In Situ Potentiometric Monitoring of Nitrate Removal from Aqueous Solution by Activated Carbon and Ion Exchange Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Instrumentation
2.3. Construction of the Ion-Selective Electrode
2.4. Calibration of the Electrode
2.5. Pretreatment of the Anion Exchange Resin
2.6. Potentiometric Monitoring of the Removal of Nitrate
3. Results and Discussion
3.1. Potentiometric Response of the Electrode to Nitrate in Aqueous Solution
3.2. Nitrate Removal by Activated Carbon Adsorption
3.2.1. Potentiometric Monitoring of Nitrate Removal
3.2.2. Kinetic Characterization of the Process
3.3. Nitrate Removal by Ion Exchange Resin
3.3.1. Potentiometric Response for Exchangeable Chloride and Hydroxide Anions
3.3.2. Potentiometric Monitoring of Nitrate Removal
3.3.3. Kinetic Characterization of the Process
3.4. Potential Applications for Nitrate Removal in Real Water Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shukla, S.; Saxena, A. Sources and leaching of nitrate contamination in groundwater. Curr. Sci. 2020, 118, 883–891. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, P.; Song, J.; Li, Q. Application of nitrogen and oxygen isotopes for source and fate identification of nitrate pollution in surface water: A review. Appl. Sci. 2018, 9, 18. [Google Scholar] [CrossRef]
- Carrey, R.; Ballesté, E.; Blanch, A.R.; Lucena, F.; Pons, P.; López, J.M.; Rull, M.; Solà, J.; Micola, N.; Fraile, J. Combining multi-isotopic and molecular source tracking methods to identify nitrate pollution sources in surface and groundwater. Water Res. 2021, 188, 116537. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Nitrate and Nitrite in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Parvizishad, M.; Dalvand, A.; Mahvi, A.H.; Goodarzi, F. A review of adverse effects and benefits of nitrate and nitrite in drinking water and food on human health. Health Scope 2017, 6, e14164. [Google Scholar] [CrossRef]
- WHO. Chemical fact sheets. In Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda, 4th ed.; WHO: Geneva, Switzerland, 2022; pp. 438–444. [Google Scholar]
- Akinnawo, S.O. Eutrophication: Causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environ. Chall. 2023, 12, 100733. [Google Scholar] [CrossRef]
- Sun, J.; Garg, S.; Waite, T.D. A novel integrated flow-electrode capacitive deionization and flow cathode system for nitrate removal and ammonia generation from simulated groundwater. Environ. Sci. Technol. 2023, 57, 14726–14736. [Google Scholar] [CrossRef]
- Guo, F.; Luo, Y.; Nie, W.; Xiong, Z.; Yang, X.; Yan, J.; Liu, T.; Chen, M.; Chen, Y. Biochar boosts nitrate removal in constructed wetlands for secondary effluent treatment: Linking nitrate removal to the metabolic pathway of denitrification and biochar properties. Bioresour. Technol. 2023, 379, 129000. [Google Scholar] [CrossRef]
- Ahmad, H.A.; Ahmad, S.; Gao, L.; Wang, Z.; El-Baz, A.; Ni, S.Q. Energy-efficient and carbon neutral anammox-based nitrogen removal by coupling with nitrate reduction pathways: A review. Sci. Total Environ. 2023, 889, 164213. [Google Scholar] [CrossRef]
- Yılmaz, T.; Sahinkaya, E. Performance of sulfur-based autotrophic denitrification process for nitrate removal from permeate of an MBR treating textile wastewater and concentrate of a real scale reverse osmosis process. J. Environ. Manag. 2023, 326, 116827. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, L.; Yin, Z.; Cui, Z.; Qu, K.; Wang, D.; Wang, Z.; Zhu, S.; Cui, H. Comparative investigation on heterotrophic denitrification driven by different biodegradable polymers for nitrate removal in mariculture wastewater: Organic carbon release, denitrification performance, and microbial community. Front. Microbiol. 2023, 14, 1141362. [Google Scholar] [CrossRef]
- McAdam, E.J.; Judd, S.J. A review of membrane bioreactor potential for nitrate removal from drinking water. Desalination 2006, 196, 135–148. [Google Scholar] [CrossRef]
- Baghodrat, M.; Mehri, F.; Rowshanzamir, S. Electrochemical performance and enhanced nitrate removal of homogeneous polysulfone-based anion exchange membrane applied in membrane capacitive deionization cell. Desalination 2020, 496, 114696. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H.; Khan, M.A. Recent advances on activated carbon-based materials for nitrate adsorption: A review. J. Anal. Appl. Pyrolysis 2023, 169, 105856. [Google Scholar] [CrossRef]
- Abu, A.; Abdullah, N. Sorption and thermodynamic study of nitrate removal by using Amberlite IRA 900 (AI900) resin. Mater. Today Proc. 2021, 41, 102–108. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Wang, J. A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance and mechanism. Chemosphere 2022, 291, 132728. [Google Scholar] [CrossRef]
- Wierzbicka, E. Novel methods of nitrate and nitrite determination-a review. J. Elem. 2020, 25, 97–106. [Google Scholar] [CrossRef]
- Moorcroft, M.J.; Davis, J.; Compton, R.G. Detection and determination of nitrate and nitrite: A review. Talanta 2001, 54, 785–803. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Yu, L.-J.; Liu, Y.; Lin, L.; Lu, R.; Zhu, J.; He, L.; Lu, Z.-L. Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709–720. [Google Scholar] [CrossRef]
- Arada Pérez, M.A.; Pérez Marín, L.; Calvo Quintana, J.; Yazdani-Pedram, M. Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sens. Actuators B Chem. 2003, 89, 262–268. [Google Scholar] [CrossRef]
- Mitrakas, M.G.; Alexiades, C.A.; Keramidas, V.Z. Nitrate ion-selective electrodes based on quaternary phosphonium salts in plasticized poly (vinyl chloride) and influence of membrane homogeneity on their performance. Analyst 1991, 116, 361–367. [Google Scholar] [CrossRef]
- Andredakis, G.E.; Moschou, E.A.; Matthaiou, K.; Froudakis, G.E.; Chaniotakis, N.A. Theoretical and experimental studies of metallated phenanthroline derivatives as carriers for the optimization of the nitrate sensor. Anal. Chim. Acta 2001, 439, 273–280. [Google Scholar] [CrossRef]
- Pérez-Olmos, R.; Rios, A.; Fernández, J.R.; Lapa, R.A.S.; Lima, J. Construction and evaluation of ion selective electrodes for nitrate with a summing operational amplifier. Application to tobacco analysis. Talanta 2001, 53, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Ortuño, J.A.; Expósito, R.; Sánchez-Pedreño, C.; Albero, M.I.; Espinosa, A. A nitrate-selective electrode based on a tris (2-aminoethyl) amine triamide derivative receptor. Anal. Chim. Acta 2004, 525, 231–237. [Google Scholar] [CrossRef]
- Mikhelson, K.N. Ion-Selective Electrodes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 69–71. [Google Scholar]
- Wojciechowski, K.; Kucharek, M.; Wróblewski, W.; Warszyński, P. On the origin of the Hofmeister effect in anion-selective potentiometric electrodes with tetraalkylammonium salts. J. Electroanal. Chem. 2010, 638, 204–211. [Google Scholar] [CrossRef]
- Bühlmann, P.; Pretsch, E.; Bakker, E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem. Rev. 1998, 98, 1593–1688. [Google Scholar] [CrossRef] [PubMed]
- Buck, R.P.; Lindner, E. Recommendations for nomenclature of ion-selective electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Z.; Liu, M.; Bai, B.; Zhang, C. Nitrate-nitrogen adsorption characteristics and mechanisms of various garden waste biochars. Materials 2023, 16, 5726. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, M.; Zhao, D.; Li, M.; Qiu, S.; Yuan, M.; Guo, C.; Han, W.; Zhang, K.; Wang, F. La-Ca-quaternary amine-modified straw adsorbent for simultaneous removal of nitrate and phosphate from nutrient-polluted water. Sep. Purif. Technol. 2023, 304, 122248. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Q.; Huang, R.; Hu, Y. Adsorption of nitrate in water by CTAB-modified MgFe layered double hydroxide composite biochar at low temperature: Adsorption characteristics and mechanisms. J. Environ. Chem. Eng. 2023, 11, 109090. [Google Scholar] [CrossRef]
- Kassahun, F.; Taddesse, A.M.; Teju, E.; Bogale, Y. Magnetic Al2O3/ZrO2/Fe3O4 nanocomposite: Synthesis, characterization, and application for the adsorptive removal of nitrate from aqueous solution. Groundw. Sustain. Dev. 2023, 20, 100873. [Google Scholar] [CrossRef]
- Khoshkalam, E.; Fotovat, A.; Halajnia, A.; Kazemian, H.; Eshghi, H. Nitrate adsorption using green iron oxide nanoparticles synthesized by Eucalyptus leaf extracts: Kinetics and effects of Ph, KCl salt, and anions competition. J. Mol. Liq. 2023, 375, 121366. [Google Scholar] [CrossRef]
- Hosseini Nami, S.; Mousavi, S.B. Nitrate removal performance of different granular adsorbents using a novel Fe-exchanged nanoporous clinoptilolite. Ind. Eng. Chem. Res. 2023, 62, 3659–3671. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Cuartero, M.; Ruiz, A.; Galián, M.; Ortuño, J.A. Potentiometric electronic tongue for quantitative ion analysis in natural mineral waters. Sensors 2022, 22, 6204. [Google Scholar] [CrossRef]
- Miras, M.; Cuartero, M.; García, M.S.; Ruiz, A.; Ortuño, J.A. Analytical Tool for Quality Control of Irrigation Waters via a Potentiometric Electronic Tongue. Chemosensors 2023, 11, 407. [Google Scholar] [CrossRef]
Calibration | (mV) | S (mV/dec) | R2 |
---|---|---|---|
1 | −2.5 | −57.0 | 1.0000 |
2 | 1.5 | −57.9 | 1.0000 |
Calibration | (mV) | S (mV/dec) | LD (M) | R2 |
---|---|---|---|---|
1 | 95.1 | −44.0 | 3.5 × 10−7 | 0.9998 |
2 | 35.7 | −49.0 | 4.4 × 10−7 | 0.9990 |
Cinitial (M) | Carbon 1 | Carbon 2 | ||
---|---|---|---|---|
Cfinal (M) | Removed Nitrate (%) | Cfinal (M) | Removed Nitrate (%) | |
1 × 10−5 | 1.6 × 10−6 | 84 | 3.3 × 10−6 | 67 |
2 × 10−5 | 2.2 × 10−6 (2.7 × 10−6) | 89 (87) | 3.8 × 10−6 (3.6 × 10−6) | 81 (82) |
4 × 10−5 | 7.3 × 10−6 | 82 | 1.1 × 10−5 | 74 |
Cinitial (M) | k2 Carbon 1 (g mg−1 min−1) | k2 Carbon 2 (g mg−1 min−1) | qe Carbon 1 (mg g−1) | qe Carbon 2 (mg g−1) | R2 Carbon 1 | R2 Carbon 2 |
---|---|---|---|---|---|---|
1 × 10−5 | 2.7 | 14 | 0.53 | 0.49 | 0.9997 | 0.9998 |
2 × 10−5 | 1.3 (1.1) | 12 (9.9) | 1.1 (1.1) | 1.0 (1.0) | 0.9999 | 0.9999 |
4 × 10−5 | 0.31 | 6.2 | 2.1 | 1.9 | 0.9998 | 0.9999 |
Cinitial (M) | Cfinal (M) | Removed Nitrate (%) |
---|---|---|
1 × 10−5 | 7.5 × 10−6 | 25 |
2 × 10−5 | 1.2 × 10−5 | 40 |
4 × 10−5 | 2.4 × 10−5 | 40 |
Cinitial (M) | k (min−1) | R2 |
---|---|---|
1 × 10−5 | 0.024 | 0.9984 |
2 × 10−5 | 0.043 | 0.9991 |
4 × 10−5 | 0.036 | 0.9995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmos, J.M.; Gil, L.; Ortuño, J.Á. In Situ Potentiometric Monitoring of Nitrate Removal from Aqueous Solution by Activated Carbon and Ion Exchange Resin. Micromachines 2024, 15, 1366. https://doi.org/10.3390/mi15111366
Olmos JM, Gil L, Ortuño JÁ. In Situ Potentiometric Monitoring of Nitrate Removal from Aqueous Solution by Activated Carbon and Ion Exchange Resin. Micromachines. 2024; 15(11):1366. https://doi.org/10.3390/mi15111366
Chicago/Turabian StyleOlmos, José Manuel, Lucía Gil, and Joaquín Ángel Ortuño. 2024. "In Situ Potentiometric Monitoring of Nitrate Removal from Aqueous Solution by Activated Carbon and Ion Exchange Resin" Micromachines 15, no. 11: 1366. https://doi.org/10.3390/mi15111366
APA StyleOlmos, J. M., Gil, L., & Ortuño, J. Á. (2024). In Situ Potentiometric Monitoring of Nitrate Removal from Aqueous Solution by Activated Carbon and Ion Exchange Resin. Micromachines, 15(11), 1366. https://doi.org/10.3390/mi15111366