Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (473)

Search Parameters:
Keywords = impulsive noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4379 KiB  
Article
Feasibility of Early Assessment for Psychological Distress: HRV-Based Evaluation Using IR-UWB Radar
by Yuna Lee, Kounseok Lee, Sarfaraz Ahmed and Sung Ho Cho
Sensors 2024, 24(19), 6210; https://doi.org/10.3390/s24196210 - 25 Sep 2024
Viewed by 313
Abstract
Mental distress-induced imbalances in autonomic nervous system activities adversely affect the electrical stability of the cardiac system, with heart rate variability (HRV) identified as a related indicator. Traditional HRV measurements use electrocardiography (ECG), but impulse radio ultra-wideband (IR-UWB) radar has shown potential in [...] Read more.
Mental distress-induced imbalances in autonomic nervous system activities adversely affect the electrical stability of the cardiac system, with heart rate variability (HRV) identified as a related indicator. Traditional HRV measurements use electrocardiography (ECG), but impulse radio ultra-wideband (IR-UWB) radar has shown potential in HRV measurement, although it is rarely applied to psychological studies. This study aimed to assess early high levels of mental distress using HRV indices obtained using radar through modified signal processing tailored to reduce phase noise and improve positional accuracy. We conducted 120 evaluations on 15 office workers from a software startup, with each 5 min evaluation using both radar and ECG. Visual analog scale (VAS) scores were collected to assess mental distress, with evaluations scoring 7.5 or higher classified as high-mental distress group, while the remainder formed the control group. Evaluations indicating high levels of mental distress showed significantly lower HRV compared to the control group, with radar-derived indices correlating strongly with ECG results. The radar-based analysis demonstrated a significant ability to differentiate high mental distress, supported by receiver operating characteristic (ROC) analysis. These findings suggest that IR-UWB radar could be a supportive tool for distinguishing high levels of mental stress, offering clinicians complementary diagnostic insights. Full article
Show Figures

Figure 1

25 pages, 2491 KiB  
Article
The Potential of Deep Learning in Underwater Wireless Sensor Networks and Noise Canceling for the Effective Monitoring of Aquatic Life
by Walaa M. Elsayed, Maazen Alsabaan, Mohamed I. Ibrahem and Engy El-Shafeiy
Sensors 2024, 24(18), 6102; https://doi.org/10.3390/s24186102 - 20 Sep 2024
Viewed by 473
Abstract
This paper describes a revolutionary design paradigm for monitoring aquatic life. This unique methodology addresses issues such as limited memory, insufficient bandwidth, and excessive noise levels by combining two approaches to create a comprehensive predictive filtration system, as well as multiple-transfer route analysis. [...] Read more.
This paper describes a revolutionary design paradigm for monitoring aquatic life. This unique methodology addresses issues such as limited memory, insufficient bandwidth, and excessive noise levels by combining two approaches to create a comprehensive predictive filtration system, as well as multiple-transfer route analysis. This work focuses on proposing a novel filtration learning approach for underwater sensor nodes. This model was created by merging two adaptive filters, the finite impulse response (FIR) and the adaptive line enhancer (ALE). The FIR integrated filter eliminates unwanted noise from the signal by obtaining a linear response phase and passes the signal without distortion. The goal of the ALE filter is to properly separate the noise signal from the measured signal, resulting in the signal of interest. The cluster head level filters are the adaptive cuckoo filter (ACF) and the Kalman filter. The ACF assesses whether an emitter node is part of a set or not. The Kalman filter improves the estimation of state values for a dynamic underwater sensor networking system. It uses distributed learning long short-term memory (LSTM-CNN) technology to ensure that the anticipated value of the square of the gap between the prediction and the correct state is the smallest possible. Compared to prior methods, our suggested deep filtering–learning model achieved 98.5% of the sensory filtration method in the majority of the obtained data and close to 99.1% of an adaptive prediction method, while also consuming little energy during lengthy monitoring. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

11 pages, 3974 KiB  
Article
Fault Feature Extraction Using L-Kurtosis and Minimum Entropy-Based Signal Demodulation
by Surinder Kumar, Sumika Chauhan, Govind Vashishtha, Sunil Kumar and Rajesh Kumar
Appl. Sci. 2024, 14(18), 8342; https://doi.org/10.3390/app14188342 - 16 Sep 2024
Viewed by 538
Abstract
The health of mechanical components can be assessed by analyzing the vibration and acoustic signals they produce. These signals contain valuable information about the component’s condition, often encoded within specific frequency bands. However, extracting this information is challenging due to noise contamination from [...] Read more.
The health of mechanical components can be assessed by analyzing the vibration and acoustic signals they produce. These signals contain valuable information about the component’s condition, often encoded within specific frequency bands. However, extracting this information is challenging due to noise contamination from various sources. Narrow-band amplitude demodulation presents a robust technique for isolating fault-related information within the signal. This work proposes a novel approach based on cluster-based segmentation for demodulating the signal and extracting the frequency band of interest. The segmentation process leverages the criteria of maximum L-kurtosis and minimum entropy. L-kurtosis maximizes impulsiveness in the signal, while minimum entropy signifies a low degree of randomness and high cyclo-stationarity, and both characteristics are crucial for identifying the desired frequency band. Simulations and experimental tests using vibration signals from different gears demonstrate the effectiveness of this technique. The processed envelope of the signal exhibits distinct improvements, highlighting the ability to accurately extract the fault-related information embedded within the complex noise-ridden signals. This approach offers a promising solution for accurate and efficient fault diagnosis in mechanical systems, contributing to enhanced reliability and reduced downtime. Full article
(This article belongs to the Special Issue Artificial Intelligence in Fault Diagnosis and Signal Processing)
Show Figures

Figure 1

16 pages, 3696 KiB  
Article
Discharge Experiment and Structure Optimisation Simulation of Impulse Sound Source
by Xu Gao, Jing Zhou, Haiming Xie and Xiao Du
Energies 2024, 17(18), 4565; https://doi.org/10.3390/en17184565 - 12 Sep 2024
Viewed by 288
Abstract
The wave frequency and energy of traditional piezoelectric emission sources used in acoustic logging are limited, which results in an inadequate detection resolution for measuring small-scale geological formations. Additionally, the propagation of these waves in formations is prone to loss and noise interference, [...] Read more.
The wave frequency and energy of traditional piezoelectric emission sources used in acoustic logging are limited, which results in an inadequate detection resolution for measuring small-scale geological formations. Additionally, the propagation of these waves in formations is prone to loss and noise interference, restricting detection to only a few tens of meters around the well. This paper investigates an impulse sound source, a new emission source that can effectively enhance the frequency range and wave energy of traditional sources by generating excitation waves through high-voltage discharges in a fluid-penetrated electrode structure. Firstly, a high-voltage circuit experimental system for the impulse sound source was constructed, and the discharge and response characteristics were experimentally analyzed. Then, four types of needle series electrode structure models were developed to investigate and compare the effects of different electrode structures on the impulse sound source, with the needle-ring electrode demonstrating superior performance. Finally, the needle-ring electrode structure was optimized to develop a ball-tipped needle-ring electrode, which is more suitable for acoustic logging. The results show that the electrode structure directly influences the discharge characteristics of the impulse sound source. After comparison and optimization, the final ball-tipped needle-ring electrode exhibited a broader frequency range—from zero to several hundred thousand Hz—while maintaining a high acoustic amplitude. It has the capability to detect geological areas beyond 100 m and is effective for evaluating micro-fractures and small fracture blocks near wells that require high detection accuracy. This is of significant importance in oil, gas, new energy, and other drilling fields. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

37 pages, 12365 KiB  
Article
A Novel Underwater Wireless Optical Communication Optical Receiver Decision Unit Strategy Based on a Convolutional Neural Network
by Intesar F. El Ramley, Nada M. Bedaiwi, Yas Al-Hadeethi, Abeer Z. Barasheed, Saleha Al-Zhrani and Mingguang Chen
Mathematics 2024, 12(18), 2805; https://doi.org/10.3390/math12182805 - 10 Sep 2024
Viewed by 626
Abstract
Underwater wireless optical communication (UWOC) systems face challenges due to the significant temporal dispersion caused by the combined effects of scattering, absorption, refractive index variations, optical turbulence, and bio-optical properties. This collective impairment leads to signal distortion and degrades the optical receiver’s bit [...] Read more.
Underwater wireless optical communication (UWOC) systems face challenges due to the significant temporal dispersion caused by the combined effects of scattering, absorption, refractive index variations, optical turbulence, and bio-optical properties. This collective impairment leads to signal distortion and degrades the optical receiver’s bit error rate (BER). Optimising the receiver filter and equaliser design is crucial to enhance receiver performance. However, having an optimal design may not be sufficient to ensure that the receiver decision unit can estimate BER quickly and accurately. This study introduces a novel BER estimation strategy based on a Convolutional Neural Network (CNN) to improve the accuracy and speed of BER estimation performed by the decision unit’s computational processor compared to traditional methods. Our new CNN algorithm utilises the eye diagram (ED) image processing technique. Despite the incomplete definition of the UWOC channel impulse response (CIR), the CNN model is trained to address the nonlinearity of seawater channels under varying noise conditions and increase the reliability of a given UWOC system. The results demonstrate that our CNN-based BER estimation strategy accurately predicts the corresponding signal-to-noise ratio (SNR) and enables reliable BER estimation. Full article
Show Figures

Figure 1

14 pages, 24620 KiB  
Article
Improvement of a Green’s Function Estimation for a Moving Source Using the Waveguide Invariant Theory
by Daehwan Kim, Donghyeon Kim, Gihoon Byun, Jeasoo Kim and Heechun Song
Sensors 2024, 24(17), 5782; https://doi.org/10.3390/s24175782 - 5 Sep 2024
Viewed by 520
Abstract
Understanding the characteristics of underwater sound channels is essential for various remote sensing applications. Typically, the time-domain Green’s function or channel impulse response (CIR) is obtained using computationally intensive acoustic propagation models that rely on accurate environmental data, such as sound speed profiles [...] Read more.
Understanding the characteristics of underwater sound channels is essential for various remote sensing applications. Typically, the time-domain Green’s function or channel impulse response (CIR) is obtained using computationally intensive acoustic propagation models that rely on accurate environmental data, such as sound speed profiles and bathymetry. Ray-based blind deconvolution (RBD) offers a less computationally demanding alternative using plane-wave beamforming to estimate the Green’s function. However, the presence of noise can obscure low coherence ray arrivals, making accurate estimation challenging. This paper introduces a method using the waveguide invariant to improve the signal-to-noise ratio (SNR) of broadband Green’s functions for a moving source without prior knowledge of range. By utilizing RBD and the frequency shifts from the striation slope, we coherently combine individual Green’s functions at adjacent ranges, significantly improving the SNR. In this study, we demonstrated the proposed method via simulation and broadband noise data (200–900 Hz) collected from a moving ship in 100 m deep shallow water. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

12 pages, 6818 KiB  
Article
Image Noise Reduction and Solution of Unconstrained Minimization Problems via New Conjugate Gradient Methods
by Bassim A. Hassan, Issam A. R. Moghrabi, Thaair A. Ameen, Ranen M. Sulaiman and Ibrahim Mohammed Sulaiman
Mathematics 2024, 12(17), 2754; https://doi.org/10.3390/math12172754 - 5 Sep 2024
Viewed by 318
Abstract
The conjugate gradient (CG) directions are among the important components of the CG algorithms. These directions have proven their effectiveness in many applications—more specifically, in image processing due to their low memory requirements. In this study, we derived a new conjugate gradient coefficient [...] Read more.
The conjugate gradient (CG) directions are among the important components of the CG algorithms. These directions have proven their effectiveness in many applications—more specifically, in image processing due to their low memory requirements. In this study, we derived a new conjugate gradient coefficient based on the famous quadratic model. The derived algorithm is distinguished by its global convergence and essential descent properties, ensuring robust performance across diverse scenarios. Extensive numerical testing on image restoration and unconstrained optimization problems have demonstrated that the new formulas significantly outperform existing methods. Specifically, the proposed conjugate gradient scheme has shown superior performance compared to the traditional Fletcher–Reeves (FR) conjugate gradient method. This advancement not only enhances computational efficiency on unconstrained optimization problems, but also improves the accuracy and quality of image restoration, making it a highly valuable tool in the field of computational imaging and optimization. Full article
(This article belongs to the Special Issue Mathematical Modeling, Optimization and Machine Learning, 2nd Edition)
Show Figures

Figure 1

19 pages, 4249 KiB  
Article
Robust Direction-of-Arrival Estimation in the Presence of Outliers and Noise Nonuniformity
by Bin Gao, Xing Shen, Zhengqiang Li and Bin Liao
Remote Sens. 2024, 16(17), 3140; https://doi.org/10.3390/rs16173140 - 26 Aug 2024
Viewed by 534
Abstract
In direction-of-arrival (DOA) estimation with sensor arrays, the background noise is usually modeled to be uncorrelated uniform white noise, such that the related algorithms can be greatly simplified by making use of the property of the noise covariance matrix being a diagonal matrix [...] Read more.
In direction-of-arrival (DOA) estimation with sensor arrays, the background noise is usually modeled to be uncorrelated uniform white noise, such that the related algorithms can be greatly simplified by making use of the property of the noise covariance matrix being a diagonal matrix with identical diagonal entries. However, this model can be easily violated by the nonuniformity of sensor noise and the presence of outliers that may arise from unexpected impulsive noise. To tackle this problem, we first introduce an exploratory factor analysis (EFA) model for DOA estimation in nonuniform noise. Then, to deal with the outliers, a generalized extreme Studentized deviate (ESD) test is applied for outlier detection and trimming. Based on the trimmed data matrix, a modified EFA model, which belongs to weighted least-squares (WLS) fitting problems, is presented. Furthermore, a monotonic convergent iterative reweighted least-squares (IRLS) algorithm, called the iterative majorization approach, is introduced to solve the WLS problem. Simulation results show that the proposed algorithm offers improved robustness against nonuniform noise and observation outliers over traditional algorithms. Full article
(This article belongs to the Special Issue Array and Signal Processing for Radar)
Show Figures

Figure 1

12 pages, 1670 KiB  
Article
Estimation of the Impulse Response of the AWGN Channel with ISI within an Iterative Equalization and Decoding System That Uses LDPC Codes
by Adriana-Maria Cuc, Florin Lucian Morgoș, Adriana-Marcela Grava and Cristian Grava
Entropy 2024, 26(9), 720; https://doi.org/10.3390/e26090720 - 23 Aug 2024
Viewed by 309
Abstract
In this paper, new schemes have been proposed for the estimation of the additive white Gaussian noise (AWGN) channel with intersymbol interference (ISI) in an iterative equalization and decoding system using low-density parity check (LDPC) codes. This article explores the use of the [...] Read more.
In this paper, new schemes have been proposed for the estimation of the additive white Gaussian noise (AWGN) channel with intersymbol interference (ISI) in an iterative equalization and decoding system using low-density parity check (LDPC) codes. This article explores the use of the least squares algorithm in various scenarios. For example, the impulse response of the AWGN channel h was initially estimated using a training sequence. Subsequently, the impulse response was calculated based on the training sequence and then re-estimated once using the sequence estimated from the output of the LDPC decoder. Lastly, the impulse response was calculated based on the training sequence and re-estimated twice using the sequence estimated from the output of the LDPC decoder. Comparisons were made between the performances of the three mentioned situations, with the situation in which a perfect estimate of the impulse response of the channel is assumed. The performance analysis focused on how the bit error rate changes in relation to the signal-to-noise ratio. The BER performance comes close to the scenario of having a perfect estimate of the impulse response when the estimation is performed based on the training sequence and then re-estimated twice from the sequence obtained from the output of the LDPC decoder. Full article
(This article belongs to the Special Issue New Advances in Error-Correcting Codes)
Show Figures

Figure 1

21 pages, 7707 KiB  
Article
Prototype Implementation of a Digitizer for Earthquake Monitoring System
by Emad B. Helal, Omar M. Saad, M. Sami Soliman, Gamal M. Dousoky, Ahmed Abdelazim, Lotfy Samy, Haruichi Kanaya and Ali G. Hafez
Sensors 2024, 24(16), 5287; https://doi.org/10.3390/s24165287 - 15 Aug 2024
Viewed by 482
Abstract
A digitizer is considered one of the fundamental components of an earthquake monitoring system. In this paper, we design and implement a high accuracy seismic digitizer. The implemented digitizer consists of several blocks, i.e., the analog-to-digital converter (ADC), GPS receiver, and microprocessor. Three [...] Read more.
A digitizer is considered one of the fundamental components of an earthquake monitoring system. In this paper, we design and implement a high accuracy seismic digitizer. The implemented digitizer consists of several blocks, i.e., the analog-to-digital converter (ADC), GPS receiver, and microprocessor. Three finite impulse response (FIR) filters are used to decimate the sampling rate of the input seismic data according to user needs. A graphical user interface (GUI) has been designed for enabling the user to monitor the seismic waveform in real time, and process and adjust the parameters of the acquisition unit. The system casing is designed to resist harsh conditions of the environment. The prototype can represent the three component sensors data in the standard MiniSEED format. The digitizer stream seismic data from the remote station to the main center is based on TCP/IP connection. This protocol ensures data transmission without any losses as long as the data still exist in the ring buffer. The prototype was calibrated by real field testing. The prototype digitizer is integrated with the Egyptian National Seismic Network (ENSN), where a commercial instrument is already installed. Case studies shows that, for the same event, the prototype station improves the solution of the ENSN by giving accurate timing and seismic event parameters. Field test results shows that the event arrival time and the amplitude are approximately the same between the prototype digitizer and the calibrated digitizer. Furthermore, the frequency contents are similar between the two digitizers. Therefore, the prototype digitizer captures the main seismic parameters accurately, irrespective of noise existence. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

14 pages, 1356 KiB  
Article
Combined-Step-Size Affine Projection Andrew’s Sine Estimate for Robust Adaptive Filtering
by Yuhao Wan and Wenyuan Wang
Information 2024, 15(8), 482; https://doi.org/10.3390/info15080482 - 14 Aug 2024
Viewed by 412
Abstract
Recently, an affine-projection-like M-estimate (APLM) algorithm has gained popularity for its ability to effectively handle impulsive background disturbances. Nevertheless, the APLM algorithm’s performance is negatively affected by steady-state misalignment. To address this issue while maintaining equivalent computational complexity, a robust cost function based [...] Read more.
Recently, an affine-projection-like M-estimate (APLM) algorithm has gained popularity for its ability to effectively handle impulsive background disturbances. Nevertheless, the APLM algorithm’s performance is negatively affected by steady-state misalignment. To address this issue while maintaining equivalent computational complexity, a robust cost function based on the Andrew’s sine estimator (ASE) is introduced and a corresponding affine-projection Andrew’s sine estimator (APASE) algorithm is proposed in this paper. To further enhance the tracking capability and accelerate the convergence rate, we develop the combined-step-size APASE (CSS-APASE) algorithm using a combination of two different step sizes. A series of simulation studies are conducted in system identification and echo cancellation scenarios, which confirms that the proposed algorithms can attain reduced misalignment compared to other currently available algorithms in cases of impulsive noise. Meanwhile, we also establish a bound on the learning rate to ensure the stability of the proposed algorithms. Full article
(This article belongs to the Special Issue Signal Processing and Machine Learning, 2nd Edition)
Show Figures

Figure 1

14 pages, 723 KiB  
Article
Dynamic Injection and Permutation Coding for Enhanced Data Transmission
by Kehinde Ogunyanda, Opeyemi O. Ogunyanda and Thokozani Shongwe
Entropy 2024, 26(8), 685; https://doi.org/10.3390/e26080685 - 13 Aug 2024
Viewed by 421
Abstract
In this paper, we propose a novel approach to enhance spectral efficiency in communication systems by dynamically adjusting the mapping between cyclic permutation coding (CPC) and its injected form. By monitoring channel conditions such as interference levels and impulsive noise strength, the system [...] Read more.
In this paper, we propose a novel approach to enhance spectral efficiency in communication systems by dynamically adjusting the mapping between cyclic permutation coding (CPC) and its injected form. By monitoring channel conditions such as interference levels and impulsive noise strength, the system optimises the coding scheme to maximise data transmission reliability and efficiency. The CPC method employed in this work maps information bits onto non-binary symbols in a cyclic manner, aiming to improve the Hamming distance between mapped symbols. To address challenges such as low data rates inherent in permutation coding, injection techniques are introduced by removing δ column(s) from the CPC codebook. Comparative analyses demonstrate that the proposed dynamic adaptation scheme outperforms conventional permutation coding and injection schemes. Additionally, we present a generalised mathematical expression to describe the relationship between the spectral efficiencies of both coding schemes. This dynamic approach ensures efficient and reliable communication in environments with varying levels of interference and impulsive noise, highlighting its potential applicability to systems like power line communications. Full article
(This article belongs to the Special Issue New Advances in Error-Correcting Codes)
Show Figures

Figure 1

12 pages, 5501 KiB  
Article
A Robust Filtered-x Least Mean Square Algorithm with Adjustable Parameters for Active Impulsive Noise Control
by Pucha Song, Kang Yan and Li Luo
Symmetry 2024, 16(8), 1031; https://doi.org/10.3390/sym16081031 - 12 Aug 2024
Viewed by 581
Abstract
In active noise control (ANC) systems, the traditional filtered-x least mean square (FxLMS) algorithm has poor control effect on impulsive noise. To overcome this drawback, a robust cost function was designed in this paper by embedding the cost function of the FxLMS algorithm [...] Read more.
In active noise control (ANC) systems, the traditional filtered-x least mean square (FxLMS) algorithm has poor control effect on impulsive noise. To overcome this drawback, a robust cost function was designed in this paper by embedding the cost function of the FxLMS algorithm into the framework of hyperbolic tangent function; this paper thus proposes a robust filtered-x least hyperbolic tangent (FxLHT) algorithm in ANC systems. Moreover, the value of λ in the FxLHT algorithm greatly affects the robustness and convergence performance of the algorithm. Therefore, a variable λ-parameter was proposed to enhance the performance of the FxLHT algorithm. Simulation results show that in the active control of impulsive noise, compared with the FxLMS algorithm and other robust ANC algorithms, the proposed FxLHT algorithm and variable λ-parameter FxLHT algorithm not only exhibit good robustness and noise reduction performance but also have a better tracking ability. Full article
(This article belongs to the Special Issue Symmetry in Optimization Theory, Algorithm and Applications II)
Show Figures

Figure 1

34 pages, 949 KiB  
Review
A Survey on Maximum Ratio Combination: Applications, Evaluation and Future Directions
by Xiao Feng, Feng Tian, Junfeng Wang, Mingzhang Zhou, Dingzhao Li, Haixin Sun and Ruiping Song
Electronics 2024, 13(15), 3087; https://doi.org/10.3390/electronics13153087 - 4 Aug 2024
Viewed by 728
Abstract
With the rapid development of wireless communications, the occupation of time and frequency resources becomes more crowded. The exploitation of space resources is necessary and the diversity combining techniques have substantial applications. Diversity combining achieves great diversity gains and improves the ability to [...] Read more.
With the rapid development of wireless communications, the occupation of time and frequency resources becomes more crowded. The exploitation of space resources is necessary and the diversity combining techniques have substantial applications. Diversity combining achieves great diversity gains and improves the ability to combat multipath fading, among which the maximum ratio combining (MRC) performs as the optimal linear combining approach. However, MRC suffers from detrimental factors such as channel fading and no Gaussian noise in practical scenarios. In this paper, we focus on a comprehensive investigation of MRC. Starting from the MRC principle and system model, we summarize typical scenarios and analyze the channel fading statistics. For the influential factors, we further review related literature on channel correlation, cochannel interference (CCI) and impulsive noise. Major performance criteria and performance bounds are derived and compared. MRC confronts new developing challenges and the major development directions are reviewed. The paper finally discusses recent works and open problems for MRC applications and development. Emerging techniques such as artificial intelligence provide novel solutions for MRC performance improvements. The paper aims to present a summarized insight to assist readers in clarifying the analyzed methodology of MRC, so as to motivate new technology integration and extensive applications of advanced communication systems. Full article
Show Figures

Figure 1

17 pages, 2276 KiB  
Article
Short-Term Entropy of Signal Energy Used for Effective Detecting of Weak Gunshots in Noisy Environments
by Milan Sigmund
Sensors 2024, 24(15), 4933; https://doi.org/10.3390/s24154933 - 30 Jul 2024
Viewed by 536
Abstract
Conventional gunshot detection systems can quickly and reliably detect gunshots in the area where the acoustic sensors are placed. This paper presents the detection of weak hunting gunshots using the short-term entropy of signal energy computed from acoustic signals in an open natural [...] Read more.
Conventional gunshot detection systems can quickly and reliably detect gunshots in the area where the acoustic sensors are placed. This paper presents the detection of weak hunting gunshots using the short-term entropy of signal energy computed from acoustic signals in an open natural environment. Our research in this field was primarily aimed at detecting gunshots fired at close range with the usual acoustic intensity to protect wild elephants from poachers. The detection of weak gunshots can extend existing detection systems to detect more distant gunshots. The developed algorithm was optimized for the detection of gunshots in two categories of the surrounding sounds, short impulsive events and continuous noise, and tested in acoustic scenes where the power ratios between the weak gunshots and louder surroundings range from 0 dB to −14 dB. The overall accuracy was evaluated in terms of recall and precision. Depending on impulsive or noise sounds, binary detection was successful down to −8 dB or −6 dB; then, the efficiency decreases, but some very weak gunshots can still be detected at −13 dB. Experiments show that the proposed method has the potential to improve the efficiency and reliability of gunshot detection systems. Full article
Show Figures

Figure 1

Back to TopTop