A Laterally Excited Bulk Acoustic Wave Resonator Based on LiNbO3 with Arc-Shaped Electrodes
Abstract
:1. Introduction
2. Modeling and Principle
3. Fabrication and Characterization
4. Simulation and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, S.; Piazza, G. Design and Analysis of Lithium–Niobate-BasedHigh Electromechanical Coupling RF-MEMS Resonators for Wideband Filtering. IEEE Trans. Microw. Theory Tech. 2013, 61, 403–414. [Google Scholar] [CrossRef]
- Kovacs, G.; Anhorn, M.; Engan, H.E.; Visintini, G.; Ruppel, C.C.W. Improved material constants for LiNbO3 and LiTaO3. IEEE Symp. Ultrason. 1990, 1, 435–438. [Google Scholar] [CrossRef]
- Gong, S.; Piazza, G. Large frequency tuning of Lithium Niobate laterally vibrating MEMS resonators via electric boundary reconfiguration. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013; pp. 2465–2468. [Google Scholar] [CrossRef]
- Kadota, M.; Ogami, T.; Kimura, T. Ultrawide-Band Resonators Using Shear Horizontal-Type Plate Wave and Their Application. Jpn. J. Appl. Phys. 2013, 52, 07HD04. [Google Scholar] [CrossRef]
- Kadota, M.; Ogami, T.; Yamamoto, K.; Negoro, Y.; Tochishita, H. High-Frequency Lamb Wave Device Composed of LiNbO3 Thin Film. Jpn. J. Appl. Phys. 2009, 48, 07GG08. [Google Scholar] [CrossRef]
- Gong, S.; Piazza, G. Monolithic Multi-Frequency Wideband RF Filters Using Two-Port Laterally Vibrating Lithium Niobate MEMS Resonators. J. Microelectromechanical Syst. 2014, 23, 1188–1197. [Google Scholar] [CrossRef]
- He, X.; Zhou, J.; Xuan, W.; Zhan, Z.; Zhang, Y.; Li, P.; Kong, L. Single-Crystalline LiTaO3 Film-Based High-Frequency Surface Acoustic Wave Resonators and Electronics Applications. IEEE Microw. Wirel. Compon. Lett. 2021, 32, 301–304. [Google Scholar] [CrossRef]
- Miyamoto, A.; Wakana, S.I.; Ito, A. Novel optical observation technique for shear horizontal wave in SAW resonators on 42° YX-cut lithium tantalate. In Proceedings of the 2002 IEEE Ultrasonics Symposium, 2002. Proceedings, Munich, Germany, 8–11 October 2002; Volume 1, pp. 89–92. [Google Scholar] [CrossRef]
- Yan, Y.; Huang, K.; Zhou, H.; Zhao, X.; Li, W.; Li, Z.; Yi, A.; Huang, H.; Lin, J.; Zhang, S.; et al. Wafer-Scale Fabrication of 42° Rotated Y-Cut LiTaO3-on-Insulator (LTOI) Substrate for a SAW Resonator. ACS Appl. Electron. Mater. 2019, 1, 1660–1666. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Tseng, K.-J.; Li, M.-H. Large Coupling Acoustic Wave Resonators Based on LiNbO3/SiO2/Si Functional Substrate. IEEE Electron Device Lett. 2020, 41, 1825–1828. [Google Scholar] [CrossRef]
- Eisner, S.R.; Chapin, C.A.; Lu, R.; Yang, Y.; Gong, S.; Senesky, D.G. A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 degrees C in Air. Sensors 2020, 21, 149. [Google Scholar] [CrossRef] [PubMed]
- Yandrapalli, S.; Plessky, V.; Koskela, J.; Yantchev, V.; Turner, P.; Villanueva, L.G. Analysis of XBAR resonance and higher order spurious modes. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 185–188. [Google Scholar] [CrossRef]
- Plessky, V.; Yandrapalli, S.; Turner, P.J.; Villanueva, L.G.; Koskela, J.; Faizan, M.; Pastina, A.D.; Garcia, B.; Costa, J.; Hammond, R.B. Laterally excited bulk wave resonators (XBARs) based on thin Lithium Niobate platelet for 5GHz and 13 GHz filters. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 512–515. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, R.; Gao, L.; Gong, S. A C-band Lithium Niobate MEMS Filter with 10% Fractional Bandwidth for 5G Front-ends. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1981–1984. [Google Scholar] [CrossRef]
- Kadota, M.; Ogami, T. 5.4 GHz Lamb Wave Resonator on LiNbO3 Thin Crystal Plate and Its Application. Jpn. J. Appl. Phys. 2011, 50, 07HD11. [Google Scholar] [CrossRef]
- Plessky, V.; Yandrapalli, S.; Turner, P.J.; Villanueva, L.G.; Koskela, J.; Hammond, R.B. 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate. Electron. Lett. 2019, 55, 98–100. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, R.; Gao, L.; Gong, S. 4.5 GHz Lithium Niobate MEMS Filters With 10% Fractional Bandwidth for 5G Front-Ends. J. Microelectromech. Syst. 2019, 28, 575–577. [Google Scholar] [CrossRef]
- Zou, J.; Lam, C.S. Electrode design of AlN Lamb wave resonators. In Proceedings of the 2016 IEEE International Frequency Control Symposium (IFCS), New Orleans, LA, USA, 9–12 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, J.; Park, M.; Mertin, S.; Pensala, T.; Ayazi, F.; Ansari, A. A Film Bulk Acoustic Resonator Based on Ferroelectric Aluminum Scandium Nitride Films. J. Microelectromechanical Syst. 2020, 29, 741–747. [Google Scholar] [CrossRef]
- Gu, X.; Liu, J.; Cai, Y.; Liu, Y.; Gao, C.; Wen, Z.; Guo, S.; Sun, C. Laterally-excited bulk-wave resonators (XBARs) with embedded electrodes in 149.5° Z-cut LiNbO3. In Proceedings of the 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 25–29 April 2021; pp. 931–934. [Google Scholar] [CrossRef]
- Loke, S.P.H.; Sun, C.; Zhu, Y.; Wang, N.; Gu, Y.A. Two dimensional, high electromechanical coupling aluminium nitride Lamb wave resonators. In Proceedings of the 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Singapore, 1–4 June 2015; pp. 733–735. [Google Scholar] [CrossRef]
- Sun, C.; Soon, B.W.; Zhu, Y.; Wang, N.; Loke, S.P.; Mu, X.; Tao, J.; Gu, A.Y. Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AlN Lamb wave resonators. Appl. Phys. Lett. 2015, 106, 253502. [Google Scholar] [CrossRef]
- Gong, S.; Piazza, G. Weighted electrode configuration for electromechanical coupling enhancement in a new class of micromachined Lithium Niobate laterally vibrating resonators. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 15.6.1–15.6.4. [Google Scholar] [CrossRef]
- Rosenbaum, J. Bulk Acoustic Wave Theory and Devices; Artech House: Norwood, MA, USA, 1988. [Google Scholar]
Parameter | XBAR with IDTs | XBAR with Arc-Shaped Electrodes |
---|---|---|
W_E | 1 | 1 |
P | 20 | 20 |
N | 20 | 20 |
fs (GHz) | 5.08 | 5.18 |
fp (GHz) | 5.57 | 6.04 |
19.8% | 29.8% | |
Q | 717 | 304 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, W.; Wen, Z.; Zeng, M.; Sun, C. A Laterally Excited Bulk Acoustic Wave Resonator Based on LiNbO3 with Arc-Shaped Electrodes. Micromachines 2024, 15, 1367. https://doi.org/10.3390/mi15111367
Liu J, Liu W, Wen Z, Zeng M, Sun C. A Laterally Excited Bulk Acoustic Wave Resonator Based on LiNbO3 with Arc-Shaped Electrodes. Micromachines. 2024; 15(11):1367. https://doi.org/10.3390/mi15111367
Chicago/Turabian StyleLiu, Jieyu, Wenjuan Liu, Zhiwei Wen, Min Zeng, and Chengliang Sun. 2024. "A Laterally Excited Bulk Acoustic Wave Resonator Based on LiNbO3 with Arc-Shaped Electrodes" Micromachines 15, no. 11: 1367. https://doi.org/10.3390/mi15111367
APA StyleLiu, J., Liu, W., Wen, Z., Zeng, M., & Sun, C. (2024). A Laterally Excited Bulk Acoustic Wave Resonator Based on LiNbO3 with Arc-Shaped Electrodes. Micromachines, 15(11), 1367. https://doi.org/10.3390/mi15111367