在现代机器学习应用中,处理和存储大量数据是一个常见的挑战,特别是在涉及自然语言处理(NLP)和大语言模型(LLM)的场景中。MyScale,作为一个集成的向量数据库,为我们提供了强大的数据存储和查询功能。本文将介绍如何使用MyScale与LangChain一起构建一个自查询检索器,以提升数据处理能力。
引言
本文旨在介绍如何使用MyScale向量存储和LangChain库构建一个自查询检索器。通过这一组合,您可以更高效地处理大规模数据集,适用于扩展应用或提升现有LLM应用性能。我们将涵盖MyScale的四个关键增强功能,并通过代码示例展示如何实现。
主要内容
MyScale的增强功能
-
contain
比较器:- 允许在列表中查找多个匹配元素。
-
时间戳数据类型:
- 使用
timestamp
数据类型支持ISO格式的日期匹配。
- 使用
-
like
比较器:- 便于实现字符串模式搜索。
-
任意函数能力:
- 允许在查询中使用用户自定义函数。
创建MyScale向量存储
要使用MyScale,首先需确保安装了必要的Python包:
%pip install --upgrade --quiet lark clickhouse-connect
lark
用于语法定义,而clickhouse-connect
用于与MyScale后端进行连接。
在设置环境之前,您还需要准备OpenAI API密钥:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
os.environ["MYSCALE_HOST"] = getpass.getpass("MyScale URL:")
os.environ["MYSCALE_PORT"] = getpass.getpass("MyScale Port:")
os.environ["MYSCALE_USERNAME"] = getpass.getpass("MyScale Username:")
os.environ["MYSCALE_PASSWORD"] = getpass.getpass("MyScale Password:")
创建数据向量存储
from langchain_community.vectorstores import MyScale
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"date": "1993-07-02", "rating": 7.7, "genre": ["science fiction"]},
),
# 更多文档...
]
vectorstore = MyScale.from_documents(docs, embeddings)
自查询检索器
接下来,我们创建一个自查询检索器,并定义元数据字段:
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import ChatOpenAI
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genres of the movie. It supports equal and contain comparisons.",
type="list[string]",
),
AttributeInfo(
name="date",
description="The date the movie was released",
type="timestamp",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating",
description="A 1-10 rating for the movie",
type="float",
),
]
document_content_description = "Brief summary of a movie"
llm = ChatOpenAI(temperature=0, model_name="gpt-4o")
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
测试和使用示例
# 测试自查询检索器
retriever.invoke("What are some movies about dinosaurs")
retriever.invoke("I want to watch a movie rated higher than 8.5")
retriever.invoke("What's a highly rated (above 8.5) science fiction film?")
常见问题和解决方案
-
网络访问问题:由于MyScale的API访问可能会受到网络限制,建议使用API代理服务(例如使用
{AI_URL}
作为API端点)来提高访问稳定性。 -
环境变量泄漏:确保API密钥和其他敏感信息安全保存。
总结与进一步学习资源
MyScale结合LangChain为NLP应用提供了强大的扩展能力。通过利用自查询检索器,开发者可以更高效地处理复杂查询。要深入学习,请参考以下资源。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—