Thermophysical Properties of Multifunctional Syntactic Foams Containing Phase Change Microcapsules for Thermal Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Experimental Techniques
2.3.1. Rheological and Morphological Properties
2.3.2. Thermal Properties
2.3.3. Dynamic-Mechanical Properties
2.3.4. Design of Experiment (DOE) and Statistical Analysis of the Experimental Data
3. Results
3.1. Rheological and Morphological Properties
3.2. Thermal Properties
3.3. Dynamic-Mechanical Thermal Analysis (DMTA)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
thermal diffusivity of the samples at 30 °C measured by LFA | mm2/s | |
shear rate | s−1 | |
specific enthalpy of fusion | J/g | |
specific enthalpy of crystallization | J/g | |
viscosity | Pa∙s | |
thermal conductivity at 30 °C | W/(m∙K) | |
υ | specific volume (i.e., 1/) | cm3/g |
pyconmeter density at 23 °C | g/cm3 | |
volume fraction of epoxy | - | |
volume fraction of PCM | - | |
volume fraction of HGM | - | |
cp | specific heat capacity | J/(g∙K) |
E′ | storage modulus | MPa |
E″ | loss modulus | MPa |
G′ | shear storage modulus | MPa |
G″ | shear loss modulus | MPa |
M | multifunctional efficiency coefficient | - |
time for heating from 26 °C to 55 °C | min | |
time for cooling from 55 °C to 26 °C | min | |
tanδ | loss tangent (i.e., E′’/E′) | - |
Tc | crystallization temperature | °C |
Tg | glass transition temperature | °C |
Tm | melting temperature | °C |
References
- Wu, X.; Gao, Y.; Wang, Y.; Fan, R.; Ali, Z.; Yu, J.; Yang, K.; Sun, K.; Li, X.; Lei, Y.; et al. Recent developments on epoxy-based syntactic foams for deep sea exploration. J. Mater. Sci. 2021, 56, 2037–2076. [Google Scholar] [CrossRef]
- Qi, C.; Yu, Q.; Zhao, Y. Fabrication and characterization of the thermoplastic and thermoset syntactic foam cor-based sandwich composites. Polym. Compos. 2020, 41, 3052–3061. [Google Scholar] [CrossRef]
- Ya, B.; Wang, Y.; Meng, L.; Zhou, B.; Zhang, X. Study on the performance of syntactic foam reinforced by hybrid functionalized carbon nanotubes. J. Appl. Polym. Sci. 2020, 137, 1–8. [Google Scholar] [CrossRef]
- Gupta, N.; Zeltmann, S.E.; Shunmugasamy, V.C.; Pinisetty, D. Applications of Polymer Matrix Syntactic Foams. JOM 2014, 66, 245–254. [Google Scholar] [CrossRef]
- Doddamani, M. Effect of surface treatment on quasi-static compression and dynamic mechanical analysis of syntactic foams. Compos. Part B: Eng. 2019, 165, 365–378. [Google Scholar] [CrossRef]
- Davarpanah, A. A feasible visual investigation for associative foam polymer injectivity performances in the oil recovery enhancement. Eur. Polym. J. 2018, 105, 405–411. [Google Scholar] [CrossRef]
- Davarpanah, A.; Shirmohammadi, R.; Mirshekari, B. Experimental evaluation of polymer-enhanced foam transportation on the foam stabilization in the porous media. Int. J. Environ. Sci. Technol. 2019, 16, 8107–8116. [Google Scholar] [CrossRef]
- Afolabi, L.O.; Ariff, Z.M.; Hashim, S.F.S.; Alomayri, T.; Mahzan, S.; Kamarudin, K.-A.; Muhammad, I.D. Syntactic foams formulations, production techniques, and industry applications: A review. J. Mater. Res. Technol. 2020, 9, 10698–10718. [Google Scholar] [CrossRef]
- Waddar, S.; Pitchaimani, J.; Doddamani, M.; Gupta, N. Buckling and Free Vibration Behavior of Cenosphere/Epoxy Syntactic Foams under Axial Compressive Loading. Mater. Perform. Charact. 2018, 7, 532–546. [Google Scholar] [CrossRef]
- Robert, T.M.; Nair, S.; Mathew, D.; Nair, C.R. Room temperature processable heat-resistant epoxy-oxazolidone-based syntactic foams. Polym. Adv. Technol. 2018, 29, 121–129. [Google Scholar] [CrossRef]
- Paul, D.; Velmurugan, R. Analysis of the specific properties of glass microballoon-epoxy syntactic foams under tensile and flexural loads. Mater. Today Proc. 2018, 5, 16956–16962. [Google Scholar] [CrossRef]
- Pinisetty, D.; Shunmugasamy, V.C.; Gupta, N. Hollow Glass Microspheres in Thermosets—Epoxy Syntactic Foams. In Hollow Glass Microspheres for Plastics, Elastomers, and Adhesives Compounds; William Andrew Publishing: Norwich, UK, 2015; pp. 147–174. [Google Scholar]
- Ding, J.; Ye, F.; Liu, Q.; Yang, C.; Gao, Y.; Zhang, B. Co-continuous hollow glass microspheres/epoxy resin syntactic foam prepared by vacuum resin transfer molding. J. Reinf. Plast. Compos. 2019, 38, 896–909. [Google Scholar] [CrossRef]
- Ozkutlu, M.; Dilek, C.; Bayram, G. Effects of hollow glass microsphere density and surface modification on the mechanical and thermal properties of poly(methyl methacrylate) syntactic foams. Compos. Struct. 2018, 202, 545–550. [Google Scholar] [CrossRef]
- Gupta, N.; Pinisetty, D. A Review of Thermal Conductivity of Polymer Matrix Syntactic Foams—Effect of Hollow Particle Wall Thickness and Volume Fraction. JOM 2012, 65, 234–245. [Google Scholar] [CrossRef]
- He, S.; Carolan, D.; Fergusson, A.; Taylor, A.C. Toughening epoxy syntactic foams with milled carbon fibres: Mechanical properties and toughening mechanisms. Mater. Des. 2019, 169, 107654. [Google Scholar] [CrossRef]
- Composite Materials, Processing, Applications, Characterizations; Kar, K.K. (Ed.) Springer Nature: Basingstoke, UK, 2016. [Google Scholar]
- Sivanathan, A.; Dou, Q.; Wang, Y.; Li, Y.; Corker, J.; Zhou, Y.; Fan, M. Phase change materials for building construction: An overview of nano-/micro-encapsulation. Nanotechnol. Rev. 2020, 9, 896–921. [Google Scholar] [CrossRef]
- Borreguero, A.M.; Rodríguez, J.F.; Valverde, J.L.; Peijs, T.; Carmona, M. Characterization of rigid polyurethane foams containing microencapsulted phase change materials: Microcapsules type effect. J. Appl. Polym. Sci. 2013, 128, 582–590. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A.; Pegoretti, A. Novel reactive thermoplastic resin as a matrix for laminates containing phase change microcapsules. Polym. Compos. 2019, 40, 3711–3724. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A.; Pegoretti, A. Dynamic-mechanical response of carbon fiber laminates with a reactive thermoplastic resin containing phase change microcapsules. Mech. Time-Depend. Mater. 2020, 24, 395–418. [Google Scholar] [CrossRef]
- El Mays, A.; Ammar, R.; Hawa, M.; Akroush, M.A.; Hachem, F.; Khaled, M.; Ramadan, M. Using phase change material in under floor heating. Energy Procedia 2017, 119, 806–811. [Google Scholar] [CrossRef]
- Dorigato, A.; Canclini, P.; Unterberger, S.H.; Pegoretti, A. Phase changing nanocomposites for low temperature thermal energy storage and release. Express Polym. Lett. 2017, 11, 738–752. [Google Scholar] [CrossRef]
- Stritih, U.; Tyagi, V.; Stropnik, R.; Paksoy, H.; Haghighat, F.; Joybari, M.M. Integration of passive PCM technologies for net-zero energy buildings. Sustain. Cities Soc. 2018, 41, 286–295. [Google Scholar] [CrossRef]
- Anisur, M.; Mahfuz, M.; Kibria, M.; Saidur, R.; Metselaar, I.; Mahlia, T. Curbing global warming with phase change materials for energy storage. Renew. Sustain. Energy Rev. 2013, 18, 23–30. [Google Scholar] [CrossRef]
- Michel, B.; Glouannec, P.; Fuentes, A.; Chauvelon, P. Experimental and numerical study of insulation walls containing a composite layer of PU-PCM and dedicated to refrigerated vehicle. Appl. Therm. Eng. 2017, 116, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Waqas, A.; Kumar, S. Thermal performance of latent heat storage for free cooling of buildings in a dry and hot climate: An experimental study. Energy Build. 2011, 43, 2621–2630. [Google Scholar] [CrossRef]
- Serrano, A.; Borreguero, A.M.; Garrido, I.; Rodríguez, J.F.; Carmona, M. Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules. Appl. Therm. Eng. 2016, 103, 226–232. [Google Scholar] [CrossRef]
- Sarı, A.; Alkan, C.; Döğüşcü, D.K.; Biçer, A. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol. Energy Mater. Sol. Cells 2014, 126, 42–50. [Google Scholar] [CrossRef]
- Yang, C.; Fischer, L.; Maranda, S.; Worlitschek, J. Rigid polyurethane foams incorporated with phase change materials: A state-of-the-art review and future research pathways. Energy Build. 2015, 87, 25–36. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A.; Fambri, L.; Unterberger, S.H.; Pegoretti, A. Effect of phase change microcapsules on the thermo-mechanical, fracture and heat storage properties of unidirectional carbon/epoxy laminates. Polym. Test. 2020, 91, 106747. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A.; Fambri, L.; Pegoretti, A. Multifunctional epoxy/carbon fiber laminates for thermal energy storage and release. Compos. Sci. Technol. 2018, 158, 101–111. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A.; Unterberger, S.; Artuso, N.; Pegoretti, A. Discontinuous carbon fiber/polyamide composites with microencapsulated paraffin for thermal energy storage. J. Appl. Polym. Sci. 2019, 136, 1–14. [Google Scholar] [CrossRef]
- Fredi, G.; Dirè, S.; Callone, E.; Ceccato, R.; Mondadori, F.; Pegoretti, A. Docosane-Organosilica Microcapsules for Structural Composites with Thermal Energy Storage/Release Capability. Materials 2019, 12, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorigato, A.; Fredi, G.; Pegoretti, A. Application of the thermal energy storage concept to novel epoxy-short carbon fiber composites. J. Appl. Polym. Sci. 2019, 136, 1–9. [Google Scholar] [CrossRef]
- Fredi, G.; Dorigato, A.; Pegoretti, A. Multifunctional glass fiber/polyamide composites with thermal energy storage/release capability. Express Polym. Lett. 2018, 12, 349–364. [Google Scholar] [CrossRef]
- Lawson, J.; Willden, C. Mixture Experiments in R Using mixexp. J. Stat. Softw. 2016, 72, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fredi, G.; Dorigato, A.; Fambri, L.; Pegoretti, A. Detailed experimental and theoretical investigation of the thermomechanical properties of epoxy composites containing paraffin microcapsules for thermal management. Polym. Eng. Sci. 2020, 60, 1202–1220. [Google Scholar] [CrossRef]
- Rueda, M.M.; Auscher, M.-C.; Fulchiron, R.; Périé, T.; Martin, G.; Sonntag, P.; Cassagnau, P. Rheology and applications of highly filled polymers: A review of current understanding. Prog. Polym. Sci. 2017, 66, 22–53. [Google Scholar] [CrossRef]
- Chang, C.; Powell, R.L. Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particles. J. Fluid Mech. 1993, 253, 1–25. [Google Scholar] [CrossRef]
- Qi, F.; Tanner, R.I. Random close packing and relative viscosity of multimodal suspensions. Rheol. Acta 2011, 51, 289–302. [Google Scholar] [CrossRef]
- Qi, F.; Tanner, R.I. Relative viscosity of bimodal suspensions. Korea-Aust. Rheol. J. 2011, 23, 105–111. [Google Scholar] [CrossRef]
- Spangenberg, J.; Scherer, G.W.; Hopkins, A.B.; Torquato, S. Viscosity of bimodal suspensions with hard spherical particles. J. Appl. Phys. 2014, 116, 184902. [Google Scholar] [CrossRef]
- Ullas, A.V.; Kumar, D.; Roy, P.K. Epoxy-Glass Microballoon Syntactic Foams: Rheological Optimization of the Processing Window. Adv. Polym. Technol. 2019, 2019, 1–12. [Google Scholar] [CrossRef]
- Fredi, G.; Zimmerer, C.; Scheffler, C.; Pegoretti, A. Polydopamine-Coated Paraffin Microcapsules as a Multifunctional Filler Enhancing Thermal and Mechanical Performance of a Flexible Epoxy Resin. J. Compos. Sci. 2020, 4, 174. [Google Scholar] [CrossRef]
- Fredi, G.; Simon, F.; Sychev, D.; Melnyk, I.; Janke, A.; Scheffler, C.; Zimmerer, C. Bioinspired Polydopamine Coating as an Adhesion Enhancer Between Paraffin Microcapsules and an Epoxy Matrix. ACS Omega 2020, 5, 19639–19653. [Google Scholar] [CrossRef] [PubMed]
- Fredi, G.; Bruenig, H.; Vogel, R.; Scheffler, C. Melt-spun polypropylene filaments containing paraffin microcapsules for multifunctional hybrid yarns and smart thermoregulating thermoplastic composites. Express Polym. Lett. 2019, 13, 1071–1087. [Google Scholar] [CrossRef]
- Devi, K.A.; John, B.; Nair, C.P.R.; Ninan, K.N. Syntactic foam composites of epoxy-allyl phenol-bismaleimide ternary blend—Processing and properties. J. Appl. Polym. Sci. 2007, 105, 3715–3722. [Google Scholar] [CrossRef]
- Xing, Z.; Ke, H.; Wang, X.; Zheng, T.; Qiao, Y.; Chen, K.; Zhang, X.; Zhang, L.; Bai, C.; Li, A.Z. Investigation of the Thermal Conductivity of Resin-Based Lightweight Composites Filled with Hollow Glass Microspheres. Polymers 2020, 12, 518. [Google Scholar] [CrossRef] [Green Version]
- Zeltmann, S.E.; Chen, B.; Gupta, N. Thermal expansion and dynamic mechanical analysis of epoxy matrix–borosilicate glass hollow particle syntactic foams. J. Cell. Plast. 2017, 54, 463–481. [Google Scholar] [CrossRef]
- Imran, M.; Rahaman, A.; Pal, S. Morphology and mechanical characterization of carbon nanotubes/epoxy based material filled with hollow glass microsphere. Mater. Res. Express 2020, 7, 025307. [Google Scholar] [CrossRef]
- Lian, Q.; Li, K.; Sayyed, A.A.S.; Cheng, J.; Zhang, J. Study on a reliable epoxy-based phase change material: Facile preparation, tunable properties, and phase/microphase separation behavior. J. Mater. Chem. A 2017, 5, 14562–14574. [Google Scholar] [CrossRef]
- Sundararajan, S.; Kumar, A.; Chakraborty, B.C.; Samui, A.B.; Kulkarni, P. Poly(ethylene glycol) (PEG)-modified epoxy phase-change polymer with dual properties of thermal storage and vibration damping. Sustain. Energy Fuels 2018, 2, 688–697. [Google Scholar] [CrossRef]
- Ashby, M.F.; Johnson, K. Materials and Design: The Art and Science of Material Selection in Product Design, 3rd ed.; Butterworth-Heinemann: Waltham, MA, USA, 2014; ISBN 9780080982052. [Google Scholar]
Sample |
Epoxy (vol%)/(wt%) |
PCM (Vol%)/(wt%) |
HGM (vol%)/(wt%) |
---|---|---|---|
EPG-0.0 | 100.0/100.0 | 0.0/0.0 | 0.0/0.0 |
EPG-0.10 | 90.0/98.5 | 0.0/0.0 | 10.0/1.5 |
EPG-0.20 | 80.0/96.7 | 0.0/0.0 | 20.0/3.3 |
EPG-0.30 | 70.0/94.5 | 0.0/0.0 | 30.0/5.5 |
EPG-0.40 | 60.0/91.6 | 0.0/0.0 | 40.0/8.4 |
EPG-10.0 | 90.0/91.6 | 10.0/8.4 | 0.0/0.0 |
EPG-10.10 | 80.0/89.3 | 10.0/9.2 | 10.0/1.5 |
EPG-10.20 | 70.0/86.5 | 10.0/10.1 | 20.0/3.4 |
EPG-10.30 | 60.0/83.0 | 10.0/11.3 | 30.0/5.7 |
EPG-20.0 | 80.0/83.0 | 20.0/17.0 | 0.0/0.0 |
EPG-20.10 | 70.0/79.7 | 20.0/18.7 | 10.0/1.6 |
EPG-20.20 | 60.0/75.8 | 20.0/20.7 | 20.0/3.5 |
EPG-30.0 | 70.0/74.0 | 30.0/26.0 | 0.0/0.0 |
EPG-30.10 | 60.0/69.8 | 30.0/28.6 | 10.0/1.6 |
EPG-40.0 | 60.0/64.6 | 40.0/35.4 | 0.0/0.0 |
Sample | cp30 J∙g−1K−1 | Tm1 °C | ΔHm1 J∙g−1 | Tg1 °C | Tc °C | ΔHc J∙g−1 |
---|---|---|---|---|---|---|
EPG-0.0 | 1.34 | - | 0.0 | 91.8 | - | 0.0 |
EPG-0.10 | 1.36 | - | 0.0 | 92.1 | - | 0.0 |
EPG-0.20 | 1.29 | - | 0.0 | 89.2 | - | 0.0 |
EPG-0.30 | 1.34 | - | 0.0 | 89.3 | - | 0.0 |
EPG-0.40 | 1.28 | - | 0.0 | 85.3 | - | 0.0 |
EPG-10.0 | 1.45 | 48.2 | 16.5 | 91.6 | 22.7 | 16.5 |
EPG-10.10 | 1.47 | 49.1 | 17.8 | 92.8 | 22.0 | 16.2 |
EPG-10.20 | 1.40 | 47.6 | 18.4 | 87.9 | 23.5 | 17.6 |
EPG-10.30 | 1.39 | 47.8 | 24.2 | 91.1 | 23.2 | 21.4 |
EPG-20.0 | 1.46 | 50.5 | 36.3 | 88.3 | 21.4 | 34.7 |
EPG-20.10 | 1.48 | 52.7 | 46.6 | 89.0 | 19.7 | 41.8 |
EPG-20.20 | 1.45 | 50.4 | 44.5 | 89.4 | 21.2 | 42.1 |
EPG-30.0 | 1.47 | 51.2 | 55.6 | 89.1 | 20.8 | 56.5 |
EPG-30.10 | 1.53 | 52.0 | 60.4 | 85.9 | 19.7 | 58.5 |
EPG-40.0 | 1.53 | 53.0 | 67.6 | 89.3 | 19.3 | 69.7 |
PCM | 1.86 | 45.9 | 218.1 | - | 27.9 | 217.0 |
Sample | E″ Peak °C/MPa | tanδ Peak °C/- | E′/ρ MPa/(g/cm3) T = 25 °C | E′/ρ MPa/(g/cm3) T = 60 °C | E′/ρ MPa/(g/cm3) T = 130 °C |
---|---|---|---|---|---|
EPG-0.0 | 94/201 | 105/0.85 | 1655 | 1469 | 11 |
EPG-0.10 | 98/198 | 106/0.63 | 1646 | 1499 | 24 |
EPG-0.30 | 99/207 | 108/0.64 | 2073 | 1886 | 34 |
EPG-0.40 | 100/204 | 108/0.56 | 2444 | 2256 | 77 |
EPG-10.30 | 99/160 | 107/0.57 | 1982 | 1551 | 51 |
EPG-30.0 | 96/124 | 107/0.60 | 1642 | 100 | 20 |
EPG-30.10 | 88/118 | 98/0.52 | 1618 | 1035 | 28 |
EPG-40.0 | 94/114 | 102/0.53 | 1680 | 925 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvagnini, F.; Dorigato, A.; Fambri, L.; Fredi, G.; Pegoretti, A. Thermophysical Properties of Multifunctional Syntactic Foams Containing Phase Change Microcapsules for Thermal Energy Storage. Polymers 2021, 13, 1790. https://doi.org/10.3390/polym13111790
Galvagnini F, Dorigato A, Fambri L, Fredi G, Pegoretti A. Thermophysical Properties of Multifunctional Syntactic Foams Containing Phase Change Microcapsules for Thermal Energy Storage. Polymers. 2021; 13(11):1790. https://doi.org/10.3390/polym13111790
Chicago/Turabian StyleGalvagnini, Francesco, Andrea Dorigato, Luca Fambri, Giulia Fredi, and Alessandro Pegoretti. 2021. "Thermophysical Properties of Multifunctional Syntactic Foams Containing Phase Change Microcapsules for Thermal Energy Storage" Polymers 13, no. 11: 1790. https://doi.org/10.3390/polym13111790
APA StyleGalvagnini, F., Dorigato, A., Fambri, L., Fredi, G., & Pegoretti, A. (2021). Thermophysical Properties of Multifunctional Syntactic Foams Containing Phase Change Microcapsules for Thermal Energy Storage. Polymers, 13(11), 1790. https://doi.org/10.3390/polym13111790