**使用MyScale和LangChain打造智能自查询检索器**

在现代机器学习应用中,处理和存储大量数据是一个常见的挑战,特别是在涉及自然语言处理(NLP)和大语言模型(LLM)的场景中。MyScale,作为一个集成的向量数据库,为我们提供了强大的数据存储和查询功能。本文将介绍如何使用MyScale与LangChain一起构建一个自查询检索器,以提升数据处理能力。

引言

本文旨在介绍如何使用MyScale向量存储和LangChain库构建一个自查询检索器。通过这一组合,您可以更高效地处理大规模数据集,适用于扩展应用或提升现有LLM应用性能。我们将涵盖MyScale的四个关键增强功能,并通过代码示例展示如何实现。

主要内容

MyScale的增强功能

  1. contain比较器

    • 允许在列表中查找多个匹配元素。
  2. 时间戳数据类型

    • 使用timestamp数据类型支持ISO格式的日期匹配。
  3. like比较器

    • 便于实现字符串模式搜索。
  4. 任意函数能力

    • 允许在查询中使用用户自定义函数。

创建MyScale向量存储

要使用MyScale,首先需确保安装了必要的Python包:

%pip install --upgrade --quiet lark clickhouse-connect

lark用于语法定义,而clickhouse-connect用于与MyScale后端进行连接。

在设置环境之前,您还需要准备OpenAI API密钥:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
os.environ["MYSCALE_HOST"] = getpass.getpass("MyScale URL:")
os.environ["MYSCALE_PORT"] = getpass.getpass("MyScale Port:")
os.environ["MYSCALE_USERNAME"] = getpass.getpass("MyScale Username:")
os.environ["MYSCALE_PASSWORD"] = getpass.getpass("MyScale Password:")

创建数据向量存储

from langchain_community.vectorstores import MyScale
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings()

docs = [
    Document(
        page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
        metadata={"date": "1993-07-02", "rating": 7.7, "genre": ["science fiction"]},
    ),
    # 更多文档...
]

vectorstore = MyScale.from_documents(docs, embeddings)

自查询检索器

接下来,我们创建一个自查询检索器,并定义元数据字段:

from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import ChatOpenAI

metadata_field_info = [
    AttributeInfo(
        name="genre",
        description="The genres of the movie. It supports equal and contain comparisons.",
        type="list[string]",
    ),
    AttributeInfo(
        name="date",
        description="The date the movie was released",
        type="timestamp",
    ),
    AttributeInfo(
        name="director",
        description="The name of the movie director",
        type="string",
    ),
    AttributeInfo(
        name="rating",
        description="A 1-10 rating for the movie",
        type="float",
    ),
]

document_content_description = "Brief summary of a movie"
llm = ChatOpenAI(temperature=0, model_name="gpt-4o")

retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

测试和使用示例

# 测试自查询检索器
retriever.invoke("What are some movies about dinosaurs")
retriever.invoke("I want to watch a movie rated higher than 8.5")
retriever.invoke("What's a highly rated (above 8.5) science fiction film?")

常见问题和解决方案

  • 网络访问问题:由于MyScale的API访问可能会受到网络限制,建议使用API代理服务(例如使用{AI_URL}作为API端点)来提高访问稳定性。

  • 环境变量泄漏:确保API密钥和其他敏感信息安全保存。

总结与进一步学习资源

MyScale结合LangChain为NLP应用提供了强大的扩展能力。通过利用自查询检索器,开发者可以更高效地处理复杂查询。要深入学习,请参考以下资源。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值