- Main
De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals
- Tetreau, Guillaume;
- Sawaya, Michael R;
- De Zitter, Elke;
- Andreeva, Elena A;
- Banneville, Anne-Sophie;
- Schibrowsky, Natalie;
- Coquelle, Nicolas;
- Brewster, Aaron S;
- Grünbein, Marie Luise;
- Kovacs, Gabriela Nass;
- Hunter, Mark S;
- Kloos, Marco;
- Sierra, Raymond G;
- Schiro, Giorgio;
- Qiao, Pei;
- Stricker, Myriam;
- Bideshi, Dennis;
- Young, Iris D;
- Zala, Ninon;
- Engilberge, Sylvain;
- Gorel, Alexander;
- Signor, Luca;
- Teulon, Jean-Marie;
- Hilpert, Mario;
- Foucar, Lutz;
- Bielecki, Johan;
- Bean, Richard;
- de Wijn, Raphael;
- Sato, Tokushi;
- Kirkwood, Henry;
- Letrun, Romain;
- Batyuk, Alexander;
- Snigireva, Irina;
- Fenel, Daphna;
- Schubert, Robin;
- Canfield, Ethan J;
- Alba, Mario M;
- Laporte, Frédéric;
- Després, Laurence;
- Bacia, Maria;
- Roux, Amandine;
- Chapelle, Christian;
- Riobé, François;
- Maury, Olivier;
- Ling, Wai Li;
- Boutet, Sébastien;
- Mancuso, Adrian;
- Gutsche, Irina;
- Girard, Eric;
- Barends, Thomas RM;
- Pellequer, Jean-Luc;
- Park, Hyun-Woo;
- Laganowsky, Arthur D;
- Rodriguez, Jose;
- Burghammer, Manfred;
- Shoeman, Robert L;
- Doak, R Bruce;
- Weik, Martin;
- Sauter, Nicholas K;
- Federici, Brian;
- Cascio, Duilio;
- Schlichting, Ilme;
- Colletier, Jacques-Philippe
- et al.
Published Web Location
https://www.nature.com/articles/s41467-022-31746-xAbstract
Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan , respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo -grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-