Le théorème de Lehmann-Scheffé a une importance particulière en statistiques puisqu'il permet de trouver des estimateurs sans biais optimaux qui ne peuvent pas être améliorés en termes de précision. De tels estimateurs n'existent pas forcément mais si l'on dispose d'une statistique qui soit à la fois exhaustive et totale et d'un estimateur qui soit sans biais alors l'estimateur augmenté est optimal et l'on ne peut pas trouver de meilleur estimateur sans biais. (On dit qu'une statistique est totale si : implique presque partout.)

Property Value
dbo:abstract
  • Le théorème de Lehmann-Scheffé a une importance particulière en statistiques puisqu'il permet de trouver des estimateurs sans biais optimaux qui ne peuvent pas être améliorés en termes de précision. De tels estimateurs n'existent pas forcément mais si l'on dispose d'une statistique qui soit à la fois exhaustive et totale et d'un estimateur qui soit sans biais alors l'estimateur augmenté est optimal et l'on ne peut pas trouver de meilleur estimateur sans biais. Ce théorème nous donne donc une condition suffisante pour trouver un estimateur sans biais optimal. Il nous dit également que cet estimateur s'exprime comme une fonction de la statistique exhaustive totale S, c'est-à-dire de la forme g(S) où g est une fonction mesurable. (On dit qu'une statistique est totale si : implique presque partout.) (fr)
  • Le théorème de Lehmann-Scheffé a une importance particulière en statistiques puisqu'il permet de trouver des estimateurs sans biais optimaux qui ne peuvent pas être améliorés en termes de précision. De tels estimateurs n'existent pas forcément mais si l'on dispose d'une statistique qui soit à la fois exhaustive et totale et d'un estimateur qui soit sans biais alors l'estimateur augmenté est optimal et l'on ne peut pas trouver de meilleur estimateur sans biais. Ce théorème nous donne donc une condition suffisante pour trouver un estimateur sans biais optimal. Il nous dit également que cet estimateur s'exprime comme une fonction de la statistique exhaustive totale S, c'est-à-dire de la forme g(S) où g est une fonction mesurable. (On dit qu'une statistique est totale si : implique presque partout.) (fr)
dbo:namedAfter
dbo:wikiPageID
  • 2689023 (xsd:integer)
dbo:wikiPageLength
  • 2517 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190223273 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Le théorème de Lehmann-Scheffé a une importance particulière en statistiques puisqu'il permet de trouver des estimateurs sans biais optimaux qui ne peuvent pas être améliorés en termes de précision. De tels estimateurs n'existent pas forcément mais si l'on dispose d'une statistique qui soit à la fois exhaustive et totale et d'un estimateur qui soit sans biais alors l'estimateur augmenté est optimal et l'on ne peut pas trouver de meilleur estimateur sans biais. (On dit qu'une statistique est totale si : implique presque partout.) (fr)
  • Le théorème de Lehmann-Scheffé a une importance particulière en statistiques puisqu'il permet de trouver des estimateurs sans biais optimaux qui ne peuvent pas être améliorés en termes de précision. De tels estimateurs n'existent pas forcément mais si l'on dispose d'une statistique qui soit à la fois exhaustive et totale et d'un estimateur qui soit sans biais alors l'estimateur augmenté est optimal et l'on ne peut pas trouver de meilleur estimateur sans biais. (On dit qu'une statistique est totale si : implique presque partout.) (fr)
rdfs:label
  • Lehmann–Scheffé theorem (en)
  • Satz von Lehmann-Scheffé (de)
  • Teorema de Lehmann–Scheffé (es)
  • Théorème de Lehmann-Scheffé (fr)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of