkable Proofs (PCPs) to the interactive setting, and in the few years since their introduction have already exhibited major improvements in main parameters of interest (such as the proof length and prover and verifier running times), which in turn led to...

2024/806 (PDF) Last updated: 2024-05-24
Resettable Statistical Zero-Knowledge for NP
Susumu Kiyoshima
Foundations

Resettable statistical zero-knowledge [Garg--Ostrovsky--Visconti--Wadia, TCC 2012] is a strong privacy notion that guarantees statistical zero-knowledge even when the prover uses the same randomness in multiple proofs. In this paper, we show an equivalence of resettable statistical zero-knowledge arguments for $NP$ and witness encryption schemes for $NP$. - Positive result: For any $NP$ language $L$, a resettable statistical zero-knowledge argument for $L$ can be constructed from a...

2024/804 (PDF) Last updated: 2024-09-14
Analysis on Sliced Garbling via Algebraic Approach
Taechan Kim
Foundations

Recent improvements to garbled circuits are mainly focused on reducing their size. The state-of-the-art construction of Rosulek and Roy~(Crypto~2021) requires $1.5\kappa$ bits for garbling AND gates in the free-XOR setting. This is below the previously proven lower bound $2\kappa$ in the linear garbling model of Zahur, Rosulek, and Evans~(Eurocrypt~2015). Recently, Ashur, Hazay, and Satish~(eprint 2024/389) proposed a scheme that requires $4/3\kappa + O(1)$ bits for garbling AND...

2024/803 (PDF) Last updated: 2024-05-24
Can We Beat Three Halves Lower Bound?: (Im)Possibility of Reducing Communication Cost for Garbled Circuits
Chunghun Baek, Taechan Kim
Foundations

Recent improvements to garbled circuits are mainly focused on reducing their size. The state-of-the-art construction of Rosulek and Roy (Crypto 2021) requires $1.5\kappa$ bits for garbling AND gates in the free-XOR setting. This is below the previously proven lower bound $2\kappa$ in the linear garbling model of Zahur, Rosulek, and Evans (Eurocrypt 2015). Whether their construction is optimal in a more inclusive model than the linear garbling model still remains open. This paper begins...

2024/801 (PDF) Last updated: 2024-05-23
Algebraic Structure of the Iterates of $\chi$
Björn Kriepke, Gohar Kyureghyan
Foundations

We consider the map $\chi:\mathbb{F}_2^n\to\mathbb{F}_2^n$ for $n$ odd given by $y=\chi(x)$ with $y_i=x_i+x_{i+2}(1+x_{i+1})$, where the indices are computed modulo $n$. We suggest a generalization of the map $\chi$ which we call generalized $\chi$-maps. We show that these maps form an Abelian group which is isomorphic to the group of units in $\mathbb{F}_2[X]/(X^{(n+1)/2})$. Using this isomorphism we easily obtain closed-form expressions for iterates of $\chi$ and explain their properties.

2024/800 (PDF) Last updated: 2024-09-06
A Note on Zero-Knowledge for NP and One-Way Functions
Yanyi Liu, Noam Mazor, Rafael Pass
Foundations

We present a simple alternative exposition of the the recent result of Hirahara and Nanashima (STOC’24) showing that one-way functions exist if (1) every language in NP has a zero-knowledge proof/argument and (2) ZKA contains non-trivial languages. Our presentation does not rely on meta-complexity and we hope it may be useful for didactic purposes. We also remark that the same result hold for (imperfect) iO for 3CNF, or Witness Encryption for NP.

2024/797 (PDF) Last updated: 2024-05-25
Nonadaptive One-Way to Hiding Implies Adaptive Quantum Reprogramming
Joseph Jaeger
Foundations

An important proof technique in the random oracle model involves reprogramming it on hard to predict inputs and arguing that an attacker cannot detect that this occurred. In the quantum setting, a particularly challenging version of this considers adaptive reprogramming wherein the points to be reprogrammed (or output values they should be programmed to) are dependent on choices made by the adversary. Frameworks for analyzing adaptive reprogramming were given by, e.g., by Unruh (CRYPTO...

2024/795 (PDF) Last updated: 2024-05-22
New Limits of Provable Security and Applications to ElGamal Encryption
Sven Schäge
Foundations

We provide new results showing that ElGamal encryption cannot be proven CCA1-secure – a long-standing open problem in cryptography. Our result follows from a very broad, meta-reduction-based impossibility result on random self-reducible relations with efficiently re-randomizable witnesses. The techniques that we develop allow, for the first time, to provide impossibility results for very weak security notions where the challenger outputs fresh challenge statements at the end of the security...

2024/782 (PDF) Last updated: 2024-05-28
Relating Code Equivalence to Other Isomorphism Problems
Huck Bennett, Kaung Myat Htay Win
Foundations

We study the complexity of the Code Equivalence Problem on linear error-correcting codes by relating its variants to isomorphism problems on other discrete structures---graphs, lattices, and matroids. Our main results are a fine-grained reduction from the Graph Isomorphism Problem to the Linear Code Equivalence Problem over any field $\mathbb{F}$, and a reduction from the Linear Code Equivalence Problem over any field $\mathbb{F}_p$ of prime, polynomially bounded order $p$ to the Lattice...

2024/776 (PDF) Last updated: 2024-05-21
Instance-Hiding Interactive Proofs
Changrui Mu, Prashant Nalini Vasudevan
Foundations

In an Instance-Hiding Interactive Proof (IHIP) [Beaver et al. CRYPTO 90], an efficient verifier with a _private_ input x interacts with an unbounded prover to determine whether x is contained in a language L. In addition to completeness and soundness, the instance-hiding property requires that the prover should not learn anything about x in the course of the interaction. Such proof systems capture natural privacy properties, and may be seen as a generalization of the influential concept of...

2024/774 (PDF) Last updated: 2024-05-20
Byzantine Reliable Broadcast with One Trusted Monotonic Counter
Yackolley Amoussou-Guenou, Lionel Beltrando, Maurice Herlihy, Maria Potop-Butucaru
Foundations

Byzantine Reliable Broadcast is one of the most popular communication primitives in distributed systems. Byzantine reliable broadcast ensures that processes agree to deliver a message from an initiator even if some processes (perhaps including the initiator) are Byzantine. In asynchronous settings it is known since the prominent work of Bracha [Bracha87] that Byzantine reliable broadcast can be implemented deterministically if $n \geq 3t+1$ where $t$ is an upper bound on the...

2024/772 (PDF) Last updated: 2024-07-09
Reducing the Share Size of Weighted Threshold Secret Sharing Schemes via Chow Parameters Approximation
Oriol Farràs, Miquel Guiot
Foundations

A secret sharing scheme is a cryptographic primitive that allows a dealer to share a secret among a set of parties, so that only authorized subsets of them can recover it. The access structure of the scheme is the family of authorized subsets. In a weighted threshold access structure, each party is assigned a weight according to its importance, and the authorized subsets are those in which the sum of their weights is at least the threshold value. For these access structures, the share...

2024/769 (PDF) Last updated: 2024-05-23
Time-Based Cryptography From Weaker Assumptions: Randomness Beacons, Delay Functions and More
Damiano Abram, Lawrence Roy, Mark Simkin
Foundations

The assumption that certain computations inherently require some sequential time has established itself as a powerful tool for cryptography. It allows for security and liveness guarantees in distributed protocols that are impossible to achieve with classical hardness assumptions. Unfortunately, many constructions from the realm of time-based cryptography are based on new and poorly understood hardness assumptions, which tend not to stand the test of time (cf. Leurent et al. 2023, Peikert &...

2024/766 (PDF) Last updated: 2024-05-20
Breaking Verifiable Delay Functions in the Random Oracle Model
Ziyi Guan, Artur Riazanov, Weiqiang Yuan
Foundations

A verifiable delay function (VDF) is a cryptographic primitive that takes a long time to compute, but produces a unique output that is efficiently and publicly verifiable. Mahmoody, Smith and Wu (ICALP 2020) prove that VDFs satisfying both perfect completeness and adaptive perfect uniqueness do not exist in the random oracle model. Moreover, Ephraim, Freitag, Komargodski, and Pass (EUROCRYPT 2020) construct a VDF with perfect completeness and computational uniqueness, a much weaker...

2024/751 (PDF) Last updated: 2024-05-16
Simultaneous Haar Indistinguishability with Applications to Unclonable Cryptography
Prabhanjan Ananth, Fatih Kaleoglu, Henry Yuen
Foundations

Unclonable cryptography is concerned with leveraging the no-cloning principle to build cryptographic primitives that are otherwise impossible to achieve classically. Understanding the feasibility of unclonable encryption, one of the key unclonable primitives, satisfying indistinguishability security in the plain model has been a major open question in the area. So far, the existing constructions of unclonable encryption are either in the quantum random oracle model or are based on new...

2024/738 (PDF) Last updated: 2024-05-14
Quantum Key-Revocable Dual-Regev Encryption, Revisited
Prabhanjan Ananth, Zihan Hu, Zikuan Huang
Foundations

Quantum information can be used to achieve novel cryptographic primitives that are impossible to achieve classically. A recent work by Ananth, Poremba, Vaikuntanathan (TCC 2023) focuses on equipping the dual-Regev encryption scheme, introduced by Gentry, Peikert, Vaikuntanathan (STOC 2008), with key revocation capabilities using quantum information. They further showed that the key-revocable dual-Regev scheme implies the existence of fully homomorphic encryption and pseudorandom functions,...

2024/737 (PDF) Last updated: 2024-05-13
Mutable Batch Arguments and Applications
Rishab Goyal
Foundations

Non-interactive batch arguments (BARGs) let a prover compute a single proof $\pi$ proving validity of a `batch' of $k$ $\mathbf{NP}$ statements $x_1, \ldots, x_{k}$. The two central features of BARGs are succinctness and soundness. Succinctness states that proof size, $|\pi|$ does not grow with $k$; while soundness states a polytime cheating prover cannot create an accepting proof for any invalid batch of statements. In this work, we put forth a new concept of mutability for batch...

2024/736 (PDF) Last updated: 2024-05-13
Secret Sharing with Certified Deletion
James Bartusek, Justin Raizes
Foundations

Secret sharing allows a user to split a secret into many shares so that the secret can be recovered if, and only if, an authorized set of shares is collected. Although secret sharing typically does not require any computational hardness assumptions, its security does require that an adversary cannot collect an authorized set of shares. Over long periods of time where an adversary can benefit from multiple data breaches, this may become an unrealistic assumption. We initiate the...

2024/730 (PDF) Last updated: 2024-05-27
New Solutions to Delsarte's Dual Linear Programs
André Chailloux, Thomas Debris-Alazard
Foundations

Understanding the maximum size of a code with a given minimum distance is a major question in computer science and discrete mathematics. The most fruitful approach for finding asymptotic bounds on such codes is by using Delsarte's theory of association schemes. With this approach, Delsarte constructs a linear program such that its maximum value is an upper bound on the maximum size of a code with a given minimum distance. Bounding this value can be done by finding solutions to the...

2024/728 (PDF) Last updated: 2024-05-12
Relativized Succinct Arguments in the ROM Do Not Exist
Annalisa Barbara, Alessandro Chiesa, Ziyi Guan
Foundations

A relativized succinct argument in the random oracle model (ROM) is a succinct argument in the ROM that can prove/verify the correctness of computations that involve queries to the random oracle. We prove that relativized succinct arguments in the ROM do not exist. The impossibility holds even if the succinct argument is interactive, and even if soundness is computational (rather than statistical). This impossibility puts on a formal footing the commonly-held belief that succinct...

2024/727 (PDF) Last updated: 2024-05-12
Let Attackers Program Ideal Models: Modularity and Composability for Adaptive Compromise
Joseph Jaeger
Foundations

We show that the adaptive compromise security definitions of Jaeger and Tyagi (Crypto '20) cannot be applied in several natural use-cases. These include proving multi-user security from single-user security, the security of the cascade PRF, and the security of schemes sharing the same ideal primitive. We provide new variants of the definitions and show that they resolve these issues with composition. Extending these definitions to the asymmetric settings, we establish the security of the...

2024/716 (PDF) Last updated: 2024-06-16
Unclonable Secret Sharing
Prabhanjan Ananth, Vipul Goyal, Jiahui Liu, Qipeng Liu
Foundations

Unclonable cryptography utilizes the principles of quantum mechanics to addresses cryptographic tasks that are impossible classically. We introduce a novel unclonable primitive in the context of secret sharing, called unclonable secret sharing (USS). In a USS scheme, there are $n$ shareholders, each holding a share of a classical secret represented as a quantum state. They can recover the secret once all parties (or at least $t$ parties) come together with their shares. Importantly, it...

2024/714 (PDF) Last updated: 2024-05-27
Learning with Quantization: Construction, Hardness, and Applications
Shanxiang Lyu, Ling Liu, Cong Ling
Foundations

This paper presents a generalization of the Learning With Rounding (LWR) problem, initially introduced by Banerjee, Peikert, and Rosen, by applying the perspective of vector quantization. In LWR, noise is induced by scalar quantization. By considering a new variant termed Learning With Quantization (LWQ), we explore large-dimensional fast-decodable lattices with superior quantization properties, aiming to enhance the compression performance over scalar quantization. We identify polar...

2024/706 (PDF) Last updated: 2024-05-07
Linicrypt in the Ideal Cipher Model
Zahra Javar, Bruce M. Kapron
Foundations

We extend the Linicrypt framework for characterizing hash function security as proposed by McQuoid, Swope, and Rosulek (TCC 2018) to support constructions in the ideal cipher model. In this setting, we give a characterization of collision- and second-preimage-resistance in terms of a linear-algebraic condition on Linicrypt programs, and present an efficient algorithm for determining whether a program satisfies the condition. As an application, we consider the case of the block cipherbased...

2024/701 (PDF) Last updated: 2024-05-07
Quantum Unpredictability
Tomoyuki Morimae, Shogo Yamada, Takashi Yamakawa
Foundations

Unpredictable functions (UPFs) play essential roles in classical cryptography, including message authentication codes (MACs) and digital signatures. In this paper, we introduce a quantum analog of UPFs, which we call unpredictable state generators (UPSGs). UPSGs are implied by pseudorandom function-like states generators (PRFSs), which are a quantum analog of pseudorandom functions (PRFs), and therefore UPSGs could exist even if one-way functions do not exist, similar to other recently...

2024/694 (PDF) Last updated: 2024-05-06
Lower-Bounds on Public-Key Operations in PIR
Jesko Dujmovic, Mohammad Hajiabadi
Foundations

Private information retrieval (PIR) is a fundamental cryptographic primitive that allows a user to fetch a database entry without revealing to the server which database entry it learns. PIR becomes non-trivial if the server communication is less than the database size. We show that building (even) very weak forms of single-server PIR protocols, without pre-processing, requires the number of public-key operations to scale linearly in the database size. This holds irrespective of the number of...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.