Tuning

La prise en charge du réglage fin de l'API Gemini fournit un mécanisme permettant de sélectionner la sortie lorsque vous disposez d'un petit ensemble de données d'exemples d'entrée/sortie. Pour en savoir plus, consultez le guide de réglage du modèle et le tutoriel.

Méthode: tunedModels.create

Crée un modèle réglé. Vérifiez la progression de l'ajustement intermédiaire (le cas échéant) via le service google.longrunning.Operations.

Accédez à l'état et aux résultats via le service Operations. Exemple: GET /v1/tunedModels/az2mb0bpw6i/operations/000-111-222

Point de terminaison

Poster https://generativelanguage.googleapis.com/v1beta/tunedModels

L'URL utilise la syntaxe de transcodage gRPC.

Paramètres de requête

tunedModelId string

Facultatif. Identifiant unique du modèle optimisé, le cas échéant. Cette valeur ne doit pas dépasser 40 caractères. Le premier caractère doit être une lettre, et le dernier peut être une lettre ou un chiffre. L'ID doit correspondre à l'expression régulière: [a-z]([a-z0-9-]{0,38}[a-z0-9])?.

Corps de la requête

Le corps de la requête contient une instance de TunedModel.

Champs
displayName string

Facultatif. Nom à afficher pour ce modèle dans les interfaces utilisateur. Le nom à afficher ne doit pas comporter plus de 40 caractères, espaces compris.

description string

Facultatif. Brève description de ce modèle.

tuningTask object (TuningTask)

Obligatoire. La tâche de réglage qui crée le modèle affiné.

readerProjectNumbers[] string (int64 format)

Facultatif. Liste des numéros de projet ayant un accès en lecture au modèle ajusté.

source_model Union type
Modèle utilisé comme point de départ pour le réglage. source_model ne peut être qu'un des éléments suivants :
tunedModelSource object (TunedModelSource)

Facultatif. TunedModel à utiliser comme point de départ pour l'entraînement du nouveau modèle.

baseModel string

Immuable. Nom de l'Model à régler. Exemple : models/gemini-1.5-flash-001

temperature number

Facultatif. Contrôle le caractère aléatoire de la sortie.

Les valeurs peuvent être supérieures à [0.0,1.0] (inclus). Une valeur plus proche de 1.0 génère des réponses plus variées, tandis qu'une valeur plus proche de 0.0 génère généralement des réponses moins surprenantes du modèle.

Cette valeur spécifie que la valeur par défaut est celle utilisée par le modèle de base lors de la création du modèle.

topP number

Facultatif. Pour l'échantillonnage du noyau.

L'échantillonnage du noyau prend en compte le plus petit ensemble de jetons dont la somme des probabilités est d'au moins topP.

Cette valeur spécifie que la valeur par défaut est celle utilisée par le modèle de base lors de la création du modèle.

topK integer

Facultatif. Pour l'échantillonnage top-k.

L'échantillonnage top-k prend en compte l'ensemble des topK jetons les plus probables. Cette valeur spécifie la valeur par défaut à utiliser par le backend lors de l'appel du modèle.

Cette valeur spécifie que la valeur par défaut est celle utilisée par le modèle de base lors de la création du modèle.

Exemple de requête

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Corps de la réponse

Si la requête aboutit, le corps de la réponse contient une nouvelle instance de Operation.

Méthode: tunedModels.generateContent

Génère une réponse de modèle à partir d'une entrée GenerateContentRequest. Pour en savoir plus sur l'utilisation, consultez le guide de génération de texte. Les fonctionnalités d'entrée diffèrent d'un modèle à l'autre, y compris pour les modèles affinés. Pour en savoir plus, consultez le guide du modèle et le guide de réglage.

Point de terminaison

Poster https://generativelanguage.googleapis.com/v1beta/{model=tunedModels/*}:generateContent

L'URL utilise la syntaxe de transcodage gRPC.

Paramètres de chemin d'accès

model string

Obligatoire. Nom de l'Model à utiliser pour générer la saisie semi-automatique.

Format : models/{model}. Il se présente sous la forme tunedModels/{tunedmodel}.

Corps de la requête

Le corps de la requête contient des données présentant la structure suivante :

Champs
contents[] object (Content)

Obligatoire. Contenu de la conversation en cours avec le modèle.

Pour les requêtes à un seul tour, il s'agit d'une instance unique. Pour les requêtes multitours telles que chat, il s'agit d'un champ répété contenant l'historique de la conversation et la dernière requête.

tools[] object (Tool)

Facultatif. Liste des Tools que le Model peut utiliser pour générer la réponse suivante.

Un Tool est un morceau de code qui permet au système d'interagir avec des systèmes externes pour effectuer une action ou un ensemble d'actions en dehors du champ d'application et des connaissances du Model. Les Tool acceptés sont Function et codeExecution. Pour en savoir plus, consultez les guides Appels de fonction et Exécution du code.

toolConfig object (ToolConfig)

Facultatif. Configuration de l'outil pour tous les Tool spécifiés dans la requête. Pour obtenir un exemple d'utilisation, consultez le guide d'appel de fonction.

safetySettings[] object (SafetySetting)

Facultatif. Liste d'instances SafetySetting uniques pour le blocage du contenu non sécurisé.

Cette règle sera appliquée aux GenerateContentRequest.contents et GenerateContentResponse.candidates. Il ne doit pas y avoir plus d'un paramètre pour chaque type SafetyCategory. L'API bloque tous les contenus et réponses qui ne respectent pas les seuils définis par ces paramètres. Cette liste remplace les paramètres par défaut de chaque SafetyCategory spécifié dans les paramètres de sécurité. Si aucun SafetySetting n'est fourni pour un SafetyCategory donné dans la liste, l'API utilise le paramètre de sécurité par défaut pour cette catégorie. Les catégories de préjudice HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT et HARM_CATEGORY_CIVIC_INTEGRITY sont acceptées. Pour en savoir plus sur les paramètres de sécurité disponibles, consultez le guide. Consultez également les Consignes de sécurité pour découvrir comment intégrer des considérations de sécurité à vos applications d'IA.

systemInstruction object (Content)

Facultatif. Le développeur a défini une ou plusieurs instructions système. Pour le moment, texte uniquement.

generationConfig object (GenerationConfig)

Facultatif. Options de configuration pour la génération de modèles et les sorties.

cachedContent string

Facultatif. Nom du contenu mis en cache à utiliser comme contexte pour diffuser la prédiction. Format : cachedContents/{cachedContent}

Exemple de requête

Texte

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContent(prompt);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-flash")
resp, err := model.GenerateContent(ctx, genai.Text("Write a story about a magic backpack."))
if err != nil {
	log.Fatal(err)
}

printResponse(resp)

Coquille Rose

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[{"text": "Write a story about a magic backpack."}]
        }]
       }' 2> /dev/null

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val prompt = "Write a story about a magic backpack."
val response = generativeModel.generateContent(prompt)
print(response.text)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."
let response = try await generativeModel.generateContent(prompt)
if let text = response.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Write a story about a magic backpack.';

final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Image

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Describe how this product might be manufactured.";
// Note: The only accepted mime types are some image types, image/*.
const imagePart = fileToGenerativePart(
  `${mediaPath}/jetpack.jpg`,
  "image/jpeg",
);

const result = await model.generateContent([prompt, imagePart]);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
	log.Fatal(err)
}

resp, err := model.GenerateContent(ctx,
	genai.Text("Tell me about this instrument"),
	genai.ImageData("jpeg", imgData))
if err != nil {
	log.Fatal(err)
}

printResponse(resp)

Coquille Rose

# Use a temporary file to hold the base64 encoded image data
TEMP_B64=$(mktemp)
trap 'rm -f "$TEMP_B64"' EXIT
base64 $B64FLAGS $IMG_PATH > "$TEMP_B64"

# Use a temporary file to hold the JSON payload
TEMP_JSON=$(mktemp)
trap 'rm -f "$TEMP_JSON"' EXIT

cat > "$TEMP_JSON" << EOF
{
  "contents": [{
    "parts":[
      {"text": "Tell me about this instrument"},
      {
        "inline_data": {
          "mime_type":"image/jpeg",
          "data": "$(cat "$TEMP_B64")"
        }
      }
    ]
  }]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d "@$TEMP_JSON" 2> /dev/null

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image)
val inputContent = content {
  image(image)
  text("What's in this picture?")
}

val response = generativeModel.generateContent(inputContent)
print(response.text)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image = UIImage(systemName: "cloud.sun") else { fatalError() }

let prompt = "What's in this picture?"

let response = try await generativeModel.generateContent(image, prompt)
if let text = response.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Describe how this product might be manufactured.';
final image = await fileToPart('image/jpeg', 'resources/jetpack.jpg');

final response = await model.generateContent([
  Content.multi([TextPart(prompt), image])
]);
print(response.text);

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image = BitmapFactory.decodeResource(context.getResources(), R.drawable.image);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Audio

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Give me a summary of this audio file.";
// Note: The only accepted mime types are some image types, image/*.
const audioPart = fileToGenerativePart(
  `${mediaPath}/samplesmall.mp3`,
  "audio/mp3",
);

const result = await model.generateContent([prompt, audioPart]);
console.log(result.response.text());

Coquille Rose

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

Vidéo

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
// import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadResult = await fileManager.uploadFile(
  `${mediaPath}/Big_Buck_Bunny.mp4`,
  { mimeType: "video/mp4" },
);

let file = await fileManager.getFile(uploadResult.file.name);
while (file.state === FileState.PROCESSING) {
  process.stdout.write(".");
  // Sleep for 10 seconds
  await new Promise((resolve) => setTimeout(resolve, 10_000));
  // Fetch the file from the API again
  file = await fileManager.getFile(uploadResult.file.name);
}

if (file.state === FileState.FAILED) {
  throw new Error("Video processing failed.");
}

const prompt = "Describe this video clip";
const videoPart = {
  fileData: {
    fileUri: uploadResult.file.uri,
    mimeType: uploadResult.file.mimeType,
  },
};

const result = await model.generateContent([prompt, videoPart]);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-flash")

file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

// Videos need to be processed before you can use them.
for file.State == genai.FileStateProcessing {
	log.Printf("processing %s", file.Name)
	time.Sleep(5 * time.Second)
	var err error
	if file, err = client.GetFile(ctx, file.Name); err != nil {
		log.Fatal(err)
	}
}
if file.State != genai.FileStateActive {
	log.Fatalf("uploaded file has state %s, not active", file.State)
}

resp, err := model.GenerateContent(ctx,
	genai.Text("Describe this video clip"),
	genai.FileData{URI: file.URI})
if err != nil {
	log.Fatal(err)
}

printResponse(resp)

Coquille Rose

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D "${tmp_header_file}" \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

name=$(jq ".file.name" file_info.json)
echo name=$name

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Transcribe the audio from this video, giving timestamps for salient events in the video. Also provide visual descriptions."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

PDF

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Coquille Rose

MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

jq ".candidates[].content.parts[].text" response.json

Chat

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessage("I have 2 dogs in my house.");
console.log(result.response.text());
result = await chat.sendMessage("How many paws are in my house?");
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hello, I have 2 dogs in my house."),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Great to meet you. What would you like to know?"),
		},
		Role: "model",
	},
}

res, err := cs.SendMessage(ctx, genai.Text("How many paws are in my house?"))
if err != nil {
	log.Fatal(err)
}
printResponse(res)

Coquille Rose

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

val response = chat.sendMessage("How many paws are in my house?")
print(response.text)

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
if let text = response.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('hello'),
  Content.model([TextPart('Great to meet you. What would you like to know?')])
]);
var response =
    await chat.sendMessage(Content.text('I have 2 dogs in my house.'));
print(response.text);
response =
    await chat.sendMessage(Content.text('How many paws are in my house?'));
print(response.text);

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Cache

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleAICacheManager, GoogleAIFileManager } from "@google/generative-ai/server";
// import { GoogleGenerativeAI } from "@google/generative-ai";
const cacheManager = new GoogleAICacheManager(process.env.API_KEY);
const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadResult = await fileManager.uploadFile(`${mediaPath}/a11.txt`, {
  mimeType: "text/plain",
});

const cacheResult = await cacheManager.create({
  model: "models/gemini-1.5-flash-001",
  contents: [
    {
      role: "user",
      parts: [
        {
          fileData: {
            fileUri: uploadResult.file.uri,
            mimeType: uploadResult.file.mimeType,
          },
        },
      ],
    },
  ],
});

console.log(cacheResult);

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModelFromCachedContent(cacheResult);
const result = await model.generateContent(
  "Please summarize this transcript.",
);
console.log(result.response.text());

Modèle réglé

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Mode JSON

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI, SchemaType } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);

const schema = {
  description: "List of recipes",
  type: SchemaType.ARRAY,
  items: {
    type: SchemaType.OBJECT,
    properties: {
      recipeName: {
        type: SchemaType.STRING,
        description: "Name of the recipe",
        nullable: false,
      },
    },
    required: ["recipeName"],
  },
};

const model = genAI.getGenerativeModel({
  model: "gemini-1.5-pro",
  generationConfig: {
    responseMimeType: "application/json",
    responseSchema: schema,
  },
});

const result = await model.generateContent(
  "List a few popular cookie recipes.",
);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-pro-latest")
// Ask the model to respond with JSON.
model.ResponseMIMEType = "application/json"
// Specify the schema.
model.ResponseSchema = &genai.Schema{
	Type:  genai.TypeArray,
	Items: &genai.Schema{Type: genai.TypeString},
}
resp, err := model.GenerateContent(ctx, genai.Text("List a few popular cookie recipes using this JSON schema."))
if err != nil {
	log.Fatal(err)
}
for _, part := range resp.Candidates[0].Content.Parts {
	if txt, ok := part.(genai.Text); ok {
		var recipes []string
		if err := json.Unmarshal([]byte(txt), &recipes); err != nil {
			log.Fatal(err)
		}
		fmt.Println(recipes)
	}
}

Coquille Rose

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
    "contents": [{
      "parts":[
        {"text": "List 5 popular cookie recipes"}
        ]
    }],
    "generationConfig": {
        "response_mime_type": "application/json",
        "response_schema": {
          "type": "ARRAY",
          "items": {
            "type": "OBJECT",
            "properties": {
              "recipe_name": {"type":"STRING"},
            }
          }
        }
    }
}' 2> /dev/null | head

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-pro",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        generationConfig = generationConfig {
            responseMimeType = "application/json"
            responseSchema = Schema(
                name = "recipes",
                description = "List of recipes",
                type = FunctionType.ARRAY,
                items = Schema(
                    name = "recipe",
                    description = "A recipe",
                    type = FunctionType.OBJECT,
                    properties = mapOf(
                        "recipeName" to Schema(
                            name = "recipeName",
                            description = "Name of the recipe",
                            type = FunctionType.STRING,
                            nullable = false
                        ),
                    ),
                    required = listOf("recipeName")
                ),
            )
        })

val prompt = "List a few popular cookie recipes."
val response = generativeModel.generateContent(prompt)
print(response.text)

Swift

let jsonSchema = Schema(
  type: .array,
  description: "List of recipes",
  items: Schema(
    type: .object,
    properties: [
      "recipeName": Schema(type: .string, description: "Name of the recipe", nullable: false),
    ],
    requiredProperties: ["recipeName"]
  )
)

let generativeModel = GenerativeModel(
  // Specify a model that supports controlled generation like Gemini 1.5 Pro
  name: "gemini-1.5-pro",
  // Access your API key from your on-demand resource .plist file (see "Set up your API key"
  // above)
  apiKey: APIKey.default,
  generationConfig: GenerationConfig(
    responseMIMEType: "application/json",
    responseSchema: jsonSchema
  )
)

let prompt = "List a few popular cookie recipes."
let response = try await generativeModel.generateContent(prompt)
if let text = response.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final schema = Schema.array(
    description: 'List of recipes',
    items: Schema.object(properties: {
      'recipeName':
          Schema.string(description: 'Name of the recipe.', nullable: false)
    }, requiredProperties: [
      'recipeName'
    ]));

final model = GenerativeModel(
    model: 'gemini-1.5-pro',
    apiKey: apiKey,
    generationConfig: GenerationConfig(
        responseMimeType: 'application/json', responseSchema: schema));

final prompt = 'List a few popular cookie recipes.';
final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Java

Schema<List<String>> schema =
    new Schema(
        /* name */ "recipes",
        /* description */ "List of recipes",
        /* format */ null,
        /* nullable */ false,
        /* list */ null,
        /* properties */ null,
        /* required */ null,
        /* items */ new Schema(
            /* name */ "recipe",
            /* description */ "A recipe",
            /* format */ null,
            /* nullable */ false,
            /* list */ null,
            /* properties */ Map.of(
                "recipeName",
                new Schema(
                    /* name */ "recipeName",
                    /* description */ "Name of the recipe",
                    /* format */ null,
                    /* nullable */ false,
                    /* list */ null,
                    /* properties */ null,
                    /* required */ null,
                    /* items */ null,
                    /* type */ FunctionType.STRING)),
            /* required */ null,
            /* items */ null,
            /* type */ FunctionType.OBJECT),
        /* type */ FunctionType.ARRAY);

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.responseMimeType = "application/json";
configBuilder.responseSchema = schema;

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-pro",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig */ generationConfig);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content = new Content.Builder().addText("List a few popular cookie recipes.").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(content);
Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }
    },
    executor);

Exécution du code

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Kotlin


val model = GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    modelName = "gemini-1.5-pro",
    // Access your API key as a Build Configuration variable (see "Set up your API key" above)
    apiKey = BuildConfig.apiKey,
    tools = listOf(Tool.CODE_EXECUTION)
)

val response = model.generateContent("What is the sum of the first 50 prime numbers?")

// Each `part` either contains `text`, `executable_code` or an `execution_result`
println(response.candidates[0].content.parts.joinToString("\n"))

// Alternatively, you can use the `text` accessor which joins the parts into a markdown compatible
// text representation
println(response.text)

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
        new GenerativeModel(
                /* modelName */ "gemini-1.5-pro",
                // Access your API key as a Build Configuration variable (see "Set up your API key"
                // above)
                /* apiKey */ BuildConfig.apiKey,
                /* generationConfig */ null,
                /* safetySettings */ null,
                /* requestOptions */ new RequestOptions(),
                /* tools */ Collections.singletonList(Tool.CODE_EXECUTION));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content inputContent =
        new Content.Builder().addText("What is the sum of the first 50 prime numbers?").build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

ListenableFuture<GenerateContentResponse> response = model.generateContent(inputContent);
Futures.addCallback(
        response,
        new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                // Each `part` either contains `text`, `executable_code` or an
                // `execution_result`
                Candidate candidate = result.getCandidates().get(0);
                for (Part part : candidate.getContent().getParts()) {
                    System.out.println(part);
                }

                // Alternatively, you can use the `text` accessor which joins the parts into a
                // markdown compatible text representation
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        },
        executor);

Appel de fonction

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
async function setLightValues(brightness, colorTemperature) {
  // This mock API returns the requested lighting values
  return {
    brightness,
    colorTemperature,
  };
}

const controlLightFunctionDeclaration = {
  name: "controlLight",
  parameters: {
    type: "OBJECT",
    description: "Set the brightness and color temperature of a room light.",
    properties: {
      brightness: {
        type: "NUMBER",
        description:
          "Light level from 0 to 100. Zero is off and 100 is full brightness.",
      },
      colorTemperature: {
        type: "STRING",
        description:
          "Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.",
      },
    },
    required: ["brightness", "colorTemperature"],
  },
};

// Executable function code. Put it in a map keyed by the function name
// so that you can call it once you get the name string from the model.
const functions = {
  controlLight: ({ brightness, colorTemperature }) => {
    return setLightValues(brightness, colorTemperature);
  },
};

const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  tools: { functionDeclarations: [controlLightFunctionDeclaration] },
});
const chat = model.startChat();
const prompt = "Dim the lights so the room feels cozy and warm.";

// Send the message to the model.
const result = await chat.sendMessage(prompt);

// For simplicity, this uses the first function call found.
const call = result.response.functionCalls()[0];

if (call) {
  // Call the executable function named in the function call
  // with the arguments specified in the function call and
  // let it call the hypothetical API.
  const apiResponse = await functions[call.name](call.args);

  // Send the API response back to the model so it can generate
  // a text response that can be displayed to the user.
  const result2 = await chat.sendMessage([
    {
      functionResponse: {
        name: "controlLight",
        response: apiResponse,
      },
    },
  ]);

  // Log the text response.
  console.log(result2.response.text());
}

Coquille Rose


cat > tools.json << EOF
{
  "function_declarations": [
    {
      "name": "enable_lights",
      "description": "Turn on the lighting system.",
      "parameters": { "type": "object" }
    },
    {
      "name": "set_light_color",
      "description": "Set the light color. Lights must be enabled for this to work.",
      "parameters": {
        "type": "object",
        "properties": {
          "rgb_hex": {
            "type": "string",
            "description": "The light color as a 6-digit hex string, e.g. ff0000 for red."
          }
        },
        "required": [
          "rgb_hex"
        ]
      }
    },
    {
      "name": "stop_lights",
      "description": "Turn off the lighting system.",
      "parameters": { "type": "object" }
    }
  ]
} 
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro-latest:generateContent?key=$GOOGLE_API_KEY" \
  -H 'Content-Type: application/json' \
  -d @<(echo '
  {
    "system_instruction": {
      "parts": {
        "text": "You are a helpful lighting system bot. You can turn lights on and off, and you can set the color. Do not perform any other tasks."
      }
    },
    "tools": ['$(source "$tools")'],

    "tool_config": {
      "function_calling_config": {"mode": "none"}
    },

    "contents": {
      "role": "user",
      "parts": {
        "text": "What can you do?"
      }
    }
  }
') 2>/dev/null |sed -n '/"content"/,/"finishReason"/p'

Kotlin

fun multiply(a: Double, b: Double) = a * b

val multiplyDefinition = defineFunction(
    name = "multiply",
    description = "returns the product of the provided numbers.",
    parameters = listOf(
    Schema.double("a", "First number"),
    Schema.double("b", "Second number")
    )
)

val usableFunctions = listOf(multiplyDefinition)

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey,
        // List the functions definitions you want to make available to the model
        tools = listOf(Tool(usableFunctions))
    )

val chat = generativeModel.startChat()
val prompt = "I have 57 cats, each owns 44 mittens, how many mittens is that in total?"

// Send the message to the generative model
var response = chat.sendMessage(prompt)

// Check if the model responded with a function call
response.functionCalls.first { it.name == "multiply" }.apply {
    val a: String by args
    val b: String by args

    val result = JSONObject(mapOf("result" to multiply(a.toDouble(), b.toDouble())))
    response = chat.sendMessage(
        content(role = "function") {
            part(FunctionResponsePart("multiply", result))
        }
    )
}

// Whenever the model responds with text, show it in the UI
response.text?.let { modelResponse ->
    println(modelResponse)
}

Swift

// Calls a hypothetical API to control a light bulb and returns the values that were set.
func controlLight(brightness: Double, colorTemperature: String) -> JSONObject {
  return ["brightness": .number(brightness), "colorTemperature": .string(colorTemperature)]
}

let generativeModel =
  GenerativeModel(
    // Use a model that supports function calling, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    tools: [Tool(functionDeclarations: [
      FunctionDeclaration(
        name: "controlLight",
        description: "Set the brightness and color temperature of a room light.",
        parameters: [
          "brightness": Schema(
            type: .number,
            format: "double",
            description: "Light level from 0 to 100. Zero is off and 100 is full brightness."
          ),
          "colorTemperature": Schema(
            type: .string,
            format: "enum",
            description: "Color temperature of the light fixture.",
            enumValues: ["daylight", "cool", "warm"]
          ),
        ],
        requiredParameters: ["brightness", "colorTemperature"]
      ),
    ])]
  )

let chat = generativeModel.startChat()

let prompt = "Dim the lights so the room feels cozy and warm."

// Send the message to the model.
let response1 = try await chat.sendMessage(prompt)

// Check if the model responded with a function call.
// For simplicity, this sample uses the first function call found.
guard let functionCall = response1.functionCalls.first else {
  fatalError("Model did not respond with a function call.")
}
// Print an error if the returned function was not declared
guard functionCall.name == "controlLight" else {
  fatalError("Unexpected function called: \(functionCall.name)")
}
// Verify that the names and types of the parameters match the declaration
guard case let .number(brightness) = functionCall.args["brightness"] else {
  fatalError("Missing argument: brightness")
}
guard case let .string(colorTemperature) = functionCall.args["colorTemperature"] else {
  fatalError("Missing argument: colorTemperature")
}

// Call the executable function named in the FunctionCall with the arguments specified in the
// FunctionCall and let it call the hypothetical API.
let apiResponse = controlLight(brightness: brightness, colorTemperature: colorTemperature)

// Send the API response back to the model so it can generate a text response that can be
// displayed to the user.
let response2 = try await chat.sendMessage([ModelContent(
  role: "function",
  parts: [.functionResponse(FunctionResponse(name: "controlLight", response: apiResponse))]
)])

if let text = response2.text {
  print(text)
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
Map<String, Object?> setLightValues(Map<String, Object?> args) {
  return args;
}

final controlLightFunction = FunctionDeclaration(
    'controlLight',
    'Set the brightness and color temperature of a room light.',
    Schema.object(properties: {
      'brightness': Schema.number(
          description:
              'Light level from 0 to 100. Zero is off and 100 is full brightness.',
          nullable: false),
      'colorTemperatur': Schema.string(
          description:
              'Color temperature of the light fixture which can be `daylight`, `cool`, or `warm`',
          nullable: false),
    }));

final functions = {controlLightFunction.name: setLightValues};
FunctionResponse dispatchFunctionCall(FunctionCall call) {
  final function = functions[call.name]!;
  final result = function(call.args);
  return FunctionResponse(call.name, result);
}

final model = GenerativeModel(
  model: 'gemini-1.5-pro',
  apiKey: apiKey,
  tools: [
    Tool(functionDeclarations: [controlLightFunction])
  ],
);

final prompt = 'Dim the lights so the room feels cozy and warm.';
final content = [Content.text(prompt)];
var response = await model.generateContent(content);

List<FunctionCall> functionCalls;
while ((functionCalls = response.functionCalls.toList()).isNotEmpty) {
  var responses = <FunctionResponse>[
    for (final functionCall in functionCalls)
      dispatchFunctionCall(functionCall)
  ];
  content
    ..add(response.candidates.first.content)
    ..add(Content.functionResponses(responses));
  response = await model.generateContent(content);
}
print('Response: ${response.text}');

Java

FunctionDeclaration multiplyDefinition =
    defineFunction(
        /* name  */ "multiply",
        /* description */ "returns a * b.",
        /* parameters */ Arrays.asList(
            Schema.numDouble("a", "First parameter"),
            Schema.numDouble("b", "Second parameter")),
        /* required */ Arrays.asList("a", "b"));

Tool tool = new Tool(Arrays.asList(multiplyDefinition), null);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* functionDeclarations (optional) */ Arrays.asList(tool));
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// Create prompt
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText(
    "I have 57 cats, each owns 44 mittens, how many mittens is that in total?");
Content userMessage = userContentBuilder.build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

// Initialize the chat
ChatFutures chat = model.startChat();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(userMessage);

Futures.addCallback(
    response,
    new FutureCallback<GenerateContentResponse>() {
      @Override
      public void onSuccess(GenerateContentResponse result) {
        if (!result.getFunctionCalls().isEmpty()) {
          handleFunctionCall(result);
        }
        if (!result.getText().isEmpty()) {
          System.out.println(result.getText());
        }
      }

      @Override
      public void onFailure(Throwable t) {
        t.printStackTrace();
      }

      private void handleFunctionCall(GenerateContentResponse result) {
        FunctionCallPart multiplyFunctionCallPart =
            result.getFunctionCalls().stream()
                .filter(fun -> fun.getName().equals("multiply"))
                .findFirst()
                .get();
        double a = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("a"));
        double b = Double.parseDouble(multiplyFunctionCallPart.getArgs().get("b"));

        try {
          // `multiply(a, b)` is a regular java function defined in another class
          FunctionResponsePart functionResponsePart =
              new FunctionResponsePart(
                  "multiply", new JSONObject().put("result", multiply(a, b)));

          // Create prompt
          Content.Builder functionCallResponse = new Content.Builder();
          userContentBuilder.setRole("user");
          userContentBuilder.addPart(functionResponsePart);
          Content userMessage = userContentBuilder.build();

          chat.sendMessage(userMessage);
        } catch (JSONException e) {
          throw new RuntimeException(e);
        }
      }
    },
    executor);

Configuration de génération

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  generationConfig: {
    candidateCount: 1,
    stopSequences: ["x"],
    maxOutputTokens: 20,
    temperature: 1.0,
  },
});

const result = await model.generateContent(
  "Tell me a story about a magic backpack.",
);
console.log(result.response.text());

Go

model := client.GenerativeModel("gemini-1.5-pro-latest")
model.SetTemperature(0.9)
model.SetTopP(0.5)
model.SetTopK(20)
model.SetMaxOutputTokens(100)
model.SystemInstruction = genai.NewUserContent(genai.Text("You are Yoda from Star Wars."))
model.ResponseMIMEType = "application/json"
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)

Coquille Rose

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
        "contents": [{
            "parts":[
                {"text": "Write a story about a magic backpack."}
            ]
        }],
        "safetySettings": [
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "threshold": "BLOCK_ONLY_HIGH"
            }
        ],
        "generationConfig": {
            "stopSequences": [
                "Title"
            ],
            "temperature": 1.0,
            "maxOutputTokens": 800,
            "topP": 0.8,
            "topK": 10
        }
    }'  2> /dev/null | grep "text"

Kotlin

val config = generationConfig {
  temperature = 0.9f
  topK = 16
  topP = 0.1f
  maxOutputTokens = 200
  stopSequences = listOf("red")
}

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        generationConfig = config)

Swift

let config = GenerationConfig(
  temperature: 0.9,
  topP: 0.1,
  topK: 16,
  candidateCount: 1,
  maxOutputTokens: 200,
  stopSequences: ["red", "orange"]
)

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    generationConfig: config
  )

Dart

final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Tell me a story about a magic backpack.';

final response = await model.generateContent(
  [Content.text(prompt)],
  generationConfig: GenerationConfig(
    candidateCount: 1,
    stopSequences: ['x'],
    maxOutputTokens: 20,
    temperature: 1.0,
  ),
);
print(response.text);

Java

GenerationConfig.Builder configBuilder = new GenerationConfig.Builder();
configBuilder.temperature = 0.9f;
configBuilder.topK = 16;
configBuilder.topP = 0.1f;
configBuilder.maxOutputTokens = 200;
configBuilder.stopSequences = Arrays.asList("red");

GenerationConfig generationConfig = configBuilder.build();

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel("gemini-1.5-flash", BuildConfig.apiKey, generationConfig);

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Paramètres de sécurité

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI, HarmCategory, HarmBlockThreshold } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  safetySettings: [
    {
      category: HarmCategory.HARM_CATEGORY_HARASSMENT,
      threshold: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
    },
    {
      category: HarmCategory.HARM_CATEGORY_HATE_SPEECH,
      threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    },
  ],
});

const unsafePrompt =
  "I support Martians Soccer Club and I think " +
  "Jupiterians Football Club sucks! Write an ironic phrase telling " +
  "them how I feel about them.";

const result = await model.generateContent(unsafePrompt);

try {
  result.response.text();
} catch (e) {
  console.error(e);
  console.log(result.response.candidates[0].safetyRatings);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")
model.SafetySettings = []*genai.SafetySetting{
	{
		Category:  genai.HarmCategoryDangerousContent,
		Threshold: genai.HarmBlockLowAndAbove,
	},
	{
		Category:  genai.HarmCategoryHarassment,
		Threshold: genai.HarmBlockMediumAndAbove,
	},
}
resp, err := model.GenerateContent(ctx, genai.Text("I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them."))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)

Coquille Rose

echo '{
    "safetySettings": [
        {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_ONLY_HIGH"},
        {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}
    ],
    "contents": [{
        "parts":[{
            "text": "'I support Martians Soccer Club and I think Jupiterians Football Club sucks! Write a ironic phrase about them.'"}]}]}' > request.json

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d @request.json 2> /dev/null

Kotlin

val harassmentSafety = SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH)

val hateSpeechSafety = SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE)

val generativeModel =
    GenerativeModel(
        // The Gemini 1.5 models are versatile and work with most use cases
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        safetySettings = listOf(harassmentSafety, hateSpeechSafety))

Swift

let safetySettings = [
  SafetySetting(harmCategory: .dangerousContent, threshold: .blockLowAndAbove),
  SafetySetting(harmCategory: .harassment, threshold: .blockMediumAndAbove),
  SafetySetting(harmCategory: .hateSpeech, threshold: .blockOnlyHigh),
]

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    safetySettings: safetySettings
  )

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'I support Martians Soccer Club and I think '
    'Jupiterians Football Club sucks! Write an ironic phrase telling '
    'them how I feel about them.';

final response = await model.generateContent(
  [Content.text(prompt)],
  safetySettings: [
    SafetySetting(HarmCategory.harassment, HarmBlockThreshold.medium),
    SafetySetting(HarmCategory.hateSpeech, HarmBlockThreshold.low),
  ],
);
try {
  print(response.text);
} catch (e) {
  print(e);
  for (final SafetyRating(:category, :probability)
      in response.candidates.first.safetyRatings!) {
    print('Safety Rating: $category - $probability');
  }
}

Java

SafetySetting harassmentSafety =
    new SafetySetting(HarmCategory.HARASSMENT, BlockThreshold.ONLY_HIGH);

SafetySetting hateSpeechSafety =
    new SafetySetting(HarmCategory.HATE_SPEECH, BlockThreshold.MEDIUM_AND_ABOVE);

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        "gemini-1.5-flash",
        BuildConfig.apiKey,
        null, // generation config is optional
        Arrays.asList(harassmentSafety, hateSpeechSafety));

GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Instruction système

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({
  model: "gemini-1.5-flash",
  systemInstruction: "You are a cat. Your name is Neko.",
});

const prompt = "Good morning! How are you?";

const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);

Go

model := client.GenerativeModel("gemini-1.5-flash")
model.SystemInstruction = genai.NewUserContent(genai.Text("You are a cat. Your name is Neko."))
resp, err := model.GenerateContent(ctx, genai.Text("Good morning! How are you?"))
if err != nil {
	log.Fatal(err)
}
printResponse(resp)

Coquille Rose

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{ "system_instruction": {
    "parts":
      { "text": "You are a cat. Your name is Neko."}},
    "contents": {
      "parts": {
        "text": "Hello there"}}}'

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        apiKey = BuildConfig.apiKey,
        systemInstruction = content { text("You are a cat. Your name is Neko.") },
    )

Swift

let generativeModel =
  GenerativeModel(
    // Specify a model that supports system instructions, like a Gemini 1.5 model
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default,
    systemInstruction: ModelContent(role: "system", parts: "You are a cat. Your name is Neko.")
  )

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
  systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
final prompt = 'Good morning! How are you?';

final response = await model.generateContent([Content.text(prompt)]);
print(response.text);

Java

GenerativeModel model =
    new GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        /* modelName */ "gemini-1.5-flash",
        /* apiKey */ BuildConfig.apiKey,
        /* generationConfig (optional) */ null,
        /* safetySettings (optional) */ null,
        /* requestOptions (optional) */ new RequestOptions(),
        /* tools (optional) */ null,
        /* toolsConfig (optional) */ null,
        /* systemInstruction (optional) */ new Content.Builder()
            .addText("You are a cat. Your name is Neko.")
            .build());

Corps de la réponse

Si la requête aboutit, le corps de la réponse contient une instance de GenerateContentResponse.

Méthode: tunedModels.streamGenerateContent

Génère une réponse en streaming à partir du modèle, à partir d'une entrée GenerateContentRequest.

Point de terminaison

Poster https://generativelanguage.googleapis.com/v1beta/{model=tunedModels/*}:streamGenerateContent

L'URL utilise la syntaxe de transcodage gRPC.

Paramètres de chemin d'accès

model string

Obligatoire. Nom de l'Model à utiliser pour générer la saisie semi-automatique.

Format : models/{model}. Il se présente sous la forme tunedModels/{tunedmodel}.

Corps de la requête

Le corps de la requête contient des données présentant la structure suivante :

Champs
contents[] object (Content)

Obligatoire. Contenu de la conversation en cours avec le modèle.

Pour les requêtes à un seul tour, il s'agit d'une instance unique. Pour les requêtes multitours telles que chat, il s'agit d'un champ répété contenant l'historique de la conversation et la dernière requête.

tools[] object (Tool)

Facultatif. Liste des Tools que le Model peut utiliser pour générer la réponse suivante.

Un Tool est un morceau de code qui permet au système d'interagir avec des systèmes externes pour effectuer une action ou un ensemble d'actions en dehors du champ d'application et des connaissances du Model. Les Tool acceptés sont Function et codeExecution. Pour en savoir plus, consultez les guides Appels de fonction et Exécution du code.

toolConfig object (ToolConfig)

Facultatif. Configuration de l'outil pour tous les Tool spécifiés dans la requête. Pour obtenir un exemple d'utilisation, consultez le guide d'appel de fonction.

safetySettings[] object (SafetySetting)

Facultatif. Liste d'instances SafetySetting uniques pour le blocage du contenu non sécurisé.

Cette règle sera appliquée aux GenerateContentRequest.contents et GenerateContentResponse.candidates. Il ne doit pas y avoir plus d'un paramètre pour chaque type SafetyCategory. L'API bloque tous les contenus et réponses qui ne respectent pas les seuils définis par ces paramètres. Cette liste remplace les paramètres par défaut de chaque SafetyCategory spécifié dans les paramètres de sécurité. Si aucun SafetySetting n'est fourni pour un SafetyCategory donné dans la liste, l'API utilise le paramètre de sécurité par défaut pour cette catégorie. Les catégories de préjudice HARM_CATEGORY_HATE_SPEECH, HARM_CATEGORY_SEXUALLY_EXPLICIT, HARM_CATEGORY_DANGEROUS_CONTENT, HARM_CATEGORY_HARASSMENT et HARM_CATEGORY_CIVIC_INTEGRITY sont acceptées. Pour en savoir plus sur les paramètres de sécurité disponibles, consultez le guide. Consultez également les Consignes de sécurité pour découvrir comment intégrer des considérations de sécurité à vos applications d'IA.

systemInstruction object (Content)

Facultatif. Le développeur a défini une ou plusieurs instructions système. Pour le moment, texte uniquement.

generationConfig object (GenerationConfig)

Facultatif. Options de configuration pour la génération de modèles et les sorties.

cachedContent string

Facultatif. Nom du contenu mis en cache à utiliser comme contexte pour diffuser la prédiction. Format : cachedContents/{cachedContent}

Exemple de requête

Texte

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const prompt = "Write a story about a magic backpack.";

const result = await model.generateContentStream(prompt);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")
iter := model.GenerateContentStream(ctx, genai.Text("Write a story about a magic backpack."))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Coquille Rose

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=${GOOGLE_API_KEY}" \
        -H 'Content-Type: application/json' \
        --no-buffer \
        -d '{ "contents":[{"parts":[{"text": "Write a story about a magic backpack."}]}]}'

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val prompt = "Write a story about a magic backpack."
// Use streaming with text-only input
generativeModel.generateContentStream(prompt).collect { chunk -> print(chunk.text) }

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

let prompt = "Write a story about a magic backpack."
// Use streaming with text-only input
for try await response in generativeModel.generateContentStream(prompt) {
  if let text = response.text {
    print(text)
  }
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final prompt = 'Write a story about a magic backpack.';

final responses = model.generateContentStream([Content.text(prompt)]);
await for (final response in responses) {
  print(response.text);
}

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Content content =
    new Content.Builder().addText("Write a story about a magic backpack.").build();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });

Image

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

function fileToGenerativePart(path, mimeType) {
  return {
    inlineData: {
      data: Buffer.from(fs.readFileSync(path)).toString("base64"),
      mimeType,
    },
  };
}

const prompt = "Describe how this product might be manufactured.";
// Note: The only accepted mime types are some image types, image/*.
const imagePart = fileToGenerativePart(
  `${mediaPath}/jetpack.jpg`,
  "image/jpeg",
);

const result = await model.generateContentStream([prompt, imagePart]);

// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")

imgData, err := os.ReadFile(filepath.Join(testDataDir, "organ.jpg"))
if err != nil {
	log.Fatal(err)
}
iter := model.GenerateContentStream(ctx,
	genai.Text("Tell me about this instrument"),
	genai.ImageData("jpeg", imgData))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Coquille Rose

cat > "$TEMP_JSON" << EOF
{
  "contents": [{
    "parts":[
      {"text": "Tell me about this instrument"},
      {
        "inline_data": {
          "mime_type":"image/jpeg",
          "data": "$(cat "$TEMP_B64")"
        }
      }
    ]
  }]
}
EOF

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d "@$TEMP_JSON" 2> /dev/null

Kotlin

val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val image: Bitmap = BitmapFactory.decodeResource(context.resources, R.drawable.image)
val inputContent = content {
  image(image)
  text("What's in this picture?")
}

generativeModel.generateContentStream(inputContent).collect { chunk -> print(chunk.text) }

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

guard let image = UIImage(systemName: "cloud.sun") else { fatalError() }

let prompt = "What's in this picture?"

for try await response in generativeModel.generateContentStream(image, prompt) {
  if let text = response.text {
    print(text)
  }
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);

Future<DataPart> fileToPart(String mimeType, String path) async {
  return DataPart(mimeType, await File(path).readAsBytes());
}

final prompt = 'Describe how this product might be manufactured.';
final image = await fileToPart('image/jpeg', 'resources/jetpack.jpg');

final responses = model.generateContentStream([
  Content.multi([TextPart(prompt), image])
]);
await for (final response in responses) {
  print(response.text);
}

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

Bitmap image1 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image1);
Bitmap image2 = BitmapFactory.decodeResource(context.getResources(), R.drawable.image2);

Content content =
    new Content.Builder()
        .addText("What's different between these pictures?")
        .addImage(image1)
        .addImage(image2)
        .build();

// For illustrative purposes only. You should use an executor that fits your needs.
Executor executor = Executors.newSingleThreadExecutor();

Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(content);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onError(Throwable t) {
        t.printStackTrace();
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }
    });

Audio

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Coquille Rose

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${AUDIO_PATH}")
NUM_BYTES=$(wc -c < "${AUDIO_PATH}")
DISPLAY_NAME=AUDIO

tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${AUDIO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "audio/mpeg", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

Vidéo

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
// import { GoogleAIFileManager, FileState } from "@google/generative-ai/server";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });

const fileManager = new GoogleAIFileManager(process.env.API_KEY);

const uploadResult = await fileManager.uploadFile(
  `${mediaPath}/Big_Buck_Bunny.mp4`,
  { mimeType: "video/mp4" },
);

let file = await fileManager.getFile(uploadResult.file.name);
while (file.state === FileState.PROCESSING) {
  process.stdout.write(".");
  // Sleep for 10 seconds
  await new Promise((resolve) => setTimeout(resolve, 10_000));
  // Fetch the file from the API again
  file = await fileManager.getFile(uploadResult.file.name);
}

if (file.state === FileState.FAILED) {
  throw new Error("Video processing failed.");
}

const prompt = "Describe this video clip";
const videoPart = {
  fileData: {
    fileUri: uploadResult.file.uri,
    mimeType: uploadResult.file.mimeType,
  },
};

const result = await model.generateContentStream([prompt, videoPart]);
// Print text as it comes in.
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")

file, err := client.UploadFileFromPath(ctx, filepath.Join(testDataDir, "earth.mp4"), nil)
if err != nil {
	log.Fatal(err)
}
defer client.DeleteFile(ctx, file.Name)

iter := model.GenerateContentStream(ctx,
	genai.Text("Describe this video clip"),
	genai.FileData{URI: file.URI})
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Coquille Rose

# Use File API to upload audio data to API request.
MIME_TYPE=$(file -b --mime-type "${VIDEO_PATH}")
NUM_BYTES=$(wc -c < "${VIDEO_PATH}")
DISPLAY_NAME=VIDEO_PATH

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${VIDEO_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

state=$(jq ".file.state" file_info.json)
echo state=$state

while [[ "($state)" = *"PROCESSING"* ]];
do
  echo "Processing video..."
  sleep 5
  # Get the file of interest to check state
  curl https://generativelanguage.googleapis.com/v1beta/files/$name > file_info.json
  state=$(jq ".file.state" file_info.json)
done

curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Please describe this file."},
          {"file_data":{"mime_type": "video/mp4", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

PDF

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Coquille Rose

MIME_TYPE=$(file -b --mime-type "${PDF_PATH}")
NUM_BYTES=$(wc -c < "${PDF_PATH}")
DISPLAY_NAME=TEXT


echo $MIME_TYPE
tmp_header_file=upload-header.tmp

# Initial resumable request defining metadata.
# The upload url is in the response headers dump them to a file.
curl "${BASE_URL}/upload/v1beta/files?key=${GOOGLE_API_KEY}" \
  -D upload-header.tmp \
  -H "X-Goog-Upload-Protocol: resumable" \
  -H "X-Goog-Upload-Command: start" \
  -H "X-Goog-Upload-Header-Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Header-Content-Type: ${MIME_TYPE}" \
  -H "Content-Type: application/json" \
  -d "{'file': {'display_name': '${DISPLAY_NAME}'}}" 2> /dev/null

upload_url=$(grep -i "x-goog-upload-url: " "${tmp_header_file}" | cut -d" " -f2 | tr -d "\r")
rm "${tmp_header_file}"

# Upload the actual bytes.
curl "${upload_url}" \
  -H "Content-Length: ${NUM_BYTES}" \
  -H "X-Goog-Upload-Offset: 0" \
  -H "X-Goog-Upload-Command: upload, finalize" \
  --data-binary "@${PDF_PATH}" 2> /dev/null > file_info.json

file_uri=$(jq ".file.uri" file_info.json)
echo file_uri=$file_uri

# Now generate content using that file
curl "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY" \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [{
        "parts":[
          {"text": "Can you add a few more lines to this poem?"},
          {"file_data":{"mime_type": "application/pdf", "file_uri": '$file_uri'}}]
        }]
       }' 2> /dev/null > response.json

cat response.json
echo

Chat

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Node.js

// Make sure to include these imports:
// import { GoogleGenerativeAI } from "@google/generative-ai";
const genAI = new GoogleGenerativeAI(process.env.API_KEY);
const model = genAI.getGenerativeModel({ model: "gemini-1.5-flash" });
const chat = model.startChat({
  history: [
    {
      role: "user",
      parts: [{ text: "Hello" }],
    },
    {
      role: "model",
      parts: [{ text: "Great to meet you. What would you like to know?" }],
    },
  ],
});
let result = await chat.sendMessageStream("I have 2 dogs in my house.");
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}
result = await chat.sendMessageStream("How many paws are in my house?");
for await (const chunk of result.stream) {
  const chunkText = chunk.text();
  process.stdout.write(chunkText);
}

Go

model := client.GenerativeModel("gemini-1.5-flash")
cs := model.StartChat()

cs.History = []*genai.Content{
	{
		Parts: []genai.Part{
			genai.Text("Hello, I have 2 dogs in my house."),
		},
		Role: "user",
	},
	{
		Parts: []genai.Part{
			genai.Text("Great to meet you. What would you like to know?"),
		},
		Role: "model",
	},
}

iter := cs.SendMessageStream(ctx, genai.Text("How many paws are in my house?"))
for {
	resp, err := iter.Next()
	if err == iterator.Done {
		break
	}
	if err != nil {
		log.Fatal(err)
	}
	printResponse(resp)
}

Coquille Rose

curl https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:streamGenerateContent?alt=sse&key=$GOOGLE_API_KEY \
    -H 'Content-Type: application/json' \
    -X POST \
    -d '{
      "contents": [
        {"role":"user",
         "parts":[{
           "text": "Hello"}]},
        {"role": "model",
         "parts":[{
           "text": "Great to meet you. What would you like to know?"}]},
        {"role":"user",
         "parts":[{
           "text": "I have two dogs in my house. How many paws are in my house?"}]},
      ]
    }' 2> /dev/null | grep "text"

Kotlin

// Use streaming with multi-turn conversations (like chat)
val generativeModel =
    GenerativeModel(
        // Specify a Gemini model appropriate for your use case
        modelName = "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key" above)
        apiKey = BuildConfig.apiKey)

val chat =
    generativeModel.startChat(
        history =
            listOf(
                content(role = "user") { text("Hello, I have 2 dogs in my house.") },
                content(role = "model") {
                  text("Great to meet you. What would you like to know?")
                }))

chat.sendMessageStream("How many paws are in my house?").collect { chunk -> print(chunk.text) }

Swift

let generativeModel =
  GenerativeModel(
    // Specify a Gemini model appropriate for your use case
    name: "gemini-1.5-flash",
    // Access your API key from your on-demand resource .plist file (see "Set up your API key"
    // above)
    apiKey: APIKey.default
  )

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = generativeModel.startChat(history: history)

// To stream generated text output, call sendMessageStream and pass in the message
let contentStream = chat.sendMessageStream("How many paws are in my house?")
for try await chunk in contentStream {
  if let text = chunk.text {
    print(text)
  }
}

Dart

// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
  model: 'gemini-1.5-flash',
  apiKey: apiKey,
);
final chat = model.startChat(history: [
  Content.text('hello'),
  Content.model([TextPart('Great to meet you. What would you like to know?')])
]);
var responses =
    chat.sendMessageStream(Content.text('I have 2 dogs in my house.'));
await for (final response in responses) {
  print(response.text);
  print('_' * 80);
}
responses =
    chat.sendMessageStream(Content.text('How many paws are in my house?'));
await for (final response in responses) {
  print(response.text);
  print('_' * 80);
}

Java

// Specify a Gemini model appropriate for your use case
GenerativeModel gm =
    new GenerativeModel(
        /* modelName */ "gemini-1.5-flash",
        // Access your API key as a Build Configuration variable (see "Set up your API key"
        // above)
        /* apiKey */ BuildConfig.apiKey);
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder userMessageBuilder = new Content.Builder();
userMessageBuilder.setRole("user");
userMessageBuilder.addText("How many paws are in my house?");
Content userMessage = userMessageBuilder.build();

// Use streaming with text-only input
Publisher<GenerateContentResponse> streamingResponse = model.generateContentStream(userMessage);

StringBuilder outputContent = new StringBuilder();

streamingResponse.subscribe(
    new Subscriber<GenerateContentResponse>() {
      @Override
      public void onNext(GenerateContentResponse generateContentResponse) {
        String chunk = generateContentResponse.getText();
        outputContent.append(chunk);
      }

      @Override
      public void onComplete() {
        System.out.println(outputContent);
      }

      @Override
      public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE);
      }

      @Override
      public void onError(Throwable t) {}

    });

Corps de la réponse

Si la requête aboutit, le corps de la réponse contient un flux d'instances GenerateContentResponse.

Méthode: tunedModels.get

Récupère des informations sur un TunedModel spécifique.

Point de terminaison

get https://generativelanguage.googleapis.com/v1beta/{name=tunedModels/*}

L'URL utilise la syntaxe de transcodage gRPC.

Paramètres de chemin d'accès

name string

Obligatoire. Nom de la ressource du modèle.

Format: tunedModels/my-model-id Il se présente sous la forme tunedModels/{tunedmodel}.

Corps de la requête

Le corps de la requête doit être vide.

Exemple de requête

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Corps de la réponse

Si la requête aboutit, le corps de la réponse contient une instance de TunedModel.

Méthode: tunedModels.list

Répertorie les modèles réglés créés.

Point de terminaison

get https://generativelanguage.googleapis.com/v1beta/tunedModels

L'URL utilise la syntaxe de transcodage gRPC.

Paramètres de requête

pageSize integer

Facultatif. Nombre maximal de TunedModels à renvoyer (par page). Le service peut renvoyer moins de modèles optimisés.

Si aucune valeur n'est spécifiée, 10 modèles optimisés au maximum sont renvoyés. Cette méthode ne renvoie pas plus de 1 000 modèles par page, même si vous transmettez une valeur de pageSize plus élevée.

pageToken string

Facultatif. Jeton de page reçu d'un appel tunedModels.list précédent.

Indiquez le pageToken renvoyé par une requête en tant qu'argument de la requête suivante pour récupérer la page suivante.

Lors de la pagination, tous les autres paramètres fournis à tunedModels.list doivent correspondre à l'appel ayant fourni le jeton de page.

filter string

Facultatif. Un filtre est une recherche de texte intégral sur la description et le nom à afficher du modèle affiné. Par défaut, les résultats n'incluent pas les modèles optimisés partagés avec tous les utilisateurs.

Opérateurs supplémentaires: - owner:me - writers:me - readers:me - readers:everyone

Exemples: "owner:me" renvoie tous les modèles optimisés pour lesquels l'appelant dispose du rôle de propriétaire "readers:me" renvoie tous les modèles optimisés pour lesquels l'appelant dispose du rôle de lecteur "readers:everyone" renvoie tous les modèles optimisés partagés avec tous

Corps de la requête

Le corps de la requête doit être vide.

Exemple de requête

Python

# With Gemini-2 we're launching a new SDK, see this doc for details.
# https://ai.google.dev/gemini-api/docs/migrate

Corps de la réponse

Réponse de tunedModels.list contenant une liste paginée de modèles.

Si la requête aboutit, le corps de la réponse contient des données qui ont la structure suivante :

Champs
tunedModels[] object (TunedModel)

Modèles renvoyés.

nextPageToken string

Jeton pouvant être envoyé en tant que pageToken pour récupérer la page suivante.

Si ce champ est omis, il n'y a plus de pages.

Représentation JSON
{
  "tunedModels": [
    {
      object (TunedModel)
    }
  ],
  "nextPageToken": string
}

Méthode: tunedModels.patch

Met à jour un modèle affiné.

Point de terminaison

correctif https://generativelanguage.googleapis.com/v1beta/{tunedModel.name=tunedModels/*}

PATCH https://generativelanguage.googleapis.com/v1beta/{tunedModel.name=tunedModels/*}

L'URL utilise la syntaxe de transcodage gRPC.

Paramètres de chemin d'accès

tunedModel.name string

Uniquement en sortie. Nom du modèle ajusté. Un nom unique sera généré lors de la création. Exemple: tunedModels/az2mb0bpw6i Si displayName est défini lors de la création, la partie ID du nom est définie en concaténant les mots de displayName avec des traits d'union et en ajoutant une partie aléatoire pour l'unicité.

Exemple :

  • displayName = Sentence Translator
  • name = tunedModels/sentence-translator-u3b7m Il se présente sous la forme tunedModels/{tunedmodel}.

Paramètres de requête

updateMask string (FieldMask format)

Facultatif. Liste des champs à mettre à jour.

Il s'agit d'une liste de noms de champs complets séparés par une virgule. Exemple : "user.displayName,photo"

Corps de la requête

Le corps de la requête contient une instance de TunedModel.

Champs
displayName string

Facultatif. Nom à afficher pour ce modèle dans les interfaces utilisateur. Le nom à afficher ne doit pas comporter plus de 40 caractères, espaces compris.

description string

Facultatif. Brève description de ce modèle.

tuningTask object (TuningTask)

Obligatoire. La tâche de réglage qui crée le modèle affiné.

readerProjectNumbers[] string (int64 format)

Facultatif. Liste des numéros de projet ayant un accès en lecture au modèle ajusté.

source_model Union type
Modèle utilisé comme point de départ pour le réglage. source_model ne peut être qu'un des éléments suivants :
tunedModelSource object (TunedModelSource)

Facultatif. TunedModel à utiliser comme point de départ pour l'entraînement du nouveau modèle.

temperature number

Facultatif. Contrôle le caractère aléatoire de la sortie.

Les valeurs peuvent être supérieures à [0.0,1.0] (inclus). Une valeur plus proche de 1.0 génère des réponses plus variées, tandis qu'une valeur plus proche de 0.0 génère généralement des réponses moins surprenantes du modèle.

Cette valeur spécifie que la valeur par défaut est celle utilisée par le modèle de base lors de la création du modèle.

topP number

Facultatif. Pour l'échantillonnage du noyau.

L'échantillonnage du noyau prend en compte le plus petit ensemble de jetons dont la somme des probabilités est d'au moins topP.

Cette valeur spécifie que la valeur par défaut est celle utilisée par le modèle de base lors de la création du modèle.

topK integer

Facultatif. Pour l'échantillonnage top-k.

L'échantillonnage top-k prend en compte l'ensemble des topK jetons les plus probables. Cette valeur spécifie la valeur par défaut à utiliser par le backend lors de l'appel du modèle.

Cette valeur spécifie que la valeur par défaut est celle utilisée par le modèle de base lors de la création du modèle.

Corps de la réponse

Si la requête aboutit, le corps de la réponse contient une instance de TunedModel.

Méthode: tunedModels.delete

Supprime un modèle réglé.

Point de terminaison

delete https://generativelanguage.googleapis.com/v1beta/{name=tunedModels/*}

L'URL utilise la syntaxe de transcodage gRPC.

Paramètres de chemin d'accès

name string

Obligatoire. Nom de la ressource du modèle. Format: tunedModels/my-model-id Il se présente sous la forme tunedModels/{tunedmodel}.

Corps de la requête

Le corps de la requête doit être vide.

Corps de la réponse

Si la requête aboutit, le corps de la réponse est un objet JSON vide.

Ressource REST: tunedModels

Ressource: TunedModel

Modèle affiné créé à l'aide de ModelService.CreateTunedModel.

Champs
name string

Uniquement en sortie. Nom du modèle ajusté. Un nom unique sera généré lors de la création. Exemple: tunedModels/az2mb0bpw6i Si displayName est défini lors de la création, la partie ID du nom est définie en concaténant les mots de displayName avec des traits d'union et en ajoutant une partie aléatoire pour l'unicité.

Exemple :

  • displayName = Sentence Translator
  • name = tunedModels/sentence-translator-u3b7m
displayName string

Facultatif. Nom à afficher pour ce modèle dans les interfaces utilisateur. Le nom à afficher ne doit pas comporter plus de 40 caractères, espaces compris.

description string

Facultatif. Brève description de ce modèle.

state enum (State)

Uniquement en sortie. État du modèle ajusté.

createTime string (Timestamp format)

Uniquement en sortie. Code temporel de création de ce modèle.

Utilise la norme RFC 3339, où la sortie générée est toujours normalisée avec le suffixe Z et utilise 0, 3, 6 ou 9 chiffres décimaux. Les décalages autres que "Z" sont également acceptés. Exemples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" ou "2014-10-02T15:01:23+05:30".

updateTime string (Timestamp format)

Uniquement en sortie. Code temporel de la dernière mise à jour de ce modèle.

Utilise la norme RFC 3339, où la sortie générée est toujours normalisée avec le suffixe Z et utilise 0, 3, 6 ou 9 chiffres décimaux. Les décalages autres que "Z" sont également acceptés. Exemples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" ou "2014-10-02T15:01:23+05:30".

tuningTask object (TuningTask)

Obligatoire. La tâche de réglage qui crée le modèle affiné.

readerProjectNumbers[] string (int64 format)

Facultatif. Liste des numéros de projet ayant un accès en lecture au modèle ajusté.

source_model Union type
Modèle utilisé comme point de départ pour le réglage. source_model ne peut être qu'un des éléments suivants :
tunedModelSource object (TunedModelSource)

Facultatif. TunedModel à utiliser comme point de départ pour l'entraînement du nouveau modèle.

baseModel string

Immuable. Nom de l'Model à régler. Exemple : models/gemini-1.5-flash-001

temperature number

Facultatif. Contrôle le caractère aléatoire de la sortie.

Les valeurs peuvent être supérieures à [0.0,1.0] (inclus). Une valeur plus proche de 1.0 génère des réponses plus variées, tandis qu'une valeur plus proche de 0.0 génère généralement des réponses moins surprenantes du modèle.

Cette valeur spécifie que la valeur par défaut est celle utilisée par le modèle de base lors de la création du modèle.

topP number

Facultatif. Pour l'échantillonnage du noyau.

L'échantillonnage du noyau prend en compte le plus petit ensemble de jetons dont la somme des probabilités est d'au moins topP.

Cette valeur spécifie que la valeur par défaut est celle utilisée par le modèle de base lors de la création du modèle.

topK integer

Facultatif. Pour l'échantillonnage top-k.

L'échantillonnage top-k prend en compte l'ensemble des topK jetons les plus probables. Cette valeur spécifie la valeur par défaut à utiliser par le backend lors de l'appel du modèle.

Cette valeur spécifie que la valeur par défaut est celle utilisée par le modèle de base lors de la création du modèle.

Représentation JSON
{
  "name": string,
  "displayName": string,
  "description": string,
  "state": enum (State),
  "createTime": string,
  "updateTime": string,
  "tuningTask": {
    object (TuningTask)
  },
  "readerProjectNumbers": [
    string
  ],

  // source_model
  "tunedModelSource": {
    object (TunedModelSource)
  },
  "baseModel": string
  // Union type
  "temperature": number,
  "topP": number,
  "topK": integer
}

TunedModelSource

Modèle réglé comme source pour entraîner un nouveau modèle.

Champs
tunedModel string

Immuable. Nom de l'TunedModel à utiliser comme point de départ pour entraîner le nouveau modèle. Exemple : tunedModels/my-tuned-model

baseModel string

Uniquement en sortie. Nom de l'Model de base à partir duquel cette TunedModel a été ajustée. Exemple : models/gemini-1.5-flash-001

Représentation JSON
{
  "tunedModel": string,
  "baseModel": string
}

État

État du modèle ajusté.

Enums
STATE_UNSPECIFIED Valeur par défaut. Cette valeur n'est pas utilisée.
CREATING Le modèle est en cours de création.
ACTIVE Le modèle est prêt à être utilisé.
FAILED Échec de la création du modèle.

TuningTask

Tâches de réglage qui créent des modèles réglés.

Champs
startTime string (Timestamp format)

Uniquement en sortie. Code temporel de début du réglage de ce modèle.

Utilise la norme RFC 3339, où la sortie générée est toujours normalisée avec le suffixe Z et utilise 0, 3, 6 ou 9 chiffres décimaux. Les décalages autres que "Z" sont également acceptés. Exemples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" ou "2014-10-02T15:01:23+05:30".

completeTime string (Timestamp format)

Uniquement en sortie. Code temporel de fin du réglage de ce modèle.

Utilise la norme RFC 3339, où la sortie générée est toujours normalisée avec le suffixe Z et utilise 0, 3, 6 ou 9 chiffres décimaux. Les décalages autres que "Z" sont également acceptés. Exemples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" ou "2014-10-02T15:01:23+05:30".

snapshots[] object (TuningSnapshot)

Uniquement en sortie. Métriques collectées lors de l'ajustement.

trainingData object (Dataset)

Obligatoire. Uniquement en entrée. Immuable. Données d'entraînement du modèle.

hyperparameters object (Hyperparameters)

Immuable. Hyperparamètres qui contrôlent le processus de réglage. Si elles ne sont pas fournies, des valeurs par défaut seront utilisées.

Représentation JSON
{
  "startTime": string,
  "completeTime": string,
  "snapshots": [
    {
      object (TuningSnapshot)
    }
  ],
  "trainingData": {
    object (Dataset)
  },
  "hyperparameters": {
    object (Hyperparameters)
  }
}

TuningSnapshot

Enregistrement pour une seule étape de réglage.

Champs
step integer

Uniquement en sortie. Étape de réglage.

epoch integer

Uniquement en sortie. Époque à laquelle cette étape appartenait.

meanLoss number

Uniquement en sortie. Perte moyenne des exemples d'entraînement pour cette étape.

computeTime string (Timestamp format)

Uniquement en sortie. Code temporel de calcul de cette métrique.

Utilise la norme RFC 3339, où la sortie générée est toujours normalisée avec le suffixe Z et utilise 0, 3, 6 ou 9 chiffres décimaux. Les décalages autres que "Z" sont également acceptés. Exemples: "2014-10-02T15:01:23Z", "2014-10-02T15:01:23.045123456Z" ou "2014-10-02T15:01:23+05:30".

Représentation JSON
{
  "step": integer,
  "epoch": integer,
  "meanLoss": number,
  "computeTime": string
}

Ensemble de données

Ensemble de données pour l'entraînement ou la validation.

Champs
dataset Union type
Données intégrées ou référence aux données dataset ne peut être qu'un des éléments suivants :
examples object (TuningExamples)

Facultatif. Exemples intégrés avec du texte d'entrée/sortie simple.

Représentation JSON
{

  // dataset
  "examples": {
    object (TuningExamples)
  }
  // Union type
}

TuningExamples

Ensemble d'exemples de réglage. Il peut s'agir de données d'entraînement ou de validation.

Champs
examples[] object (TuningExample)

Exemples Les exemples d'entrée peuvent être des textes ou des discussions, mais tous les exemples d'un ensemble doivent être du même type.

Représentation JSON
{
  "examples": [
    {
      object (TuningExample)
    }
  ]
}

TuningExample

Un seul exemple de réglage.

Champs
output string

Obligatoire. Résultat attendu du modèle.

model_input Union type
Entrée du modèle pour cet exemple. model_input ne peut être qu'un des éléments suivants :
textInput string

Facultatif. Entrée du modèle de texte.

Représentation JSON
{
  "output": string,

  // model_input
  "textInput": string
  // Union type
}

Hyperparamètres

Hyperparamètres qui contrôlent le processus de réglage. Pour en savoir plus, consultez https://ai.google.dev/docs/model_tuning_guidance.

Champs
learning_rate_option Union type
Options permettant de spécifier le taux d'apprentissage lors de l'ajustement. learning_rate_option ne peut être qu'un des éléments suivants :
learningRate number

Facultatif. Immuable. Hyperparamètre du taux d'apprentissage à régler. Si cette valeur n'est pas définie, une valeur par défaut de 0,001 ou 0,0002 sera calculée en fonction du nombre d'exemples d'entraînement.

learningRateMultiplier number

Facultatif. Immuable. Le multiplicateur de taux d'apprentissage permet de calculer un taux d'apprentissage final en fonction de la valeur par défaut (recommandée). Taux d'apprentissage réel := learningRateMultiplier * taux d'apprentissage par défaut Le taux d'apprentissage par défaut dépend du modèle de base et de la taille de l'ensemble de données. Si cette valeur n'est pas définie, la valeur par défaut 1,0 est utilisée.

epochCount integer

Immuable. Nombre d'époques d'entraînement. Une époque correspond à une passe sur les données d'entraînement. Si ce paramètre n'est pas défini, la valeur par défaut est 5.

batchSize integer

Immuable. Hyperparamètre de taille de lot à régler. Si ce paramètre n'est pas défini, une valeur par défaut de 4 ou 16 est utilisée en fonction du nombre d'exemples d'entraînement.

Représentation JSON
{

  // learning_rate_option
  "learningRate": number,
  "learningRateMultiplier": number
  // Union type
  "epochCount": integer,
  "batchSize": integer
}