Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

MRI Features May Predict Molecular Features of Glioblastoma in Isocitrate Dehydrogenase Wild-Type Lower-Grade Gliomas

Abstract

Background and purpose

Isocitrate dehydrogenase (IDH) wild-type lower-grade gliomas (histologic grades II and III) with epidermal growth factor receptor (EGFR) amplification or telomerase reverse transcriptase (TERT) promoter mutation are reported to behave similar to glioblastoma. We aimed to evaluate whether MR imaging features could identify a subset of IDH wild-type lower-grade gliomas that carry molecular features of glioblastoma.

Materials and methods

In this multi-institutional retrospective study, pathologically confirmed IDH wild-type lower-grade gliomas from 2 tertiary institutions and The Cancer Genome Atlas constituted the training set (institution 1 and The Cancer Genome Atlas, 64 patients) and the independent test set (institution 2, 57 patients). Preoperative MRIs were analyzed using the Visually AcceSAble Rembrandt Images and radiomics. The molecular glioblastoma status was determined on the basis of the presence of EGFR amplification and TERT promoter mutation. Molecular glioblastoma was present in 73.4% and 56.1% in the training and test sets, respectively. Models using clinical, Visually AcceSAble Rembrandt Images, and radiomic features were built to predict the molecular glioblastoma status in the training set; then they were validated in the test set.

Results

In the test set, a model using both Visually AcceSAble Rembrandt Images and radiomic features showed superior predictive performance (area under the curve = 0.854) than that with only clinical features or Visually AcceSAble Rembrandt Images (areas under the curve = 0.514 and 0.648, respectively; P < . 001, both). When both Visually AcceSAble Rembrandt Images and radiomics were added to clinical features, the predictive performance significantly increased (areas under the curve = 0.514 versus 0.863, P < .001).

Conclusions

MR imaging features integrated with machine learning classifiers may predict a subset of IDH wild-type lower-grade gliomas that carry molecular features of glioblastoma.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View